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ABSTRACT

Tor ternary closed data, discriminant functions based on polynomials of the form
> X+ X)r
=1

are analytically equivalent and geometrically identical for 1<i>j<3. For any assigned
value of ¢ only a single function need be calculated and it makes no difference which pair
of variables is used for the calculation.

Discriminant functions based on polynomials not satisfying this condition will vary with
the choice of variables, so that if they are to be computed at all it will usually be necessary
to compute them for at least two and sometimes for all three pairs of variables. If the ob-
jective is merely efficient classification, however, there will usually be little advantage in
such calculations, since in general the efficiency of a discriminant based on a polynomial
of the form

2 (X X,)P

will not be less than that of a polynomial of the same order but different form in these
variables.

Generalization of the basic relation is immediate; for an M-variable closed array dis-
criminant functions based on polynomials of the form

Y

XK+ Xt X

p=1

will be analytically equivalent, the numbering of the variables being arbitrary. No other
polynomial of the same order in these variables will yield a more efficient discriminant.

If M =3, functions based on all three variables cannot be plotted in the ternary diagram,
those based on only one variable plot as straight lines parallel to one of the edges, and those
based on any pair of variables plot as straight lines if g=1 and curves if ¢>1. Any dis-
criminant function based on one or two variables divides the ternary diagram into two
fields, corresponding to the two groups into which the data are classified by the dis-
criminant. An example is described.

Discriminant function analysis has enjoved considerable vogue in the
life and behavioral sciences since shortly after the close of the second
war, and is now finding application in the earth sciences as well. Like
most forms of multivariate analysis, the technique is not likely to be of
much practical use to the naturalist who does not have access to a reason-
ably capacious electronic computer. To the rapidly increasing number
of naturalists who do have access to such equipment, however, it offers
two major advantages, at the same time providing a perfectly objective
procedure for determining how effectively objects belonging to two
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CLASSIFICATION BY DISCRIMINANT FUNCTIONS 1619

different groups can be distinguished from each other by means of a
given set of properties measurable in each object, and making possible the
simultaneous consideration of large numbers of variables.

For petrographers, traditionally committed to graphical analysis and
acutely aware of its limitation in this respect, the ability to treat large
numbers of variables simultaneously will no doubt have considerable
appeal. Under some circumstances, however, the ability to discriminate
in an objective fashion, and more particularly the ability to estimate the

X

[16. 1. Ttems in group A of Table 1 shown by solid circles, those of group B by open
circles. The trace of equation (4) is shown by the dashed line, that of equation (6) by
the curve.

optimum efficiency with which the discrimination can be made, may be
of greater importance. This note presents an example.

In Table 1 are listed recorded values of variables X;, X; and X; in each
of 63 items of group A and 97 of group B. Each triplet sums to 100, and
all are plotted in Fig. 1, those belonging to group A being shown by solid
circles. The problem for which a solution is sought is the simple and fun-
damental one which characterizes all descriptive science, viz., whether,
how, and how efficiently, individual items can be assigned to the proper
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type on the basis of their announced contents of variables Xy, X, - - + X
In the ternary array a discriminant function computed from any pair of
the variables provides a convenient and usually an optimum solution
of this problem.

Other solutions or, at any rate, other modes of examining the problem,
are of course possible. Intuitively, one suspects that if the groups really
are distinct it ought to be possible to divide the diagram into two fields—
whether by inspection or by contouring—one occupied almost exclusively
by open, the other almost exclusively by solid, circles. A close look at the

