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COMPUTATION OF ABSORPTION CORRECTIONS,
AND THE SIGNIFICANCE OF END EFFECT
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ABSTRACT

A method of computing transmission factors using Gaussian quadrature numerical
integration for crystals whose shape can be described by plane faces has been programmed
specifically for equi-inclination Weissenberg diffraction geometry. This program is readily
adaptable to single-crystal orienter geometry and will compute transmission factors at
rates varying from about 60 to 350 /£l reflections per minute on the IBM 7090 computer.
The method has been used to investigate the magnitude of end effect inherent in cylindrical
ahsorption corrections for non-equatorial, or upper-level reflections. For cylindrical
crystals with u; values of 0.5 or greater, end effect introduces errors into transmission
factors for reflections measured at equi-inclination angles greater than 20° when the length/
diameter ratio of the cylinder is 20 or less.

INTRODUCTION

The techniques now available for crystal-structure refinement allow
very precise determination of atomic positional and thermal parameters.
If full advantage is to be taken of these techniques, intensity data ob-
tained by a-ray diffraction must be properly corrected for physical and
geometrical effects which otherwise lead to systematic errors. The correc-
tion for absorption of  radiation by the specimen is particularly impor-
tant unless the experimental conditions are such that there is very little
(<S5 per cent) variation in the correction from one measured intensity to
another.

The mathematical form for the transmission factor (i.e., the percentage
of incident intensity not absorbed) is well known (International Tables for
X-ray Crystallography, vol. 11, 291):
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Equation 1 has been evaluated for spherical crystals by Evans and
Ekstein (1952). For spheres the transmission factor, 7', is a function only
of the diffraction angle 6, linear absorption coefficient u;, and crystal
volume V. The ease of applying this correction is, in most cases, offset by
the difficulty of preparing spherical specimens and orienting them with-
out morphological aids. Attempts to grind crystals possessing pronounced
cleavages to truly spherical shape frequently fail, and in many cases the
result is, at best, an ellipsoid. Computation of 7" for ellipsoids has, how-
ever, been performed by Fitzwater (1961).

Claassen (1930) and later Bradley (1935) evaluated transmission
factors for cylindrical crystals for zero-level Weissenberg geometry.
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Buerger and Niizeki (1958) extended the treatment to equi-inclination
Weissenberg geometry. This correction assumes that the crystal, whose
entire volume is irradiated, has a very large length/diameter ratio and,
hence, that end effect caused by abnormally short path lengths near the
ends of the crystal is negligible.

Graphical methods of computing transmission factors for prismatic
crystals have been presented by Hendershot (1937), Albrecht (1939),
Howells (1950), Evans (1952) and Rogers and Moffett (1956). These
techniques are extremely time consuming and are, in most cases, not
applicable to equi-inclination upper-level reflections. Because of these
limitations, the cylindrical absorption correction is sometimes used as an
approximation for prismatic crystals.

The only practical method of applying an accurate absorption correc-
tion to arbitrarily shaped crystals is to solve equation 1 on a high-speed
digital computer using any one of several numerical integration tech-
niques. Busing and Levy (1957) have described a method employing the
Gaussian quadrature technique; this same general method has been used
in a program, written for the IBM 7090 computer, that computes trans-
mission factors for crystals of essentially arbitrary shape for equi-inclina-
tion Weissenberg geometry.!

The intent of this paper is to describe very briefly the method used to
compute transmission factors, and to report the results of an investiga-
tion of the errors to be expected due to end effect when using cylindrical
absorption corrections.

MATHEMATICAL METHOD

The analytic description of the crystal consists of a set of equations of
the form

Apx + Bny + Cuz+ D=0, (2)

each of which represents one of the n crystal faces. The equations are
derived relative to an orthogonal coordinate system that is fixed with
respect to the crystal and bears the following relation to the equi-inclina-
tion single-crystal diffractometer: The x axis is parallel to the primary
x-ray beam with its positive sense away from the x-ray source when ¢, the
crystal-rotation angle, and g, the equi-inclination angle, are both zero;
the z axis is coincident with the crystal-rotation axis, ¢, with its positive

1 This program consists of a set of subroutines which, when incorporated in a main
data-processing program, allow absorption corrections to be made while intensities are
being converted to observed structure factors. Two primary subroutines are written in
Fortran, while two subsidiary subroutines involving no input-output are written in FAP
language. Operational instructions and symbolic card decks are available from the author.
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direction away from the diffractometer spindle; the positive y axis is
oriented so as to make the coordinate system right-handed.

To determine the coeflicients 4, through D, for each plane, one mea-
sures the coordinates x,, v;, z; of three non-colinear points on each face;
the required coefficients are the cofactors of the first row terms in the de-
terminant

X1 MM 5
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If equation 2 for each plane is adjusted so that D, is positive (by multi-

plication by —1 if necessary), then any point x, y, z, lies inside or on the
surface of the crystal if the inequality

Ay + By + Caz+ Du 2 0 4)

is satisfied for all # planes, provided that (a) there are no reentrant angles
in the crystal model, and (b) the origin of the coordinate system is inside
the crystal.

