THE AMERICAN MINERALOGIST, VOL. 50, OCTOBER, 1965

PHOTOMETRIC MEASUREMENT OF ROTATION PROPERTIES

EUGENE N. CAMERON AND ROBERT H. CARPENTER, Department of Geology, University of Wisconsin, Madison, Wisconsin.

Abstract

Photometric measurement of rotation properties is described and illustrated by measurements for breithauptite. Photometric measurements of A_r can have 3 to 5 times the precision of visual measurements, and photometric measurements of 2ϑ can be 5 to 10 times as precise as visual measurements. Photometric measurements of maximum precision are more time-consuming than visual methods and require special adaptation of the analyzer, but they have possible applications in measurement of standard values of rotation properties and in studies of crystal orientation. The photometric method may also be used with ordinary microscope equipment as a substitute for the visual method. Measurements then require no more time than visual methods and are equally precise.

INTRODUCTION

Measurement of the rotation properties of an anisotropic mineral grain involves finding the settings of a rotating analyzer, or both the analyzer and a rotating mica compensator, at which illumination of the mineral is at a minimum. This paper describes a photometric method of finding these settings. The precision of the method is far greater than the precision of the visual methods described by Berek (1937), Hallimond (1951) and Cameron (1957, 1961). The method has potential applications to studies of crystal orientation in ores and metallurgical products.

Equipment Employed in Photometric Measurement

The equipment used consists basically of a Leitz Dialux-Pol microscope with trinocular tube, a Photovolt 520-M photometer, a Cooke-Wright slotted ocular, and a stabilizing circuit for the lamp of the vertical illuminator. The photomultiplier tube of the photometer is housed 12 inches above the ocular on an extension tube. The Cooke-Wright ocular, with analyzer, is mounted over the vertical tube of the trinocular. The circular scale of the ocular is modified by attachment of a graduated arc having a radius of 6 in., compared to the 1.5 in. radius of the unmodified ocular. The arc can be read to 0.01° against a special vernier.

The stabilization circuit for the light bulb, designed by W. F. Berry and J. H. Moses, of Bituminous Coal Research, Inc., is a combination of a Sola 6V, 10A constant voltage transformer and a capacitor. Bausch and Lomb 2nd order interference filters with auxiliary glass filters are used to provide essentially monochromatic light. The filter pass bands have halfwidths of 8 to 10 m μ . They are inserted in the extension tube; the observer therefore sees the specimen in white light.

For maximum sensitivity, a Leeds-Northrup Speedomax G 10mv. recorder is placed in series with the photometer galvanometer, and intensities are read in terms of deflections registered on the recorder chart.

GENERAL CONSIDERATIONS

If a polished section of an anisotropic mineral is rotated on the stage to a 45° position, *i.e.*, to a position midway between two adjacent extinction positions, the incident polarized vibration is resolved into two components vibrating parallel to two mutually perpendicular vibration directions of the mineral. These directions now lie at 45° on either side of the polarizer vibration direction. If the mineral is transparent, the reflected portions of the two components differ only in amplitude, and the resultant reflected vibration is linear. If the mineral is absorbing, the general case for ore minerals, the components differ in both amplitude and phase. The reflected resultant is an elliptical vibration (Fig. 1).

The vibration ellipse is defined by the azimuth (A_r) of its semi-major axis a referred to the vibration direction of the polarizer and by b/a, the ratio of the length of the semi-minor axis to the length of the semi-major axis. The azimuth is determined as the angle A_r . The ellipticity is \tan^{-1} $b/a=\vartheta$, 2ϑ being the phase difference for the two components of the ellipse at 45° to its axes. The purpose of photometric measurements is to determine, for a given mineral, the values of A_r and 2ϑ . For a fuller discussion of the theory involved, reference may be made to Berek (1937) or Cameron (1961).

PHOTOMETRIC MEASUREMENT

General remarks. Steps involved in photometric measurement of rotation properties correspond to those described by Cameron (1961, p. 120–136) for the visual method. First, the 45° positions of the mineral grain under investigation are determined. Second, the angle through which the analyzer must be rotated, from its zero position, to produce minimum illumination at each 45° position is measured. In Fig. 1, this angular rotation is $A_0OA_1 = A_r$. Third, the mica compensator is inserted, and the analyzer and mica compensator are rotated to find their respective positions of compensation (A_1' and G_1'). At compensation, the mica compensator reduces the elliptical vibration to a linear vibration (Op) that is extinguished in the analyzer. The illumination of the mineral grain is now at a minimum.