GROUP A
X 1 2 3 1 2 3

1 53,21 9,58 37,21 71435 1¢49 27,16
3 21,00 3729 41671 40695 26468 32437
5 44,37 15,53 40,10 59,65 33,54 6481
7 62,09 12,58 25,433 69,14 17,78 13,08
9 62447 6,09 3l.44 54,78 12433 32,89
11 564435 27471 17,94 474,45 14419 38,36
13 55,09 17,99 26492 67,48 12,54 19,98
15 59,66 27447 12487 68070 16480 14450
17 65,98 14440 19462 6971 11445 18,84
19 65,09 Tel5 27476 55440 16632 28,28
21 57615 13,86 28499 5641 14,26 29433
23 49,64 10616 40620 78602 Be72 13426
25 7776 1,85 20639 42672 2.48 54,80
27 25078 10453 63469 24461 4o74 T0e65
29 74,32 13,83 11,85 684,29 13,85 17,86
31 58481 10441 30678 58659 32495 Bebb
33 32404 15420 52476 2791 14481 57.28
35 23419 22,01 54,480 6059 15,68 23473
37 60.25 4461 35,14 35466 3482 60452
39 708 35627 57465 17621 14426 68453
41 35,96 24,80 39,24 74463 13.52 11,85
43 10,56 Se44 844,00 64424 21,99 13,77
45 51426 13,13 35,61 53,48 41455 4497
47 53695 11462 34443 39,25 22.46 38,29
49 424286 17,58 40,18 25456 0617 74627
51 44480 Felhlt 45476 44,440 8433 47,27
53 31,10 3481 654,09 25,98 4,90 69412
55 32,72 13450 53,78 4779 3400 49421
57 32,93 18401 49,06 40643 25461 33696
59 67,05 13466 19629 45426 37497 16677
61 46,62 35,24 18434 444,04 364,07 19.89
63 50622 30016 19462

TABLE 1. TERNARY COORDINATES, IN PERCENTAGES, FOR 63 ITEMS BELONGING
10 GrOUP A AND 97 TO GROUP B

(Variables identified by column headings; row headings give number of first item
in each line.)



CLASSIFICATION BY DISCRIMINANT FUNCTIONS

1
38,32
25,93
27,11
25,93
41,22
27,432
29427
22,82
48,432
36,28
43,73
51,28
26,38
28462
37.10
32,42
45,81
20,71
46,18
27652
54,87
29,29
61,23
47,63
63,67
36,82
10,31
35,27
43,80
53,51
66,31
48,87
54,18
23460
19,51
26432
41496
57461
45,72

2460
37.36
42,71
33.62
39,04
38447
40626
28458
36,09
42429

3
55630
28475
44485
43,90

975
48697
46,455
13,00
21412

3439
404011
28,70
30499
24429

9679
40627
24443
59,56
2709
13,73

5476
26424

Te02
51621
144,45

Teb4
14,36

0466
47617
164,16
29,07
37.14
364,27
18448

5488
28408
12496
23462
18,18
15,73
43,98
45,437

4,01
23413
21493
40667

3683

L4604

050

GROUP B

1
25443
16,21
47,28
37.28
53437
27415
38,47
52475
25.14
51629
54494
46,11
32,79
42403
46,75
54642
42,88
28,11
39,66
33433
46,437
41,84
54,55
66,62
61,58
31476
33427
49432
32.81
T6e64
58653
53,61
44,55
24086
29456
43496
40028
5196
38,63
35452
46409
41,56
38,23
47422
34,49
544637
40697
26092

