MINERALOGICAL NOTES

by Wickman (1948) who assumed that Harcourt (1942) really was dealing with a member of the tetrahedrite family.

References

DONNAY, J. D. H. AND W. NOWACKI (1954) Crystal Data, p. 554.

HARCOURT, G. A. (1942) Am. Mineral. 27, 63-113.

ROSI, F. D. et al. (1961) RCA Progress Report #8, Contract No. NOBS 77057, p. 11.

WERNICK, J. H., S. GELLER AND K. E. BENSON (1958) Jour. Phys. Chem. Solids 7, 247. WICKMAN, F. E. (1948) Am. Mineral. 33, 262.

THE AMERICAN MINERALOGIST, VOL 50, JANUARY-FEBRUARY, 1965

SYNTHESIS AND PROPERTIES OF CALCIUM VANADIUM GARNET (GOLDMANITE)

R. G. J. STRENS, Department of Geology and Geophysics, University of California, Berkeley, California.

In the course of a study of garnets containing trivalent ions of the first transition series, $Ca_3V_2Si_3O_{12}$ was prepared hydrothermally at 530° and 3.0 kilobars, in a 30-day run at the oxygen partial pressure of the hema-tite-magnetite buffer. The starting material was glass with a Ca:V ratio of 3:2, but with excess silica to suppress the substitution of $(OH)_4^{4-}$ for SiO_4^{4-} . Garnet was obtained in theoretical yield, as a dark green equigranular powder, with $n \ 1.834 \pm 0.003$, $a \ 12.070 \pm 0.005$, and $D_{calc} \ 3.765$.

Moench and Meyrowitz (1964) have recently described a natural vanadium garnet, containing 60% of the Ca-V end-member, for which they have proposed the name *goldmanite*. Their analysis gives the formula:

$(Ca_{2.91}Mg_{0.08}Mn_{0.02})_{3.01}(Al_{0.47}Fe_{0.33}V_{1.20})_{2.00}Si_{2.99}O_{12}$

with $n \, 1.821 \pm 0.001$, $a \, 12.011$, and $D_{cale} \, 3.737$. Applying corrections for the content of Mg, Mn, and Fe with the aid of Skinner's (1956) data for the garnet end-members, the writer calculates $n \, 1.836$ and $a \, 12.086$ for the Ca-V end-member, in reasonable agreement with the values found above.

References

MOENCH, R. H. AND R. MEYROWITZ (1964) Goldmanite, a vanadium garnet from Laguna, New Mexico. Am. Mineral. 49, 644-655.

SKINNER, B. J. (1956) Physical properties of end-members of the garnet group. Am. Mineral. 41, 428-436.

260