Determination of 45° positions. The first step in finding the 45° positions

FIG. 1. Diagram showing an elliptical vibration produced by an anisotropic mineral at a 45° position, and the angular relations involved at compensation. Oq=a—semi-major axis of vibration ellipse; b—semi-minor axis; A_0 —zero position of analyzer (vibration, direction A_0O perpendicular to OP, vibration direction of polarizer). OG_1° and OG_2° , slow and fast ray vibration directions, respectively, of mica compensator when compensator is at zero position. A_1O —vibration direction of analyzer perpendicular to Oq; $A_1OA_0 = A_7$; with mica compensator withdrawn from the system, the grain shows minimum illumination. $A_1'O$, $G_1'O$, and $G_2'O$, vibration directions of analyzer and slow and fast ray vibration directions of mica compensator, respectively, at compensation (minimum illumination with mica compensator in the system).

of a mineral grain is to locate its extinction positions as the stage is rotated. For this, we use the relation between intensity of illumination and the stage setting (Fig. 2) when an anisotropic mineral is rotated on the stage with the analyzer and polarizer exactly crossed, the polarizer vibration direction being parallel to the axis of rotation of the reflecting plate. Experiments indicate that the intensity curve is symmetrical about each position of maximum or minimum illumination within the error of measurement. Because the rate of change of intensity is small in the vicinity of the positions of maximum and minimum illumination, however, these positions cannot be measured directly with a high degree of accuracy. To determine extinction positions, pairs of points of equal intensity on the curve, such as y and y', or x and x', are therefore used. One extinction position must now be midway between point y, at a stage setting of 94°, and point y', at a stage setting of 136°; the extinction position is therefore at 115°. Use of points x and x' (90° and 140°, respectively) gives the same result. In the same manner, the other three extinction positions are determined.

In theory, extinction positions should be exactly 90° apart, but in practice this is not always the case, because of strain in the objective or

FIG. 2. Diagram illustrating the change in intensity as an anisotropic mineral is rotated on the microscope stage under crossed polars. Extinction positions of grain are midway between points of equal intensity, x and x', and y and y'.

elsewhere in the optical system, or because the analyzer is not quite perpendicular to the polarizer. An error in the setting of the analyzer (or polarizer) of a fraction of a degree is enough to cause the intervals between extinction positions to depart fom 90°. These departures pose no problem, because alternate extinction positions, carefully measured, are found to be 180° apart. If this condition is satisfied, then as Berek (1937) pointed out, the 45° positions are the bisectrices of adjacent pairs of extinction positions. For example, if the stage settings at four extinction positions are 0°, 86°, 180°, and 266°, the corresponding 45° positions are 43° , 133°, 223° and 313°.

Determination of A_r . At any 45° position, with crossed polars, the intensity of illumination is a function of the azimuth of the semi-major axis of the reflected ellipse of vibration, or A_r . At two 45° positions 180° apart,

 A_r is clockwise from the polarizer direction, and a clockwise rotation of the analyzer, from its crossed position, equal to A_r , is necessary to produce minimum illumination. At the other two, also 180° apart but at 90° to the first two, A_r lies counterclockwise from the polarizer vibration direction, and the position of minimum illumination is found by rotating the analyzer also counterclockwise. In either case, the angular rotation of the analyzer from its crossed position (A_0 in Fig. 1) to the position of minimum illumination gives the value of A_r .

The relationship between the rotation of the analyzer and illumination in the four 45° positions is given in Fig. 3. In the figure, A_0 is the analyzer setting perpendicular to the polarizer direction at 0°. A_1 and A_3 are the analyzer settings at minimum illumination for one pair of 45° positions. A_2 and A_4 are the analyzer settings at minimum illumination for the second pair of 45° positions. A_1 and A_3 are midway between x and x', and A_2 and A_4 are midway between y and y'. The point of minimum illumination cannot be measured directly with sufficient accuracy because the change in intensity per degree of rotation of the analyzer is small near this position. In measurement, therefore, the points of minimum illumination are taken to be midway between points of equal illumination on the curves, such as x, x' and y, y'. From the analyzer settings A_r may be determined from the equation:

$$\frac{A_1 + A_3}{2} - \frac{A_2 + A_4}{2}$$

$$\frac{A_1 - A_3}{2} = A_r \text{ (uncorrected)}$$

The observed value of A_r must be corrected for the effect of the reflecting plate. When the polarizer vibration plane is parallel to the reflecting plate, the correction factor is less than 1.0 because the plate produces a rotation additional to that produced by the mineral. However, when the polarizer vibration plane is perpendicular to the reflecting plate, the correction factor is greater than one. The former case is more desirable as any error in setting the analyzer is reduced when the correction factor is applied. A correction factor is not necessary if a reflecting prism is employed, but it is extremely important that the prism be properly aligned. The procedure employed for determination of the correction factor is given by Cameron (1961). For the Leitz microscope used in this study, the correction factor is .79 at 589 m μ .