2
43,58
34433
36447
50627
37.91
26477
14,10
38455
65493
25.88

2451
21027
56404
37.01
25,79
44427
50629
53436
444,36
23,81
28,493

6465
1042

0,29

6605
42,491
52,09
15,01
33,64

Be09
25410
35,41
33,64
5204
50642
51626
11.07
47637
294,84
44,61

6037
30457
19,10
20429
6224
30674
25459
66697

1621

3
30699
49,46
1625
12.45

8e72
46408
47,43
8,70
8493
22483
42455
32462
11,17
20496
27646
l1.31
6,83
18453
15,98
42,86
24470
51451
3503
33,09
32437
25433
14,64
35467
33455
15,27
16437
10,98
21,81
23,10
20602
4478
48465
0e67
31.53
19,87
47454
2787
42467
32449
3627
14489
33.44
6011
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diagram should persuade almost anyone that this is not possible in the
present example. There is nevertheless a perceptible concentration of
solid circles in the upper left of the triangle and a somewhat weaker con-
centration of open circles a little below and to the right of its center. In
fact, in nearly two-thirds of the specimens located by solid circles
X,>2X; and in nearly three-quarters of those shown by open circles
X1 <2X,. Those in the first category lie above, and those in the second be-
low, the line X;=2X, (not shown in the figure). Against the alternative
that there is no tendency for points to concentrate in any particular re-
gion of the triangle the relative frequency of solid circles above this line
indicates a highly significant departure from randomness, but that of the
open circles below it does not. Against the superficially similar alterna-
tive that points are as likely to fall on one side of the line as on the other,
however, the data give a rather stronger result; the distributing of open
circles provides very strong reason for rejecting this second hypothesis
and that of the solid circles is also significant against it at the 1 per cent
level, but barely so.

In the absence of substantive information it is of course impossible to
determine which—if either—of these descriptive hypotheses is realistic.
They are discussed here merely as a reminder that partition tendencies
easily strong enough to be highly significant may nevertheless be so weak
as to be worthless for purposes of classification or description. If, for in-
stance, only 31 instead of 37 of the 63 solid circles lay above the line
X, =2X,, this would still be sufficient to establish, at the 1 per cent level,
the hypothesis that there is a tendency for items of group A to be con-
centrated in the upper part of the triangle. Yet if the condition X;>2X,
were then adopted as a criterion for inclusion of an item in group A, more
than half the sample items known on other grounds to be of this type
would be excluded from it.!

When the potential utility of some particular partition as a descriptive
or taxonomic device is at issue, tests of the sort so far described are essen-
tially irrelevant. What is needed is an estimate of the proportion of the
total sample variation which is properly allocated or “accounted for” by
the partition in question. Assurance that a particular partition is the
best of its kind would also be extremely valuable; for example, the line
X,=2X,, which from inspection seems a fairly good discriminant, is a

1 Tn analogous fashion, a properly constructed response surface may well reveal statis-
tically significant tendencies of great interest and importance, yet provide an uninforma-
tive or misleading description of the “topography” of both sample and parent frequency
distributions. This is almost inevitable when, as in many published maps, the computed
surface accounts for only a small part of the total sample variation (see Chayes and
Suzuki, 1964).
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member of the family of lines M X;+NXo-+8=0, with \; taken as 1, A as
—2, and B as 0. To determine by inspection whether this represents the
best choice of coefficients would be an endless chore, yet clearly if a
better partition could be obtained by some other set of coefficients, that
set would be preferable for the purpose at hand. It is thus a considerable
advantage that the coefficients of the computed discriminant function
are, in a simple and intuitively appealing sense, the best obtainable, and
that the efficiency with which the function partitions the sample—i.e.
the proportion of correct assignments it yields—is easily found. (When,
furthermore, the sampling procedure is suitably random, the efficiency of
the partition effected by the function is a sound estimate of the effi-
ciency with which it may be expected to partition future samples.)

A full explication of the structure and calculation of the two group dis-
criminant function would be inappropriate,* but it will be advantageous
to review here as much of the argument as is required to explain the sense
in which its coefficients are indeed the best obtainable. From the paired
variables in each item we may form a new variable, viz. z=MX;4N\Xo,
from these new variables, in turn, an average for each type, 2., &, and,
finally, the ratio

(8o — 21)?

nao’az + nbﬂ'b2

)

in which %, denotes the number and ¢, the standard deviation of the s
of group A. The total variation of z in the array, expressed as a sum of
squares of deviations, is the sum of the numerator and denominator of
this ratio. The denominator is the “within-group sum of squares’ and
the numerator is the “between-group sum of squares,” or mean-square
for difference between groups. The ratio is spoken of as the ‘“distance”
between the groups, and the feature which distinguishes the discriminant
function from all other linear combinations of the same variables is sim-
ply that the N’s which appear in it are those which maximize this dis-
tance in the sample. It is in this sense that the coefficients of the function
are the best obtainable, and it is to be noted that the property is nearly
distribution free—requiring only that the variances of z exist and that
there be some tendency toward central concentration in each group—and
independent of sampling technique.?

