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AsstnA.ct

For ternary closed data, discriminant functions based on polynomials of the form

I (xo + &).
p:I

are analytically equivalent and geometrically identicai for l{i1j13. For any assigned

value of q only a single function need be calculated and it makes no difference which pair

of variables is used for the calculation.
Discriminant functions based on polynomials not satisfying this condition will vary rvith

the choice of variables, so that if they are to be computed at all it will usuaily be necessary

to compute them for at least two and sometimes for ali three pairs of variables. If the ob-
jective is merely efficient classification, ho',r'ever, there ivill usually be little advantage in

such calculations, since in general the eliciency of a discriminant based on a polynomial

of the form

I ( x c+
p- l

will not be less than that of a polynomial of

variables.
Generalization of the basic relation is immediate; for an M-variable closed array dis-

criminant functions based on oolvnomials of the form

I ( X ' + X : *  " ' * X u - ' ) o
p-l

r.ill be analytically equivalent, the numbering of the variables being arbitrary. No other

polynomial of the same order in these variables will yield a more efficient discriminant.

Il M :3, functions based on all three variables cannot be plotted in the ternary diagram,

those based on only one variable plot as straight lines parallel to one of the edges, and those

based on any pair of variables plot as straight lines if 9:1 and curves if q)1. Any dis-

criminant function based on one or two variables divides the ternary diagram into two

fields, corresponding to the two groups into rvhich the data are ciassified by the dis-

criminant, An example is described.

Discriminant function analysis has enjol 'ed considerable vogue in the
Iife and behavioral sciences since shortly after the close of the second
war, and is now finding application in the earth sciences as well. Like
most forms of multivariate analysis, the technique is not i ikely to be of
much practical use to the naturalist who does not have access to a reason-
ably capacious electronic computer. To the rapidly increasing number
of naturalists who do have access to such equipment, however, it offers
two major advantages, at the same time providing a perfectly objective
procedure for determining how effectively objects belonging to two

X.r)o

the same order but different form in these
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CLASSIFICATION BY DISCRIMINANT FANCTIONS 1619

different groups can be distinguished from each other by means of a
given set of properties measurable in each object, and making possible the
simultaneous consideration of large numbers of variabies.

For petrographers, traditionally committed to graphical analysis and
acutely aware of its l imitation in this respect, the abil ity to treat large
numbers of variables simultaneously wil l no doubt have considerable
appeal. Under some circumstances, however, the abil ity to discriminate
in an objective fashion, and more particularly the abil ity to estimate the

Frc. 1. Items in group A of Table 1 shown by solid circles, those of group B by open
circles. The trace of equation (4) is shown by the dashed line, that of equation (6) by
the curve.

optimum efficiencv with which the discrimination can be made, may be
of greater importance. This note presents an example.

In Table 1 are l isted recorded values of variables Xr, X: and Xa in each
of 63 items of group A and 97 of group B. Each triplet sums to 100, and
all are plotted in Fig. 1, those belonging to group A being shown by solid
circles. The problem for which a solution is sought is the simple and fun-
damental one which characterizes all descriptive science, viz., whether,
how, and how efficiently, individual items can be assigned to the proper

x3



1620 FELIX CHAYES

type on the basis of their announced contents of variables Xr, Xz, .X*.

In the ternary array a discriminant function computed from any pair of
the variables provides a convenient and usually an optimum solution
of this probiem.

Other solutions or, at anv rate, other modes of examining the problem,
are of course possible. Intuit ively, one suspects that if the groups really
are distinct it ought to be possible to divide the diagram into two fields -

whether bt' inspection or by contouring one occupied almost exclusiveiy
by open, the other aimost exclusivell, '  by solid, circles. A close look at the

I
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TanI-B 1. TnnNanv CoonnrNerns. rN PERcENTAGEs. lon 63 Itrlts Brr,oNcrNc