The precision of measurement of A_r by the photometric method is found to be $\pm 0.02^{\circ}$ to $\pm 0.03^{\circ}$, whereas the precision of measurement by the visual method is never better than $\pm 0.1^{\circ}$ and in some cases is $\pm 0.2^{\circ}$ or more.

ANALYZER SETTING

FIG. 3. Diagram illustrating change in intensity as analyzer is rotated over a mineral in each of the four 45° positions. Points $A_{1,3}$ and $A_{2,4}$ represent minimum illumination for 45° positions separated by 180° and are midway between points of equal intensity, x and x', and y and y'.

Determination of 2 ϑ . For visual determination of 2 ϑ the polarization figure as observed in monochromatic light is used. The mineral is brought to a 45° position. The analyzer and mica plate are inserted at their zero positions (A₀ and G₁⁰, Fig. 1) and then rotated simultaneously until maximum blackness (minimum illumination) is produced at the center of the field. The figure is now a black cross. Viewed orthoscopically, the mineral grain is dark. The angular rotations of analyzer and mica plate from their zero positions to the positions of compensation are respectively A₀OA₁' (= $A_{r_{\beta}}$) and G₁'OG₁⁰. From the angular relationships between A_r , G₁'OG₁⁰, and $A_{r_{\beta}}$, the angles α_G and β_G (Fig. 1) are calculated as follows:

$$A_r \pm G_1' O G_1^0 = \alpha_G \tag{1}$$

$$A_{r_{\beta}} \pm G_1' O G_1^0 = {}_{\beta G} \tag{2}$$

The values of α_G and β_G thus obtained must be corrected for the effect of the reflecting plate, using the factor employed in correcting the observed A_r . The value of 2ϑ is now calculated from either

$$\tan 2\vartheta = \tan \Delta_{\rm G} \sin 2\alpha_{\rm G}, \quad \text{or} \tag{3}$$

$$\sin 2\vartheta = \sin \Delta_{\rm G} \sin 2\beta_{\rm G},\tag{4}$$

in which Δ_G is the phase difference of the mica plate for the wave length of light employed. The mineral is now rotated 90° to a second 45° position, and the procedure is repeated.

In the same manner the value of 2ϑ is calculated from settings at each of the other three 45° positions, and the final value is obtained as the average of the values for all four positions.

In applying formulas (1) and (2), depending on the mineral under observation, any of four possible cases may arise. One of these is shown in Figure 1. It is illustrated by breithauptite, for which calculations are given below. Calculations involved in the other cases are described by Cameron (1961, pp. 122–131).

The weakness of the visual method for determining 2ϑ is that the eye is not very sensitive to different degrees of darkness, and experience has shown that reproducibility of results in general is poor. Values for 2ϑ may have a precision as low as $\pm 0.5^{\circ}$ or even $\pm 1.0^{\circ}$, depending on the mineral.

The photometer is more sensitive than the human eye, but the rate of change of intensity is very small in the region of minimum illumination. However, this difficulty is avoided in photometric measurement because positions of minimum illumination are determined, as in the measurement of A_r , in terms of symmetrically disposed positions of equal intensity of illumination.

In photometric measurement, the mineral is brought to a 45° position. The analyzer is set at A_1 , A_2 , A_3 , or A_4 , whichever corresponds to A_r for the particular 45° position of the mineral. The mica compensator is then inserted into the accessory slot. A curve similar to that of Fig. 3 represents the relationship between illumination and rotation of the mica compensator. The mica compensator is set midway between points of equal intensity on the steepest part of the curve. The midway point corresponds to a point of minimum illumination. Next, the analyzer is rotated while the mica compensator is fixed and a point of minimum illumination is defined for the analyzer. The mica plate and analyzer are employed alternately in this manner until the settings cease to change, indicating that compensation is obtained. The same procedure is followed for each of the other 45° positions. The settings of the analyzer and mica plate at each 45° position are now used to calculate A_{ra} and $G_1'OG_1^0$, and

1614

from these the values of A_r , α_G and β_G are obtained from equations (1) and (2). The values of 2ϑ calculated from the four sets of values of α_G and β_G are averaged to give the final value of 2ϑ .

Experience indicates that values of 2ϑ measured photometrically with the apparatus here employed have a precision of $\pm 0.1^{\circ}$.

MEASUREMENT OF THE ROTATION PROPERTIES OF BREITHAUPTITE

The results of measurements of breithauptite are presented as an example of the precision that can be expected from the photometric method. Comparable results have been obtained with other minerals. Measurements were made on a large grain of breithauptite, all parts of which showed extinction simultaneously. A Leitz $45 \times$ objective (.85 n.a.) was used in the experiment. The mica compensator employed has a phase difference of 16.2° at 589 m μ . The area of the grain exposed to the photomultiplier tube was approximately 20 microns. The area of measurement was free of visible imperfections.