1 A detailed petrographic example will be found in Chayes and Velde (1965), but the
reader interested in applying the technique should certainly consult a standard text,
e.g. Hoel (1962).

2 Of course, if a discriminant function calculated from one sample is to be used on other
samples, sampling technique cannot be ignored. With properly randomized sampling,
however, the optimal character of the N's persists whether the function is used descrip-
tively or predictively.



1624 FELIX CHAYES

Selection of the constant 8, usually referred to as the discriminant and
denoted below by 2, implies knowledge or assumption about the parent
distributions of z in the two groups. If z is symmetrically distributed
about group means with the same variance in both groups, £ is taken at
the midpoint between the group averages, viz.,

= (2. 1+ %)/2 @
and the probability of misclassification is the same for members of each

group. If the variances differ, the same result is obtained by a discrim-
inant located at

= (‘Tbgu + o'aib)/(o'a + a’b) (3)

provided the distributions are “sufficiently normal.”

The simplest discriminant, that based on only one variable, is merely
a point located between the group means for this variable. For homo-
geneous sub-group variances it is placed at the mid-point between the
means, as in equation (2). If variances differ in the two groups, it is found
from equation (3) and will always be closer to the mean for the group in

TABLE 2. PERFORMANCE OF DISCRIMINANTS BASED ON DIFFERENT COMBINATIONS
OF VARIABLES

Misclassifications of ‘

c | items in group Efficiency,
Variables
e =F 5 | o,
"

X 21 36 | 64.4

X 14 27 74.4

N 28 35 60.6
(X, X)), 1<i=i<3 16 26 73.7

(Xi, X5, X, X7, XoX)), 1<i45<3 13 2 78.1

which the variance is smaller. (All £ values in this note are those given by
equation (3).) In the ternary diagram a discriminant function based on
any variable, say X, plots as a line parallel to the X;,~X; edge. For the
data of Table 1, the behavior of these one-variable discriminants is sum-
marized in the first three lines of Table 2. Variable X, provides a more
effective partition than X, or Xs, but an efficiency of 74.4 per cent leaves
something to be desired, and it is natural to wonder whether a line not
parallel to an edge of the triangle might not do a better job. The answer
to this question is given by the efficiency with which a binary linear dis-
criminant function partitions the data.

For the data of Table 1 the binary linear discriminant functions may
be written
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X — 0.155X, — 15.665 = 0 (4a)
Xo+0.134X; — 26942 =0 (4b)
X1+ 0.866X; — 72972 =0 (4c)

in which each line has been “normalized” by the coefficient of its leading
term. The trace of these functions in the ternary is shown by the dashed
line in Fig. 1. The constant term in each line is the ternary equivalent of
an intercept; when X;=0, for instance, X,=15.7 on the Xy;-X; edge of
the triangle, and when X;3;=0, the trace of the function intersects the
XX, edge at X,=26.9, X;=73.0. In similar fashion, the coefficient of
the second term in each line is a slope.