To GRouP A.tNl 97 To GRouP B

(Variables identified by column headings; row headings give number of first item

in each line.)
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diagram should persuade almost anyone that this is not possible in the
present example. There is nevertheless a perceptible concentration of
solid circles in the upper left of the triangle and a somewhat weaker con-
centration of open circles a l itt le below and to the right of its center. In
fact, in nearly two-thirds of the specimens located b,v solid circles
Xr) 2Xz and in nearly three-quarters of those shown by open circles
Xt12Xz. Those in the first category l ie above, and those in the second be-
iow, the l ine X1:2X2 (not shown in the figure). Against the alternative
that there is no tendency for points to concentrate in anv particular re-
gion of the triangle the relative frequency of solid circles above this l ine
indicates a highly significant departure from randomness, but that of the
open circles below it does not. Against the superficiall l '  similar alterna-
tive that points are as l ikely to fall on one side of the l ine as on the other,
however, the data give a rather stronger result; the distributing of open'
circles provides very strong reason for rejecting this second h,vpothesis
and that of the solid circles is also significant against it at the 1 per cent
Ievel, but barely so.

In the absence of substantive information it is of course impossible to
determine which-if either-of these descriptive hypotheses is realistic.
They are discussed here mereiy as a reminder that partit ion tendencies
easily strong enough to be highly significant ma,v nevertheless be so weak
as to be worthiess for purposes of classification or description. If, for in-
stance, oniy 31 instead of 37 of the 63 solid circles lay above the l ine
Xy--2X2, this would sti l l  be sufficient to establish, at the l percent level,
the hypothesis that there is a tendency for items of group A to be con-
centrated in the upper part of the triangle. Yet if the condition Xr>.2Xz
were then adopted as a criterion for inclusion of an item in group A, more
than half the sample items known on other grounds to be of this t.vpe
would be excluded from it.1

When the potential uti l i ty of some particti lar partit ion as a descriptive
or taxonomic device is at issue, tests of the sort so far described are essen-
tially irrelevant. What is needed is an estimate of the proportion of the
total sample aariation which is properly allocated or "accounted for" b1-
the partit ion in question. Assurance that a particular partit ion is the
best of its kind would also be extremely valuabie; for example, the l ine
X1:2X2, which from inspection seems a fairly good discriminant, is a

I fn analogous fashion, a properly constructed response surface may well reveal stdtis-

ticaily significant tendencies of great interest and importance, yet provide an uninforma-

tive or misleading description of the "topography" of both sample and pare4t frequency

distributions. This is almost inevitable when, as in many published maps, the computed

surface accounts for only a small part of the total sample variation (see Chayes and

Suzuki, 1964).
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member of the family of l ines trrXr*trzXz*0:0, with tr1 taken as 1, 12 as
-2, and 0 as 0. To determine b.v inspection whether this represents the
best choice of coeffi,cients would be an endless chore, yet clearly if a
better partit ion could be obtained by some other set of coefficients, that
set would be preferable for the purpose at hand. It is thus a considerable
advantage that the coefficients of the computed discriminant function
are, in a simple and intuit ively appealing sense, the best obtainable, and
that the efficiency with which the function partitions the sample-i.e.
the proportion of correct assignments it yields is easily found. (When,
furthermore, the sampling procedure is suitably random, the efficiency of
the partit ion effected by the function is a sound estimate of the effi-
ciency with which it may be expected to partit ion future samples.)

A full explication of the structure and caiculation of the two group dis-
criminant function would be inappropriate,l but it wil l be advantageous
to review here as much of the argument as is required to explain the sense
in which its coefficients are indeed the best obtainable. From the paired
variables in each item we may form a new variable,viz. z:trrXr*trzXz,
from these new variables, in turn, an average for each type,2o,26, a.nd,
finally, the ratio

(2"  -  z)2 
(1)

noaoz t  npf

in which l r , ,  denotes the number antdo,"  the standard deviat ion of  the z 's

of group A. The total variation of a in the array, expressed as a sum of
squares of deviations, is the sum of the numerator and denominator of
this ratio. The denominator is the "within-group sum of squares" and
the numerator is the "between-group sum of squares," or mean-square
for difference between groups. The ratio is spoken of as the "distance"
between the groups, and the feature which distinguishes the discriminant
function from all other l inear combinations of the same variables is sim-
pl-v that the tr's which appear in it are those which maximize this dis-
tance in the sample. It is in this sense that the coefficients of the function
are the best obtainable, and it is to be noted that the property is nearly
distribution free-requiring onll' that the variances of a exist and that
there be some tendency toward central concentration in each group and
independent of sampling technique.2

1 A detailed petrographic example v'ill be found in Chayes and Velde (1965), but the
reader interested in applying the technique should certainly consult a standard text,
e.g. Hoel (1962).

