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ABSTRACT

The nuclear electric quadrupole coupling tensors of Al* at the four nonequivalent alu-
minum sites in kyanite have been determined by use of nuclear magnetic resonance. The
eigenvalues and the asymmetry parameters n are: 10.0 MHz, 9.4 MHz, 6.5 Hz, 3.7
MHz, and 0.27, 0.38, 0.59, 0.89, respectively. The magnitudes of two of the coupling tensors
are the greatest found to date in any aluminum compound. Each of the four tensors in-
dicates a strong electronic polarization of the aluminum atoms approximately parallel to b.

The external electric field gradient tensors at the aluminum sites have been calculated
by the ionic point charge model. While there is a coarse agreement between the observed
and calculated eigenvectors of the tensors, the eigenvalues do not agree. Especially the two
largest eigenvalues cannot be explained by this model.

INTRODUCTION

Nuclear quadrupole coupling tensors of atoms in crystals are very
sensitive parameters of the actual electron density distribution in the
crystal structure. They are a measure of the slight electronic deforma-
tion of the atoms at their sites caused by the net charges of the neighbor-
ing atoms (ionic polarization) and by bonding. In this paper, the quad-
rupole coupling tensors of Al*’ in kyanite are reported. The crystal struc-
ture of kyanite is particularly appropriate, and we will present a brief dis-
cussion of the Al*" tensors of this mineral, although definite conclusions
are not as yet possible.

The nuclear electric quadrupole interaction of an atom which possesses
a free ionic state with noble gas configuration such as AI* is usually
written as

eQVii = eQ(1 — v ) Vi (1

Q in equation (1) is the nuclear quadrupole moment, V; is the electric
field gradient tensor at the nucleus which is a second rank tensor with
vanishing trace, v,, is the polarization factor of Sternheimer, and V2t is
the electric field gradient tensor at the atomic position due to the net
charges of the neighboring ions. Q of Al*” is known (0.149X 102 cm?).
¥, has been calculated theoretically for the free Al*? ion (Das and Ber-
sohn, 1956; Burns, 1959).

The symmetry properties of the field gradient tensors V;; and V%t are
determined by the point symmetry of the atomic position. If the position
possesses a cubic point symmetry the tensors will vanish. However, if the
point symmetry is lower than cubic a permanent field gradient at the
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nucleus will be induced by V;** and a definite quadrupole interaction
will occur. V*** can be derived from the crystal structure by using the
ionic model. If the nuclear quadrupole coupling tensors eQV;; are deter-
mined experimentally the Sternheimer factor 4., and V< can be tested
by means of equation (1).

Kyanite is a particularly favourable case for such a test. Its structure
has the relatively high number of four non-equivalent aluminum sites
with low point symmetries (Cy) in a relatively small unit cell which con-
tains only three different atoms and only four formula units Al;SiOs.
Since the quadrupole coupling tensors at the four Al sites are not reduced
by any symmetry elements they are each described by five independent

TaBLE 1. TRANSFORMATION M ATRIX FROM TRICLINIC TO ORTHOGONAL AXES FOR KYANITE

¢’ 3 -4

a 0.9418 —0.2757 —0.1925

b 0 1 0

0 0.0004 1.0000

parameters. Therefore, the four tensor equations (1) consist of 20 linear
equations with 20 experimentally determined independent parameters.

Since silicates such as kyanite are resonance structures which cannot be
fully accounted for by the ionic model discussion of equation (1) and a
test of its adequacy will be interesting,

EXPERIMENTAL

The four quadrupole coupling tensors of Al?” have been measured by nuclear magnetic
resonance. For this, we have used the perturbation theory approach in which the nuclear
magnetic energy levels are perturbed by the nuclear electric quadrupole interaction.! A
single crystal from Brazil was cut to a cubic shape with an edge length of about 10 mm.
Resonance was observed at a fixed frequency of 11 MHz by sweeping the magnetic field
from about 8 to 12 kilogauss. The homogeneity of the field was higher than necessary
(~1077 within the volume of the crystal). The field was repeatedly calibrated with the
resonance line of an Al aqueous solution. The resonance signals of the crystal were exceed-
ingly strong and relatively sharp with a half width of about 5 gauss. A typical resonance
spectrum is given in Figure 1.