Although normalization greatly facilitates geometrical interpretation
in the ternary diagram it actually obscures the analytical relation be-

TaBLE 3. COEFFICIENTS (A\) AND CONSTANT (%;) OF BINARY LINEAR DISCRIMINANT
Funcrions CoMPUTED ¥FROM DATA OF TARBLE 1

Variables A ha M &1
X, Xo 67 —433 — 67.83
Xi, Xs 500 433 364.86

Xo, X3 —300 —67 —134.71

tween the functions which leads to their rather surprising geometrical
identity. Prior to normalization (and transfer of £ to the left side of each
equation), the set of coefficients and constants is as shown in Table 3.
Using column headings to denote entries in any line, and denoting the co-
efficients and constant of any other line by «;, xx and £, it becomes ap-
parent after alittlestudy of the table that, with differences small enough
to be attributed to rounding,

ki =N — Ny

Ky = — Aj

2k =21 — N

Had the problem been solved by foresight rather than hindsight it
would have been appropriate to remark here that this is precisely what
would have been expected from the fact that X, +X,;+X,=1. For if A,,
N, ki, and «; are indeed the coefficients of the respective discriminant
functions, we must have (see Hoel, 1962, p. 179-184)
NeSes + NSy = di%

(5a)
NiSi; + NSy = dy

! Tables 3 and 4 and the relevant discussion presume data in proportions rather than the
percentages explicit in Table 1 and implicit in equations (4) and (6).
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and
kiS¢ + xxSix = di

(3b)
kS + kxSw = di

where
di = o — s
Sii = Haoai® + npopi®
Sij = MaGuibaiPaij - MbOHiTH;Pbi
and similarly for Sy, S;; and Sk
Because of closure,

k

Zqu=0

whether p=1, j, or k, and it is evident that, if X, +X,;+ X, =1, d;+d;+ ds
=0. By solving (5a) for )}, (3b) for &, and taking advantage of these re-
lations depending on closure, it may be shown that

diSip — diSsc  diSi — a5 -~

Ky = = — A
F‘H.-? - Su’SA‘A‘ SI_I! - S.‘.,S_.-_f -
and that
di — NS — MSa
=T = N
Sis

Finally, for any individual item in either group,
m=N=N) =N =N (5¢)

hence the group averages are related by Z,=2%;—\; and the discriminants
by %= %,—\;. (Readers familiar with elementary matrix algebra will find
a more compact derivation of these results in the second section of the
appendix.)

There is thus only one binary linear discriminant function in a ternary
closed array, and which pair of variables happens to be used for its calcu-
lation is a matter of no consequence. The relation generalizes immedi-
ately; in an M-variable closed array there is only one (M —1)th linear
discriminant function and this function may be calculated from any of
the (M —1) sets of (M —1) variables. Although it is certainly meaningful
to ask which of the three individual variables in a ternary closed array
provides the best linear discriminant, it is not meaningful to ask which of
the three possible pairs of variables does so.

Graphically, all points lying to the left of the dashed line in Fig. 1 are
placed in group A, all to the right of it in group B. Analytically, using
equation (4a) for illustration, the binary linear discriminant function
classifies an item in group A or B depending on whether the amounts of
X, and X, observed in it are such that the quantity X»—0.1547 X, is or is
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not less than 15.635, this number being simply the 2 of equation (3). The
efficiency with which the binary linear discriminant reclaims the original
dichotomy, shown in line 4 of table 2, is 73.7 per cent. This is no improve-
ment over the 74.4 per cent found for X, alone, from which it appears
that nothing has been gained by introducing a second variable into the
function. (It is to be remembered, however, that although three calcula-
tions are required to determine which of the individual variables gives
the best partition, it will never be necessary to compute more than one
binary linear discriminant.)

Following the procedure outlined in most texts, this is about as far as
the analysis can be taken; one may conclude that no linear combination
of these variables is more effective than X, alone, and that the partition
effected by X, is rather mediocre. The considerable number of open
circles lying just above the central portion of the trace of equation 4 in
Fig. 1 suggests, however, that a non-linear partition might be better than
the best linear one.