Equation 1 may be expanded as a triple integral:
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To apply the Gaussian quadrature method, the triple integral (3) is
approximated by a triple sum (Busing and Levy, 1957):
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where &y, ¥;, z; are coordinates of sample points inside the crystal, given
by

v=a+ b —a)u

v = o) + {d(ws) — e |uy
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The volume of the crystal is given by
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and P;; is the total path length of incident and diffracted beams to the
sample point x;, ¥;, z¢. The fractional intervals, u;, and their associated
weights, W;, depend on the number of terms, #, in the summation. Val-
ues of these constants have been tabulated by Lowan ef al. (1942) for
values of m from 2 to 16. The program allows a choice of m of 4, 6, or 8.

To determine the limits of integration, the coordinates of all possible
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intersections of three planes (2) are found. From those intersections
whose coordinates satisfy the inequalities (4) (and hence represent inter-
sections of crystal faces) the smallest and largest x coordinates are se-
lected as the limits @ and 4. Similarly, the smallest and largest y coordi-
nates of valid intersections of two planes occurring at the m intervals
along x (computed with (7)) are selected as the set of limits ¢(x;) and
d(x;). Finally, for each combination x,y;, the limits e(xv;) and f(x.y;) are
the two values of z, found by solving each of the plane equations (1),
which also satisfy the inequalities (4).

The total path length, P, associated with the point a,y;z, inside the
crystal, is the sum of the primary beam path length, P,q;, and the
diffracted beam path length, Py;jiy. The length of a vector, 7,,, parallel to
the primary beam from point x;v;2. to any crystal face, #, is given by

— Aaxs — Bnyj — Cpzr — Dn

= L = (9]
Ag cosap + By cos B, + G, cos vy

T'pn

where cos ay, €08 8, and cos v, are the direction cosines of the vector with
respect to the orthogonal coordinate system previously described. Since
the positive sense of 1, is away from the point x,y;z;, and opposite to the
direction of travel of the primary beam, the required direction cosines are
not equal to those of the primary beam itself. The signs of equation 9
dictate that 7,, will be positive only if plane # is between x;v;2; and the
primary-beam source, provided that D, for each plane is zero or positive.
Thus the primary beam length, P,uu, to point x;v;z; is the smallest
positive value of the set of #,,.

In an analogous manner the diffracted beam path length, Paq ), is the
smallest positive value of the set of 74,, computed according to
— Anxi — Bay; — Cazi — Dn

= - i — . (10)
A cosag + B, cosBy -+ Cncosvyg

Tdn

where cos ag, cos 84, and cos v, are direction cosines of a vector parallel to
the diffracted beam with positive sense in the direction of travel of the
beam.

The direction cosines of the primary and diffracted beams depend on
the geometry of the diffractometer and the orientation of the coordinate
system used to describe the crystal. The direction cosines for equi-
inclination geometry relative to the previously defined coordinate system
are listed in Table 1. A similar coordinate system may be employed with
single-crystal orienters, in which case the positive x axis is parallel to and
in the same direction as the primary x-ray beam when ¢, x, and 6 are zero,
and the positive z axis is coincident with the ¢ axis and directed away
from the goniometer head. Again v is selected to complete a right-handed
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TasLe 1. DIrRECTION COSINES OF PRIMARY AND DIFFRACTED BEAMS RELATIVE
T0 THE ORTHOGONAL COORDINATE SYSTEM DESCRIBED IN THE TEXT

163

Equi-inclination

Single-Crystal Orienter!

Weissenberg
COS oy cos (r—¢) cos u —cos 6 cos p—sin 4 cos x sin ¢
cos Bp sin (r—¢) cos u —cos 6 sin ¢-+sin 6 cos x cos ¢
COS v, sin u *+sin 8 sin x
Cos oy cos (T—¢) cos u cos 6 cos ¢—sin # cos x sin ¢
cos By sin (T—¢) cos u cos 6 sin ¢+sin 6 cos x cos ¢
€OS va sin g +sin 0 sin x

! The sign of terms containing sin x is determined as follows: If increasing the value
of x moves the goniometer head toward the +y axis of the coordinate system as deter-
mined with ¢, x, and 6 zero, the sign is —; if the goniometer head moves toward the —y
axis, the sign is -+ (C. T. Prewitt, 1963, pers. comm.).

system. Direction cosines for this geometry are also listed in Table 1
(R. B. Roof, Jr., 1962, pers. comm.; B. J. Wuensch and C. T. Prewitt,
1964, pers. comm.).