The quadrupole coupling tensors can be accurately determined under such conditions.
Misalignment of the crystallographic axes with respect to the magnetic field is the largest
source of error. The accuracy is hence mainly determined by the goniometer facilities avail-

I For a detailed description of the technique the reader is referred to the articles of
Pound (1950) and Volkoff ef al. (1953).
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able for the resonance experiment. For our investigation we did not attempt to align the
crystal more precisely than about + one degree, although an error of one degree may lead
to line shifts of more than 30 gauss in extreme cases, while the lines can be measured with a
precision of + one gauss or better. The crystal was oriented with the back-reflection method
of Laue.

1t is convenient to represent the tensors in an orthogonal crystal system «/, ¥, 2’. For
this, we have chosen 3’ parallel to the -axis, and 2z’ in the b-¢ plane, as shown in Figure 3.
The matrix for the coordinate transformation from the triclinic system a, b, ¢ to the sys-
tem x’, 3’, 2 is given in Table 2. The crystal was rotated around an axis perpendicular to
the magnetic field. Spectra were taken every 7.5 degrees. Three rotations were performed
with 2/, ', and 2/, respectively, parallel to the axis of rotation.

The angular dependence of the differences A of the énner pair of satellite signals (m=
—3/2——1/2, m=1/2—3/2) was used for determining the parameters 4;, B;, and C; of
the three rotations. If the terms of third and higher order of perturbation theory are neg-
lected the dependence of A(6) on 4;, B;, and C; is simply

A@B) = A; + Bicos 20 + Cisin20; 1=y, (2)
8 in equation (2) is the rotation angle. A, B;, and C; were found by fitting A to the data of
each of the three rotations and by use of the five identities
Ay + A4y + 42 =0
By + By + By =0
Ay + By = Aw — By etc.
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F16. 1. Resonance spectrum of kyanite. z’ is perpendicular to the magnetic field. The
angle 6 between ' and the magnetic field is 45°. The numbers I, II, III, IV refer to the
tensor numbers (Table 3). The subscripts C and B indicate central signals and inner satel-
lites, respectively. a: outer satellites. Dispersion mode signals.
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The 4; and B; values were weighted according to their precision and averaged. It is pos-
sible to derive C; also from the angular dependence of the central signals, although condi-
tions of accuracy did not permit this in our experiment.

The quadrupole coupling tensors are finally given by the relations

OQVorpr = — 2k A, 3)

eQVyry = k(A + Byr) 4)

eQVz’z’ = k(A:c’ == Bx') (S)

eQVyrer = — kCyr; etc. (6)
2121 — D)~k

b= ( - )y o

I in equation (7) is the nuclear spin (5/2 for Al¥") and v is the gyromagnetic ratio (y of
Al¥=6.9706 MHz /kilogauss).

TABLE 2. A;, B;, AND C; PARAMETERS OF KYANITE

Tensor | x’ rotation kilogauss ]l v’ rotation kilogauss | z’ rotation kilogauss

4 0.523 ‘ A4, —1.239 A 0.714

1 B,/ 1.9635 B, —0.207 B.' —1.771
! 0.992 C,’ —0.186 G —0.015

A 0.879 4, —1.244 A, 0.370

1 B! 1.641 By 0.496 B, —2.145
(2 —0.379 Cl —0.054 c’ —0.108

A2 0.679 A, —0.831 A 0.155

111 | B 0.993 B,/ 0.522 B. —1.513
G’ —0.442 G —0.232 C.’ —0.117

Aq! 0.422 A, —0.463 A 0.043

1aY B! 0.503 B, 0.377 B, —0.892
&' 0.281 Gt 0.294 €.’ 0.018

Resvrrs

The parameters 4,, B;, and C; are listed in Table 2. The dimension of
the parameters is kilogauss since we found it more convenient to sweep
the magnetic field than the frequency. Table 3 presents the eigenvalues
of the diagonalized tensors and the eigenvectors with respect to the ', 3/,
and z’ system. Two of the tensors have extremely great eigenvalues.
This is manifested by the extraordinary splitting of the satellite reso-
nance lines by several kilogauss at 11 MHz. The central signals which de-
pend on second- and higher- order effects only are shifted by several
hundred gauss.