2 Of course, if a discriminant function calculated from one sample is to be used on other
samples, sampling technique cannot be ignored. With properly randomized sampling,
however, the optimal character of the tr's persists rvhether the function is used descrip-
tivelv or oredictivelv.
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Seiection of the constant B, usually referred to as the discriminant and
denoted below by .d, impiies knowledge or assumption about the parent
distributions of z in the two groups. If a is symmetrically distributed
about group means with the same variance in both groups, i is taken at
the midpoint between the group averages, viz.,

2 : (2" I z)/2 (2)

and the probabil ity of misclassification is the same for members of each
group. If the variances differ, the same result is obtained by a discrim-
inant located at

2 : (o#" I o"zt) / (o" -f o) (3)

provided the distributions are "sufficiently normal."
The simplest discriminant, that based on only one variable, is merely

a point located between the group means for this variable. For homo-
geneous sub-group variances it is placed at the mid-point between the
means, as in equation (2).If variances differ in the two groups, it is found
from equation (3) and wil l alwar-s be closer to the mean for the group in

Teer,B 2 PnuonlreNcn ol DrscnrnrrNenrs B.q.srn ox DrllnnnNr CounrmlrroNs
oF VAnra.el-rs

Misciassifications of
items in group

,  X;XJ,  l< i+ j<3

2 l
74
28
l6
13

36
2 7

26
22(Xr,

Efliciency,

%

64.4
71 4
6 0 . 6
l J . l

7 8 . 1

which the variance is smaller. (Ail 2 values in this note are those given by
equation (3).) In the ternary diagram a discriminant function based on
any variable, sa.g X;, plots as a l ine parallel to the Xi X* edge. For the
data of Table 1, the behavior of these one-variable discriminants is sum-
marized in the first three lines of Table 2. Variable X2 provides a more
effective partit ion than Xr or X3, but an efficienc1. of 74.4 per cent leaves
something to be desired, and it is natural to wonder whether a l ine not
parallel to an edge of the triangle might not do a better job. The answer
to this question is given by the efficiency with which a binary linear dis-
criminant function partit ions the data.

For the data of Table 1 the binarv l inear discriminant functions mav
be written
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(4a)

(4b)
(4c\

in which each line has been "normalized" by the coeflicient of its leading
term. The trace of these functions in the ternary is shown by the dashed
line in Fig. 1. The constant term in each line is the ternary equivalent of
an interceptl when Xr:0, for instance, Xz:15.7 on the Xr-Xr edge of
the triangle, and when Xs:0, the trace of the function intersects the
Xr-Xr edge at X2:26.9, Xr:73.0. In similar fashion, the coefficient of
the second term in each line is a slope.

Although normalization greatl l. facil i tates geometrical interpretation
in the ternary diagram it actually obscures the analytical relation be-

Tesr,n 3. ConrlrcreNts (l) ewo CoNsraNr (27) on Brwenv Lrunan DrscnrurNelm
FuxcrroNs Coururpo lnou Dara op T.lr:r-B 1

Variables

X z - 0 . 1 5 5 X r - 1 5 . 6 6 5 : 0
x, + 0.134X3 - 26.942 :0

X1 + 0.866X3 -  72.972 :0

trr

X,, X,
X,, X,
Xr, Xt

67
s00

-433

- 500
433
-67

-  67  .83
364.86

- r34  7r

tween the functions which leads to their rather surprising geometrical
identity. Prior to normalization (and transfer oI 2 to the lef t side of each
equation), the set of coefficients and constants is as shown in Table 3.1
Using column headings to denote entries in any l ine, and denoting the co-
efficients and constant of any other line by ,(r, ,(ft and 2p, it becomes ap-
parent after a l itt le study of the table that, with differences small enough
to be attributed to rounding,