Table 2 lists the approximate computing speed and estimates of the
integration precision as a percentage of the computed transmission factor
for the three choices of the number of integration points, m, in each direc-
tion. Since the precision decreases with increasing linear absorption co-
efficients, the estimated values in Table 2 are valid only within the stated
range of transmission factors. The high speed of the IBM 7090/7094
computers makes it practical and economical to use values of # of 6 or 8
for processing the hundreds of reflections needed for complete three-
dimensional structure analyses. Using these higher values of m, the effec-
tive limits of transmission factor precision depend primarily on the pre-
cision with which a crystal can be measured under the microscope and on
uncertainties in the linear absorption coefficient.

TABLE 2. SPEED AND PRECISION ESTIMATES FOR TRANSMISSION
Factor CompuTATION ON THE IBM 7090 COMPUTER

! Approximate Estimated
Integration : . .. p
m Points Processing Time Precision, %,
(reflections/minute) (for T>0.1)
4 64 350 +4
6 216 125 +2
8 512 60 +0.5
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THE SIGNIFICANCE OoF END EFrFECT

Transmission factors for reflections from cylindrical or prismatic
crvstals completely bathed in radiation are subject to end effect when-
ever the primary and diffracted beams are not normal to the prism or
cvlinder axis. This effect is due to shortening of path lengths to and from
volume elements near the ends of the crystal and is neglected by graphi-
cal methods of transmission factor computation and by the cylindrical
approximation method (Buerger and Niizeki, 1958). Since the numerical
integration technique considers the entire crystal shape, it automatically
takes account of any end effect. It is thus possible using this method to
evaluate the magnitude of errors due to end effect in the cylindrical
approximation.

When primary and diffracted beams are normal to the cylinder axis,
the transmission factor depends on the product s, where u; is the linear
absorption coefficient and 7 is the cylinder radius, and on 6(=7/2 when g,
the equi-inclination angle, is 0°). Buerger and Niizeki (1958) showed that
for equi-inclination geometry, when u= —»30, all path lengths must be
modified by 1/cos u, and that for a given value of T(5420 when u0) the
transmission factor must be found for w;(r/cos u) rather than u;. The
magnitude of end effect will thus depend on uw, T, the equi-inclination
angle u, and the length/diameter ratio of the cylinder.

To compute end effect, transmission factors were first computed for a
cyvlinder having a length/diameter ratio of 100 for three values of T(0°,
60°, 120°), and values of u ranging from 0° to 60°. Computations were
carried out using two values of w, 0.5 and 1.0. These two values are
typical of those encountered with the small single crystals used on mod-
ern diffractometers.

Cylinders were approximated by 16-sided prisms, since the transmis-
sion factor program requires crystal descriptions in terms of plane faces.
In the prism approximation the normal to each face from the prism axis
to the face had length 7, where 7 is the radius of the cylinder being ap-
proximated.! To change the length/diameter ratio, only the equations for
the ends of the prism had to be altered. The computed transmission
factors were compared with those obtained from the /nternational Tables
for X-ray Crystallography (vol. II, pages 295-298) using w;r/cos u for
upper-level conditions. This comparison provided assurance that a
length/diameter ratio of 100 was large enough to eliminate end effect over
the entire range of u and T values. It also demonstrated that the prism
approximation was extremely precise.

1 The cross-section area of the prism is 1.3 per cent greater than that of the cylinder.
The effect of this error on transmission factors is insignificant, at least in the range of
transmission factors encountered in this investigation.
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F16. 1. Percentage of end effect in transmission factors, T, for cylinders with equi-
inclination Weissenberg geometry. Solid lines are for uyr=1.0; dashed lines are for pir=0.5.
Three groups of curves show end effect in cylinders having length/diameter ratios of 5
(case @), 10 (case b), and 20 (case c).

The computations were repeated for cylinders having length/diameter
ratios of 5, 10, 20, and 30. The percentage of end effect was computed
according to

AT
% end effect = 100 I: :I (11)
Ty
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where AT is the difference between the transmission factor for a particu-
lar length/diameter ratio and that computed for the length/diameter
ratio of 100. The term AT is =0 because end effect, if present, tends to
increase transmission factors.

Results of these computations are shown in Fig. 1. When the length/
diameter ratio is 30 or greater, end effect is negligible for all combinations
of T, u, and uy investigated. The curves of Fig. 1 show that end effect
may introduce significant errors in cylindrical absorption corrections for
upper-level reflections when length/diameter ratios are 20 or less. By
illustrating the behavior of end effect for a limited set of conditions, these
curves afford the experimenter a general indication of whether or not he is
liable to encounter end effect, and hence whether or not the cylindrical
approximation correction can be employed safely. Under suitable experi-
mental conditions, one could use the curves to obtain an end effect correc-
tion for transmission factors computed by the cylindrical approximation
method.

This work was carried out in part at the Crystallographic Laboratory,
Massachusetts Institute of Technology, Cambridge, Massachusetts,
where it was supported by the National Science Foundation. The facili-
ties of the M.I.T. Computation Center were used for part of the compu-
tations and are gratefully acknowledged. Professor M. J. Buerger and
Dr. William R. Busing kindly read the manuscript; their helpful com-
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