We have used the final quadrupole coupling tensors to calculate all the
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line positions as a function of 8 for each of the three rotations, using per-
turbation theory. The third-order terms have been included. They were
found to average about 20 gauss, the greatest contribution being 60 gauss
for tensor II (3" rotation, =30°). The third-order effects are thus sub-
stantial. They can be well resolved in the spectrum. Therefore, equation
(2) yields only approximate values for the tensors. However, the third
order effects are still of the order of the errors of alignment of the crystal
with respect to the magnetic field. The maximum deviation of the calcu-

TABLE 3. MEASURED NUCLEAR QUADRUPOLE COUPLING
TeNsors oF Al¥ 1n KYANITE

| Eigenvectors (Direction Cosines)

Tensor .Eigenvalues" -
‘ eQVii/h, MHz ] - " o
e - — - |
i=: ¥ 3.68+0.07 0.964+0.010 0.069+0.007 | 0.256+0.013
I i= F 6.34+0.13 | —0.265+0.014 0.223+0.012 | 0.938+0.013
i +10.04+0.20 0.008+0.020 | —0.9724+0.011 | 0.233+0.033
i=x% + 2.890+0.04 0.042+£0.007 | —0.116+0.006 | 0.992+0.004
1T i=y + 6.52+0.10 | —0.999+0.003 0.021+£0.011 | 0.04540.025
i=z + 9.37+0.14 0.026+0.020 | 0.993+0.005 | 0.115+0.034
i=x + 1.354+0.03 0.19740.007 | —0.2204+0.005 | 0.955+0.011
IIT i=y + 5.20+£0.09 | —0.979+0.016 0.008+0.014 | 0.2044+0.030
1=g + 6.53+0.12 0.0524+0.025 | 0.976+0.013 | 0.213+0.037
i=x + 0.20+£0.01 | —0.3424+0.006 0.253+0.009 | 0.905+0.012
IV | i=» + 3.52+0.07 0.9394+0.020 0.060+0.023 | 0.3394+0.029
=3 + 3.70+£0.07 | —0.032+0.028 | —0.966+0.012 | 0.258+0.031

2 The sign of the eigenvalues cannot be determined experimentally.

lated central signal positions from the observed lines was 10 gauss. From
this, we conclude that the quadrupole coupling tensors should be correct
within the limits of error marked in Table 3, although the third-order
effects have been neglected. A refined determination of the tensors should
nevertheless take them into account. It would also be interesting to re-
examine the tensors by means of pure quadrupole resonance.

DiscussioNn

In Table 4, the AI* quadrupole coupling tensors of kyanite are com-
pared with those of a number of aluminum oxides and aluminum silicates.
The four kyanite tensors are surprisingly distinct. Two of them are by
far the greatest observed to date in any aluminum compound. The two
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others are considerably smaller. The quadrupole energy difference of
more than 6 MHz between the smallest and the greatest value is unusually
large for Al* tensors of nonequivalent sites with the same number of
nearest neighboring atoms. Such marked differences of the tensor prop-
erties must be attributed to distinct crystallographical properties of the
corresponding sites.

The crystal structure of kyanite was determined by Naray-Szabo,

TasLE 4. THE NUCLEAR QUADRUPOLE CoUPLING TENsORs OF Al¥ IN SOME
ArumiNnuM OXIDES AND ALUMINUM StticaTES (MaxiMuMm EI1GEN VALUES
AND ASYMMETRY PARAMETERS 1)

Vil |

MHz | Al-site bl Reference
A. Oxides |
1. Corundum (Al O3) 2.393 | octahedral | O Pound (1950)
2.850 | octahedral | 0.94
2. Chrysoberyl (BeALOy) { 846 | octahedral | 0.7 6} Hockenberry (1958)
3. Spinel (MgALO,) .68 | octahedral |0 Brun (1952)