5 ; : ) ' ; - ) ' ,

r t : - t r j

2 * : h - ) t i

Had the problem been solved by foresight rather than hindsight it
would have been appropriate to remark here that this is precisel-v what
would have been expected from the fact that X;}X;*X;:1. For if tr;,
tri, x;, and ,(j are indeed the coefficients of the respective discriminant
functions, we must have (see Hoel, 1962, p. 179-184)

IrS;; * tr;S;i : dtf (5a)
X;S;r.* X;Sr: : d;)

1 Tables 3 and 4 and the relevant discussion presume data in proportions rather than the
percentages explicit in Table 1 and implicit in equations (4) and (6).
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and

and that
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r;Srt f rrS;* : d,; 
I

r,:S;* * x*S* : d* )
(sb)

where

d; : iot - itt

S u : t t o c o t 2 * n $ o t z

Sii : nao,;oaipoil I nr'auo U pt';j

and similarly for S;1, Si7 and S4.
Because of closure,

* ' , , :  
o

whether  P: i ,  i ,or  f t ,  and i t  is  ev ident  that ,  i f  X i+Xj+Xk :  l ,  d , i ld '1 !d*
:0.By solving (5a) for I i, (5b) for x4, and taking advantage of these re-

Iations depending on closure, it ma1,-be shown that

FinaLll-, for any individual item in either group,

:p : (tr; - IXr)r - tr;Xa : s, - 1,

hence the group averages are related by 4:it-\r and the discriminants
b)- 2*: 2t-\ i. (Readers familiar with elementary matrix algebra wil l f ind
a more compact derivation of these resuits in the second section of the
appendix.)

There is thus onll one binary l inear discriminant function in a ternary
closed arral', and which pair of variables happens to be used for its calcu-
lation is a matter of no consequence. The relation generalizes immedi-
ately; in an M-variable closed arrav there is only one (M-1)th l inear
discriminant function and this function may be calculated from an1. of
the (M - 1) sets of (M - 1) variables. Although it is certainlv meaningful
to ask which of the three individual variables in a ternary closed array
provides the best l inear discriminant, it is not meaningful to ask which of
the three possible pairs of variables does so.

Graphicall l ' ,  all points lying to the left of the dashed line in Fig. 1 are
placed in group A, all to the right of it in group B. Analytically, using
equation (4a) for i l lustration, the binary l inear discriminant function
classifies an item in group A or B depending on whether the amounts of
Xr and Xz observed in it are such that the quantity Xr-0.1547 X1 is or is

(5c)
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not less than 15.655, this number being simply the 2 of equation (3). The
efficiency with which the binary linear discriminant reciaims the original
dichotomy, shown in l ine 4 of table 2,is73.7 per cent. This is no improve-
ment over the 74.4 per cent found for X2 alone, from which it appears
that nothing has been gained by introducing a second variable into the
function. (It is to be remembered, however, that aithough three calcula-
tions are required to determine which of the individual variables gives
the best partit ion, it wil l never be necessary to compute more than one
binary l inear discriminant.)

Following the procedure outl ined in most texts, this is about as far as
the analysis can be taken;one may conclude that no l inear combination
of these variables is more effective than Xr alone, and that the partit ion
effected by X, is rather mediocre. The considerable number of open
circles lying just above the central portion of the trace of equation 4 in
Fig. 1 suggests, however, that a non-linear partit ion might be better than
the best l inear one.

Although I know of no examples of nonlinear discriminant functions,
the requirement for l inearity in the original derivation seems to be purely
formal. In exact analogv with the relation between multiple and curvi-
l inear regression, as many variables of the type X;={rr)1ra may be
added as seem desirable. Each tr; in the computed function wil l then be
the coefficient of a term of order (p*q) in (X1, X). The discriminant
function may thus be made into a polynomial of any required order and
degeneracy without change in its basic properties or their interpretation.
In principle, at least, no polynomial in X1 and Xz wil l partit ion the data
more efficiently than a discriminant function of the same order.