Although I know of no examples of non-linear discriminant functions,
the requirement for linearity in the original derivation seems to be purely
formal. Tn exact analogy with the relation between multiple and curvi-
linear regression, as many variables of the type X,=X;7Xy* may be
added as seem desirable. Each \; in the computed function will then be
the coefficient of a term of order (p+¢) in (X;, Xs2). The discriminant
function may thus be made into a polynomial of any required order and
degeneracy without change in its basic properties or their interpretation.
In principle, at least, no polynomial in X; and X, will partition the data
more efficiently than a discriminant function of the same order.

Even confining the discussion to linear and quadratic terms, however,
there are 31 possible functions for any pair of variables, and their rela-
tions both with each other and with functions based on either of the other
pairs may be extremely complex. A choice based on exhaustive trial,
though perhaps not impractical, is certainly inelegant; it is, in fact, al-
most as unsatisfying as the conventional graphical guess-work for which
the discriminant function is here proposed as a substitute.

Fortunately, the difficulty may prove much less serious than it seems.
Indeed, if one is willing to move in large steps rather than small ones it
practically vanishes. If we add a complete quadratic instead of a single
higher order term to the binary linear in (X,, X;), the new discriminant
function will be analytically equivalent to and geometrically identical
with one based on the complete suite of linear and quadratic coefficients
in either (X, X;) or (X;, X3). Using the same denotations of \, x and £ as
before, the conversion relations between the coefficients in (X;, X,) and
(X, X)) are then
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= A — (N H2N) = — (W26

Kii = iz =t Ngj — Noj Kk = Njj

Kix = 2Nj; — Ny fe=f— (NN
where \;; denotes the coefficient of a cross-product, A;; that of a term in
X;% and similarly for xi, x:. Coefficients computed directly from the
data are shown in Table 4 and a derivation of the conversion relations
is given in an appendix.

Thus if one passes directlv from the binary linear discriminant to the

binary linear+quadratic one, only a single function need be computed at

TABLE 4. COEFFICIENTS (\) AND CONSTANTS (£;) OF BINARY LINEAR4QUADRATIC
DiscrRiMINANT FuNcTioNs COMPUTED FROM DATA OF TABLE 1

| | | | P
Variables A r M Az A Az ‘ M ‘ M2 i I As | £y
X1, Xo | —2154,969 | —1413.323 | 2164.4 | 561.8 1644.3 [ —617.334
Xy, X |— 221,573 288.323 |1081.8 561.8 =320.1{ 233.930
X, Xs | |—1943.350 | —2175.085 1081.8 |2104.4 I 2684 .4| —627. 306
|

each stage. In principle, and nearly always in practice as well, a function
based on X, X;, (X:X,), X:* and X, will not be less efficient than one
based on any subset of these terms. (No exceptions to this rule occur in
the 33 functions calculated in the course of the work reported here.) The
partition obtained by means of the full linear+ quadratic will be the same
whatever pair of variables is used, and the resulting functions will be
geometrically identical in the conventional trilinear coordinates.

Generalization to polynomials of higher order, though possibly not of
much practical use, is evident. If each term of one polynomial can be ex-
pressed as a linear combination of terms in a second polynomial of the
same form and order, discriminant functions based on the two poly-
nomials will be equivalent. In a ternary closed array this relation will
always hold for polynomials of the form

q
D Xi+X)r  for1<i#j<3;
p=1

the three possible polynomials of this form and order ¢ will yield dis-
criminant functions which are analytically equivalent and geometrically
identical. An analogous relation holds for closed arrays containing more
than 3 variables, but with increase in the number of variables the num-
ber of terms to be calculated soon passes realistic limits. For ¢=2, for
instance, there are only 5 terms if M =3 but 20if M =6.

The curved line in Fig. 1 is the trace of the full linear+quadratic dis-
criminant function
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(X + 1.119X;) — (0.006X,% 4 0.014X,X; + 0.011X;?) = 32.264 6)

performance data for which are shown in the last line of Table 2. Thir-
teen of the solid circles fall below and to the right of the curve, twenty-
two of the open ones lie above and to the left of it. The overall efficiency
of this discriminant is thus 78.1 per cent, a small but appreciable im-
provement over that obtained from X, alone.