(LIAL,O5) octahedral | 0,347/ | Stauss (1964
5. Berlinite (AIPO,) .088 | tetrahedral | 0.367 | Brun (1961)
B. Silicates

2
3
4. Lithium Aluminate 0.284 ‘ tetrahedral | O
0 ;
4

6. Natrolite 1.663 | tetrahedral | 0.5029 | Petch (1962)
(NagAlzsi30102H20)

7. Euclase (HBeAlSiO;) .173 | octahedral | 0.698 | Eades (1955)

8. Beryl (Be3Aly(SiOs)g) .093 | octahedral | O Brown (1956)

9. Spodumene (LiAl(SiO3)s) .950 | octahedral | 0.94 Petch (1953)

10. Albite (NaAlSizOg) .29 | tetrahedral | 0.26 Hartmann (1963)

11

—_

.04 | octahedral 0.271
.37 | octahedral | 0.38
.53 | octahedral | 0.59
.70 | octahedral | 0.89

12. Kyanite (Al;SiOs) This work

5
3
2
3
. Microcline (KAIS1;03) 3.21 | tetrahedral | 0.21 Hartmann (1963)
0
9
6
3

Taylor, and Jackson (1929). A refinement of the atomic coordinates was
performed by Burnham (1963)'. The structure is described as a distorted
cubic close-packed arrangement of oxygen atoms in which the aluminum
atoms are located in certain octahedral interstices while silicon occurs in
certain tetrahedral interstices. The distribution of aluminum among the
octahedral interstices is such that one half of the Al-O octahedra, Al(1)
and Al (2), form chains parallel to the ¢ axis, successive octahedra sharing
edges. The other half of the aluminum octahedra, Al(3) and Al(4), link
the chains together in that they share edges with the chain octahedra.

! Another refinement of kyanite was performed by de Rango ¢ al., (1966).
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The Al(1) and Al(3) octahedra each share five edges with neighboring
aluminum octahedra while AI(2) and Al(4) each have four edges with
other octahedra in common. Thus, each of the four Al sites is topologi-
cally distinct:

Al(1) octahedron of a chain parallel to ¢, five edges shared
Al(2) octahedron of a chain parallel to ¢, four edges shared
Al(3) notina chain, five edges shared

Al(4) not in a chain, four edges shared

1/

p / /

i
{

F1c. 2. Projection of the kyanite structure parallel to ¢. Reproduction
of Fig. 2 of Burnham (1963).

It would be interesting to know the assignment of the four tensors I,
I1, IIT, and IV to the four Al sites. However, since the point symmetry of
all four sites is the same (Cy), the tensors cannot be assigned simply by
symmetry considerations and inspection of the spectra. Burnham (1963)
found that the Al(4) octahedron is strongly distorted, possessing the
shortest and one of the longest Al-O distances observed in aluminum
silicate minerals. Its assignment to one of the temsors with the large
eigenvalues is therefore probable, although by no means definite.

Second rank tensors with vanishing trace are represented geometrically
by three axial hyperboloids. The eigenvectors describe the directions of
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the hyperboloidal symmetry axes and the eigenvalues give their axial
lengths. The eigenvectors of the four measured Al* tensors are shown in
Figure 3. For each tensor, one symmetry axis is nearly parallel to the b
direction of the crystal, and another is nearly parallel to ¢. In each case
the symmetry axes parallel to b are in the direction of the greatest electric
field gradient. Thus, all the aluminum atoms are strongly polarized in

— A

- a

Fic. 3. Stereographic projection of the observed and calculated eigenvectors of the
nuclear quadrupole tensors. Circles: V,,, triangles: Vyy, squares: Vi Open symbols: ob-
served vectors; solid symbols: calculated vectors. The numbers of the solid symbols refer to
the subscripts of the Al sites.

that direction. The b-direction is in fact a special direction of all Al-O
octahedra in the kyanite crystal structure, (Fig. 2).