Even confining the discussion to linear and quadratic terms, however,
there are 31 possible functions for any pair of variables, and their rela-
tions both with each other and with functions based on either of the other
pairs may be extremely complex. A choice based on exhaustive trial,
though perhaps not impractical, is certainly inelegant; it is, in fact, al-
most as unsatisfying as the conventional graphical guess-work for which
the discriminant f unction is here proposed as a substitute.

Fortunately, the difficuity may prove much less serious than it seems.
Indeed, if one is wil l ing to move in large steps rather than small ones it
practically vanishes. If we add a complete quadratic instead of a single
higher order term to the binary l inear in (Xo, Xi), the new discriminant
function will be analyticallv equivalent to and geometrically identical
with one based on the complete suite of l inear and quadratic coefficients
in either (Xo, Xr) or (X;, Xp). Using the same denotations of tr, x and i as
before, the conversion relations between the coefficients in (X;, X7) and
(X,', Xr) are then
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(r : (tri -f Ir) - (Ij + 2xjr) 57' : - (trr f 2I;)

where tr;; denotes the coefficient of a cross-product, trri that of a term in
Xi2, and similarly lor xi1", rcr;. Coefficients computed directll' from the
data are shown in Table 4 and a derivation of the conversion relations
is  g iven in an appendix.

Thus if one passes directlv from the binarl ' l inear discriminant to the
binary l inearf quadratic one, only a single function need be computed at

Tenln 4. CoplrrcreNrs (I) exo Cowsreltrs (67) or BrNanv Lrnranf Qualnrlrrc
DrscnrurNeNr FuwcrtoNs Colrpurro l'nou Dara ol Taer-E 1

 l l

2164.4
1081 8

x ; l : t r 1 ; * t r " - X ; i

r ; a : 2 \ , ; i - ) r ; i 2 * : 2 t _ ( I ; * I i )

trr

288.323
- 2 1 7 5  0 8 5

I t2

1644 3

trrr

Xr, Xr
Xr, Xr
Xr, Xs

each stage. In principle, and nearly always in practice as well, a function
based on X,, Xj, (XoXi), X;2 and Xi2 wil l not be less efficient than one
based on any subset of these terms. (No exceptions to this ruie occur in
the 33 functions calculated in the course of the work reported here.) The
partit ion obtained by means of the full i inearf quadratic wil l be the same
whatever pair of variabies is used, and the resulting functions wil l be
geometricallv identical in the conventional tri l inear coordinates.

Generalization to polynomials of higher order, though possibll '  not of
much practical use) is evident. If each term of one poLynomial can be ex-
pressed as a l inear combination of terms in a second poll 'nomial of the
same form and order, discriminant functions based on the two poly-
nomials wil i be equivalent. In a ternary closed array this relation wil l
alway-s hold for polvnomials of the form

a

I (xo + &)" l o r l l i l j < 3 ;
p . -

the three possible polynomials of this form and order q wil l yield dis-
criminant functions which are analytically equivalent and geometrically
identical. An analogous relation holds for closed arrays containing more
than 3 variables, but with increase in the number of variables the num-
ber of terms to be calculated soon passes realistic l imits. For q:2, 1ot
instance, there are onlv 5 terms iI M :3 but 20 it M :6.

The curved line in Fig. 1is the trace of the full l inearf quadratic dis-
criminant function
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(x: + 1.119X3) - (0.006Xr' + 0.014XrX3 + 0.011X3) : 32.264 (6)

performance data for which are shown in the last l ine of Table 2. Thir-
teen of the solid circles fall below and to the right of the curve, twenty-
two of the open ones lie above and to the ieft of it. The overall efficiency
of this discriminant is thus 78.1 per cent, a small but appreciable im-
provement over that obtained from Xz alone.

With knowledge of Xr only, the ratio of correct to incorrect classifica-
tions is 2.91:-I. With the fuli l inearf quadratic discriminant function
based on any pair of variables it r ises to 3.57: 1, and it may be confidently
asserted that no simpler polvnomial will 1-ield more efficient partition. An
efficiency' of 78 per cent is better than nothing, but whether it is good
enough to be useful depends entirely on subject matter considerations.
Space does not permit a full description of the data, the variables, or the
substantive problem, but the reader is entit led to know that much more
than an exercise in arithmetic is involved.