With knowledge of X, only, the ratio of correct to incorrect classifica-
tions is 2.91:1. With the full linear4 quadratic discriminant function
based on any pair of variables it rises to 3.57: 1, and it may be confidently
asserted that no simpler polynomial will vield more efficient partition. An
efficiency of 78 per cent is better than nothing, but whether it is good
enough to be useful depends entirely on subject matter considerations.
Space does not permit a full description of the data, the variables, or the
substantive problem, but the reader is entitled to know that much more
than an exercise in arithmetic is involved.

The raw data are chemical analyses of Cenozoic basic volcanics in
which H,O <2 per cent and (Fe,03;/Fe0) <0.6, and whose norms lack
both #e and . Group A contains analyses of specimens associated with
basic volcanics the great majority of which are ne-normative, group B
those associated with basic volcanics the great majority of which are Q-
normative. The problem is to determine how effectively analyses
whose norms lack both #e and Q can be assigned to the proper parent
group by means of their positions in the ternary projection di’+hy’
-+0l’=100. In Table 1 and Fig. 1 di’ is denoted by Xy, ky’ by X, and ol’
by X;. A detailed description of the study and of conclusions drawn from
it will be presented in a separate communication. The present note
is intended only to show that the discriminant function may be con-
ceptually useful even when, as in a ternary diagram, the number of vari-
ables is not large.
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APPENDIX. (M —1)-VARIABLE CUMULATIVE POLYNOMIAL DISCRIMINANT
FuncrroNs COMPUTED FROM M-VARIABLE CLOSED ARRAYS

GENERAL RELATIONS

There are n; items in group 1 and #. items in group 2. Each item is
characterized by two row vectors,

w,' = Y, ta, - - -, uw) a=1,2, -, (n+m)
’ (18.)
Vo' = {o1, 00, - -, o}
in which each element is measured from its own group mean. The ma-
trices u, v are the assemblages of vectors u,’, v.’, respectively, and the
elements of the vectors of mean differences, d,, d., are
[dui] = oy — #2);  [du] = (0 — 92) j=12--,w (20)
in which subscripts 1 and 2 refer to groups. By virtue of these definitions
the discriminant functions may be written
u'un = d,; vvk = d, (3a)
In situations of interest in this note the raw values are successive
terms of

q M—1 D
> (T i) (42)
p=1 i=1
in which X,; is the observed value of variable 7 in the ¢th item, and the
X s in each item are subject to the closure constraint, viz.
M M M
LX) =2 @) =1; 2 (w)=0 (5a)
Taml =1 t=1
The numbering of variables in (4a) is arbitrary, with (3 —2) variables
common to any pair of matrices u, v, and one variable unique to each.
For M =3, ¢=1, for instance, we might have, for the ath row of the
matrices,
U = i, o)y Vel = {¥ai, Tar)
The purpose of this appendix is to demonstrate the effect of (4a) and (5a)
on the relations between equations (3a), and between the discriminants
calculated from them. We show first that each «; (or \;) may be expressed
as a linear combination of the N's (or «’s).
By using (4a) and (5a), as shown below by examples, one may readily
form a right multiplier, T=T"!, such that
uT = v; vI =u (6a)
and it then follows from the definitions of d,, d, that
Td,=d,; Td,=d, (7a)

Solving (3a) for « and taking advantage of these transformations;
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k= (vlv)"d,
= (T'uuT)'T'd,
= T-1(Wu)~'T'-Td,
= T (u'u)~d,
= =1 (8a)
and, by an exactly analogous development,
2 =T % (8b)
Thus, if 7t is the jth row of T, the coefficients of the jth terms in the dis-
criminant functions are
K = 1th; A=tk 1< <M -1 (9a)
which was to be shown.