Using the point charge model, we have calculated the electric field
gradient tensors V;;F at the four aluminum sites. For this the Ewald lat-
tice potentials at the sites were expanded in spherical harmonics (the
gradients can be computed very accurately by this technique). The
atomic coordinates of the refinement of Burnham were used!. The eigen-
values and eigenvectors are listed in Table 5; the latter are also shown in

! We have repeated the computations using the atomic coordinates of de Rango ef al.,
(1966). Although there are differences in the results due to the slightly different coordinates,
the conclusions are not affected.
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TaBLE 5. CALCULATED ELECTRIC FIELD GRADIENTS AT THE Al
Sites 1IN KvaNITE (PoiNT CHARGE MODEL)

Site Eigenvalues Eigenvectors (Direction Cosines)
x' 3 2’
Vie —0.32 —0.991 —0.127 0.045
Al %r —2.10 0.086 —0.343 0.935
V.. +2.43 —0.104 0.931 0.351
Vae +0.40 0.084 —0.178 0.005
Al Viyy +1.79 —0.061 —0.310 0.949
Ve —2.19 0.167 0.934 0.316
Ve —0.83 —0.002 —0.928 0.372
Aly Vuu —1.21 —0.076 0.371 0.926
Ve +2.03 0.997 0.026 0.072
Vs +0.16 —0.073 —0.073 0.995
Aly Vi +2.39 0.996 0.031 0.077
It —2.56 —0.046 0.996 0.070

Figure 3. In Table 6, the maximum eigenvalues and asymmetry param-
eters 5 of the quadrupole coupling tensors calculated by use of equation
(1) are given. For the calculation, the theoretical value vy, = —2.45 of the
free AT ion was taken. Further, it was assumed that
Vi~ Vi ®
The agreement between the observed and the calculated eigenvalues of
the quadrupole coupling tensors is far from being satisfactory in spite of
the fact that there is coarse coincidence between the eigenvectors. Al-
though it is reasonable to expect that the computed field gradient tensor

TABLE 6. OBSERVED AND CALCULATED MaxXiMmuM EIGENVALUES
OF THE Al* QUaADRUPOLE CoUPLING TENSORS

Measured Calculated
1—7)eQV..E/h .
eQsz/h; MH, n ( 3&%{ / 7 Site
10.044+0.20 0.274+0.02 —2.56 0.87 | Al (4)
9.37+0.14 0.38+0.01 +2.43 0.73 Al (1)
6.53+0.12 0.59+0.02 —2.19 6.63 Al (2)
3.70£0.07 0.89+0.02 +2.03 0.19 Al (3)
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at the Al(4) site is the greatest of the four (see Table 4), the four tensors
are roughly equal, and the unique values of the tensors I and II cannot
be interpreted by the simple point charge model. Two of the symmetry
axes of the calculated tensors are more or less parallel to the & and ¢
directions of the crystal, in agreement with the experimental results out-
lined above. The symmetry axes parallel to & are, with one exception,
again the directions of the greatest field gradient. It is to be noted that
the eigenvectors are fully determined with respect to the crystallographic
axes a, b, ¢ of the crystal. There is no freedom for any rotation. The direc-
tion of the vectors together with a, b, ¢ is plotted in Figure 3.

Two possibilities may explain the discrepancy between observed and
calculated eigenvalues: first, the point charge model is generally inade-
quate for the calculation of ionic field gradients at lattice sites. The higher
electronic moments of the ions contribute considerably to the effective
gradients V;#*t, Their contribution is of the same order of magnitude as
the point charge contribution alone, particularly in crystal structures with
low lattice symmetry. Secondly, the purely ionic model is probably not
very accurate for resonance structures such as silicates. However, it must
be remembered that any nonionic contribution to the quadrupole tensors
can be determined only when the electric field gradients of the ideal ionic
model are known. Therefore, self-consistent calculations of the ionic field
gradients, including the higher electronic moments of the ions, are neces-
sary. Unfortunately, such computations for kyanite are lengthy, due to
the relatively high number of nonequivalent atomic positions and their
low point symmetries. A detailed investigation of the higher electronic
moments in kyanite is under way.

This work was supported by the National Science Foundation under Grant GP-5097. The
experiments were performed at the Institute for the Study of Metals at the University of
Chicago.
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