The raw data are chemical analyses of Cenozoic basic volcanics in
which HzO(2 per cent and (FezOa/FeO)(0.6, and whose norms lack
both ne and Q. Group A contains analyses of specimens associated with
basic volcanics the great majority of which are ,?e-normative, group B
those associated with basic volcanics the great majority of which are Q-
normative. The problem is to determine how efiectively analyses
whose norms lack both ne and p can be assigned to the proper parent
group by means of their positions in the ternary projection di'!hy'
* ol ' :100. In Table 1 and Fig. I di ' is denoted by Xr, hy' by Xz and oll
by Xr. A detailed description of the study and of conclusions drawn from
it wil l be presented in a separate communication. The present note
is intended only to show that the discriminant function may be con-
ceptually useful even when, as in a ternary diagram, the number of vari-
ables is not large.
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ApprNorx. (M - 1) -VanrlstB Cur,rulArrvE Por,vNoutar, DrsctrurN.q.Nr
FuNcrroNs CoupurBo rnolr M-VeRrABrE Crosnl Annevs

GBNoner, RBr-,q,uoNs

There are r?r items in group I and n2 items in group 2. Each item is
characterized b-v two row vectors,

a o '  :  l u t , u t , . . ' , u w l  a : 1 , 2 , . . . , ( n t l n z )

v , ' : f u 1 , t z , . . . , v w l
(1a )

in which each element is measured from its own group mean. The ma-

trices u, v are the assemblages of vectors lJo' , Yo' , respectivell-, and the
eiements of the vectors of mean differences, d,, do, are

ld , i l :  ( * r i  -  u " ) ;  I d , i l :  ( t ' i  -  6 , )  i  : 7 ,2 , '  '  '  ,w  (2a )

in which subscripts I and2 refer to groups. By virtue of these defi.nit ions
the discriminant functions mav be written

u'uX : d,; v'vx : d, (3a)

In situations of interest in this note the rarv values are successive
terms of

f  (T. ' rx ,nr ) '  (4a)
7 \  

- i : r  '  " ' /

in which X"r is the observed value of variable i in the oth item, and the
X;'s in each item are subject to the closure constraint, viz.

M M M

f ( x " , ) : I ( r n ) : 1 ;  I ( r " ; ) : o  ( s a )

The numbering of lr-uri"t t.. r" fOtl i, ".f ir.u.o', 
with (M-2) variables

common to any pair of matrices u, v, and one variable unique to each.

For M:3, Q:1, for instance, we might have, for the oth ror'v of the
matrices,

q ' :  l r u , * " i l )  v " ' :  t yx " ; , r ^e |

The purpose of this appendix is to demonstrate the effect of (4a) and (5a)

on the relations between equations (3a), and between the discriminants
calculated from them. We show first that each r; (or tri) may be expressed
as a i inear combination of the I 's (or x's).

By using (4a) and (5a), as shown below by examples, one mav readily
form a right multiplier, T:T-1, such that

u T :  v i  v T :  u

and i t  then fol lows from the definit ions of d,,  d, that

T'd, : 6,' T'd, : d" (7a)

Solving (3a) for x and taking advantage of these transformations;

(6a)
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r : (Y/Y)-td,

: (T'u'uT)-1T'd"

: T-r(U/g)-rJ/-tJ/d,

: J-r(s/g)-td,

: T-rl,

and, by an exactiy analogous development,

l, : T-1t

Thus, if i t is the jth row of T-I, the coefficients of the/th
criminant functions are

(8a)

(8b)

terms in the dis-

Kj : ?t)r; trj : ttt r < j < ( M - r )  ( e a )

which was to be shown.
The resulting relationship between discriminants calculated from

equations (3a) remains to be discussed. Corresponding to (1a) we have
the row vectors

U " ' : 1 U , . [ J z . . . . , U v l
v J : l v r , V z , " ' , V w l  a : l ' 2 ' " ' ' ( n t l n " )  ( 1 0 a )

in which each element is measured about zero. From these vectors the
statistics used to classify the oth item, namely,