The 45° positions are accurate to $\pm 1.0^{\circ}$. The corresponding error in the determination of A_r is ± 0.01 . Two independent sets of determinations of A_r on a perfectly leveled polished section gave an uncorrected value of $3.55^{\circ}\pm 0.02^{\circ}$ (589 mµ.), corresponding to a corrected value of $2.80^{\circ}\pm 0.02^{\circ}$. Values for 2ϑ were calculated from the angular relationships of the analyzer and mica compensator, shown diagrammatically in Fig. 1. For breithauptite, using corrected values of A_r , $A_{r\theta}$, and $G_1'OG_1^{\theta}$,

$$A_{r} - G_{1}'OG_{1}^{0} = 2.80^{\circ} \pm 0.02^{\circ} - 5.72^{\circ} \pm 0.1^{\circ} = 2.92^{\circ} \pm 0.1^{\circ} = \alpha_{G}$$
$$A_{ro} - G_{1}'OG_{1}^{0} = 2.71 \pm 0.02^{\circ} - 5.72^{\circ} \pm 0.1^{\circ} = 3.02^{\circ} \pm 0.1^{\circ} = \beta_{G}$$

Using these values for α_G and β_G , and Δ_G for the mica plate in equations (1) and (2) gives $2\vartheta = 1.70^\circ \pm 0.1^\circ$.

REQUIREMENTS FOR ACCURATE MEASUREMENT

If measurements of the precision indicated above are to be obtained, the photometric system must meet the following requirements:

- 1. The intensity curves obtained by rotation of the stage (Fig. 2), rotation of the analyzer (Fig. 3), and rotation of the mica compensator must be symmetrical about points of minimum intensity. In the experiments made to date, this requirement is satisfied within the limits of error when the system is properly aligned.
- 2. The grain area measured; *i.e.*, the area from which light is received by the photomultiplier, must have its center at the center of the field of view.
- 3. The objective must be carefully centered.

- 4. The polished section must be carefully leveled.
- 5. The grain area measured must be free from pits, scratches, or other defects visible at the magnification employed and must show no internal reflections.
- 6. The photometer should be used only at wave lengths at which it has adequate sensitivity.
- 7. Both lamp and photometer circuits must have a high degree of stability.
- 8. All optical elements should be kept as dust-free as possible.

EVALUATION OF THE PHOTOMETRIC METHOD AND CONCLUSIONS

Photometric measurement of rotation properties is at least 3 to 5 times more precise than visual measurement. Photometric measurement is free from the subjectivity of the visual method. Except for the specially adapted Wright slotted ocular, the apparatus used for measurement of rotation properties is the same as that employed in measurement of uniradial reflectivities. The chief disadvantage of precise photometric measurement is that it is time-consuming compared to visual measurement. The latter requires only a few minutes each for measurement of A_r and 2ϑ , whereas precise photometric measurement of A_r for a mineral grain may require as much as 15 minutes, of 2ϑ as much as 30 minutes. The technique has value, however, for determining standard reference values of the rotation properties of anisotropic minerals or synthetic materials. In addition, it has potential applications in studies of crystal orientation in ores and metallurgical products, since A_r is a function of crystal orientation. Finally, greater precision in measurement of rotation properties means that use of these properties in calculating indices of refraction can now be explored. We are currently investigating this matter.

For routine investigation of ore minerals, the photometric method has additional importance in that it can be employed, without a special ocular, as a substitute for the visual method. In this case, it is only necessary that the analyzer be equipped with a vernier so that its setting can be read to 0.1°, and that a rotating mica compensator be available. With this simple equipment, the precision of measurement of A_r will be at least that of the visual method, and 2ϑ can be determined with somewhat better precision than by the visual method. The time of measurement of A_r is now reduced to a few minutes. The procedure of measurement is essentially the same as that described above.

Acknowledgments

The authors are indebted to the National Science Foundation for the grant of funds that has made this investigation possible.

References

BEREK, M. (1937) Optische Messmethoden im polarisierten Auflicht, Fort. Mineral. 22, 1–104.

CAMERON, E. N. (1957) Apparatus and techniques for the measurement of certain optical properties of ore minerals in reflected light. *Econ. Geol.* 52, 252–268.

----- (1961) Ore Microscopy. John Wiley and Sons, Inc., New York.

HALLIMOND, A. F. (1953), The Polarizing Microscope. Cooke, Troughton, and Simms, Ltd., York, England.