The resulting relationship between discriminants calculated from
equations (3a) remains to be discussed. Corresponding to (la) we have
the row vectors

U/ ={U, Uy, -+, Unl

a=1,2,---, (n+n) 10a
Va/={V1, sz..-’Vw} (1 ( )

in which each element is measured about zero. From these vectors the
statistics used to classify the ath item, namely,

Zau = U2 gan = Valkt (11a)

are to be computed, and it may be shown that, because of (4a) and (5a),
V/=U/T+R; U/=V/T4+R (12a)

in which T is as previously defined and R’ is a row vector whose elements
are0’s and 1’s; specifically, [r;]=1if [V;]issimply a power of the vari-

able unique to V,” and zero otherwise. Combining relevant portions of
(8a), (11a) and (12a),

Zav = VK = (UT +RNT 1 = 2, — R (13a)

since R"T~'= —R’ for all appropriate choices of R’ and T. Thus z.. and
24 differ only by a constant, R’2, and the same must be true of %, and %,
as well, so that

Zau ~ By = Zav — B (14&)

from which it is evident that whatever partition of the data is effected by
£, will be duplicated exactly by 2,.

For functions containing coefficients of each term in (4a) constructed

from variables subject to (5a), therefore,

a) the discriminant and each coefficient of the discriminant function of
order ¢ for any set of (M —1) variables may be obtained as linear
combinations of the coefficients and discriminant of any other set,
and
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b) all discriminants of the same order based upon sets of (M —1)
variables partition the data identically.

APPLICATION TO FuNcTioNs UseED IN TEXT

Using the subscript notation of (4a), in the first function described in
the text ¢=1, in the second ¢=2, and in both M =3. For the binary linear
discriminant function in a closed ternary array;

U/ =1X, X} Vo = (X, X} = X, (1 = X — X))}

’

U, = ixir x]}? V. = {xil (_xl - JC])}

With R"=1{0, 1} and
1 -1
BiS [0 4

the conversions from U,’, u,/, u and d, to V.’, v.’, v and d, go through
correctly. Substituting these values of T and R’ in (9a) and (13a) we
have at once that

Ki = Ai — Nj, Kp = — Nj, 2y =2y — N

N = K — Kg, N = — kg, Zy = Zy — Kk
which are the results observed in the actual computation and reported
in the text. Extension to M >3 is immediate. Denoting unique variables
by subscripts k and m and shared ones by subscripts < (M —2), the gen-
eral conversion rules are
ki = N — M\i; Ni = Ki — Km 1<i< (M -2
Km = — Nk; %o = Zu — Mk Zu = 2y — Km
For the elements of U,’, V,” in any pair of binary linear-quadratic
functions (i.e. functions in which, in eq. (4a), M =3, ¢=2) we have
U, =X; Uy =X; U; =X;2 U, = XiX; Us; =X;?
V=X Ve =X Vs = X2 Vi =XiXg Vs = X2
and since j and k are the unique variables we must have R= {0, 1, 0,0, 1}.
Computing average values for each element, subtracting them from
the initial values to obtain deviations, v and %, and expressing each v as a
function of #, we have that

=iy
Vg = — Uy — Uy
Uy = 1, (15a)

Ve = Uy — U3 — Ua
95 = — 2w — 2u9 + us + 2uq -+ us

The coefficients of « in each line of (15a) then form a column of the re-
quired right multiplier of u, so that
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1 -1 0 1-=-2
0—-1 0 0-2
T=|0 0 1-1 1
0O 0 0-1 2
a o0 0 0 1
Substitution of these values for T and R’ in (92) and (13a) gives the
following conversion rules
Kt =N — N+ A — 2)5 ke = —ho— 2\s
k3 = Ng — A+ A5 Ky = — Ny 205
ks = A5 Zy =Zu— N — A5
together with a similar set obtained by interchanging x and X\. Allowing
for the difference in subscript notation, these are precisely the rules
given in the text and first found by inspection of Table 4.