2"" :  UJ), ;  zoo :  Yotr  (11a)

are to be computed, and it may be shown that, because of (4o) and (5a),

V"' : U"'T * R'; U,/ : V;rT + R' (t2a)

in which T is as previously defined and R' is a row vector whose elements
are0'sand 1 's ;speci f ica l ly ,  l r , l : t i l  [ f r ]  iss implva power of  the var i -
able unique to Vo' and zero otherwise. Combining relevant portions of
(8a ) ,  ( 11a )  and  (12a ) ,

zo, : YlK: {U'T + R')T-t1 : zou - R']. (13a)

since R'T-1: -R'for al l  appropriate choices of R' and T. Thus zau ald.
zo, differ only by a constant, R'),, and the same must be true of iu and E,
as well ,  so that

2 " " - 2 " : 2 " , - 2 , Qaa)

from which it is evident that whatever partit ion of the data is effected bv
2" wil l be duplicated exactly bv €,.

For functions containing coefficients of each term in (4a) constructed
from variabies subject to (5a), therefore,

a) the discriminant and each coefficient of the discriminant function of
order q for any set of (M-1) variables may be obtained as l inear
combinations of the coefficients and discriminant of any other set,
and
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b) all discriminants of the same order based upon sets of (M-l)

variables partit ion the data identically.

Apptrc,luoN To FuNCTToNS UsED rN TBxr

Using the subscript notation of (4a), in the first function described in

the text  q:  1,  in  the second g:  2,  andin both M :3.For  the b inar l '  l inear

discriminant function in a closed ternarl ' array;

g " ' :  { X ; , X ; } ;  Y ' :  { X o , x * }  :  { x , ' , ( 1  - x c - x r }

a"' : lr;, r i l ; v"' : {r;, (-u - r)l

w i t hR ' :  { 0 ,  1 }  and

r 1  - 1 1
t :Ln  -11

the conversions from Uo',!o' ,  u and d, to Vo',  vol,  v and d, go through

correctly. Substi tut ing these values of T and R' in (9a) and (13a) we

have at once that

r,; : ).; - ).;, *t" : - )ti, z, : zu - \j

) u ,  :  x r -  r c x ,  X j  :  - r r ,  z u :  z n -  K k

which are the results observed in the actual computation and reported
in the text. Extension to Mt3 is immediate. Denoting unique variables

b1. subscripts ft and m and shared ones b.v subscripts <(M - 2), the gen-

eral conversion rules are

r , ; : X ; - t r e ;  \ ; : x t - r ^  l < i < ( M - 2 )

r - : - I * ;  z , : 2 " - X * ;  Z u : h - K m

For the elements of lfo', V,' in any pair of binar-v l inearf quadratic
funct ions ( i .e .  funct ions in  which,  in  eq.  (4a) ,  M:3,9:2)  we have

[ J t : X t  U z : X t  f J s : X ]  U + : X t X i  U s : X i z

I / r  :  Xr  Yz :X*  Xs  :  Xr2  I /n  :  X ;Xr  Vs :x#

and since j  and ft  are the unique variables we must have R: {0, 1, 0, 0, 1}.

Computing average values for each element, subtracting them from

the initial values to obtain deviations, a ar'd u, and expressing each u as a

function of u, we have that

l)r : Ul

t 2 :  - u r - l t z

t3  :  ux  (15a)

A 4 : U r - 1 l t - l l t

vs  :  -  2ur  -  2uz  *  us  I  2 t t+ l  u r

The coefficients of z in each line of (15a) then form a column of the re-
quired right multiplier o{ u, so that



Substitution of these values for T and R' in
f ollowing conversion rules
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(9a) and (13a) gives the

r r r : t r r - I : f t r l - 2 t r r  r z :  - X e -  2 t r s

x r : - t r r f 2 t r s

z , : z u - ) t z - \ s

together with a similar set obtained by interchanging r and tr. Allowing
for the difference in subscript notation, these are precisely the rules
given in the text and first found try inspection of Table 4.

r s : I c - l r * t r s

K b : \ E




