ACKNOWLEDGMENTS

The authors thank professors A. R. Vasudeva Murphy and M.R.A. Rao for their interest and encouragement. One of the (S.R.Y.) thanks the Council of Scientific and Industrial Researh (India) for financial support.

References

Bragg, W. L. (1924) Proc. Roy. Soc. (London) 105A, 16-39.

BROOKS, R., L. M. CLARK AND E. F. THURSTON (1950) Trans. Roy. Soc. London. A243, 145-67.

Chaudron, G., H. Mondange, and M. Pruna (1952). Proc. Intern. Symposium Reactivity of Solids, Gothenburg, 9-20 (in French).

FAUST, G. T. (1949) Science. 110, 402-3.

——— (1950) Am. Mineral. 35, 207.

FAIVRE, R. (1946) Compt. rend. 222, 140-141.

GRUVER, R. M. (1950) Jour. Am. Cer. Soc. 33, 171.

IEVINS, A., F. OSIS AND F. MATEURS (1955) Latvijas PSR Zinatum Akad. Vestis. 2, 87-100 (in Russian).

DE KEYSER, W. L. AND L. DUGNELDRE (1950) Bull. Soc. Chim. Belges. 59, 40-71.

KITANO, Y., K. PARK AND DONALD W. HOOD (1962). Jour. Geophys. Res. 67, 4873-4874. SWANSON, H. E. AND R. K. FUYAT (1954) NBS Circ. 539, 3, 53-4.

Wray, J. L. and Farrington Daniels (1957) Jour. Am. Chem. Soc. 79, 2031-2034.

THE AMERICAN MINERALOGIST, VOL. 50, SEPTEMBER, 1965

CRYSTALLOGRAPHIC DATA FOR Er2SiO5 AND Y2SiO51

L. A. HARRIS AND C. B. FINCH, Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Recent phase equilibria investigations of rare-earth oxide—silicon dioxide systems and their compounds have been the subject of studies by Warshaw and Roy (1961) and Toropov et al. (1961). Of specific interest to this paper are the compounds Er₂SiO₅ and Y₂SiO₅, data for which were reported by both sets of authors. However, a comparison of the powder x-ray diffration data for these two compounds as given by Warshaw and Roy with that given by Toropov et al. for the identical compounds are not in agreement.

Recently, we have synthesized single crystals of Er₂SiO₅ and Y₂SiO₅ by solution growth from a molten Li₂O·2MoO₃ solvent at approximately 1100° C. Spectrochemical analyses of the erbium compound showed only significant quantities of erbium and silicon with less than 0.1% Mo present. Confirmation of the formula was obtained by solid state synthesis of these compounds. This was accomplished by physically mixing powders

¹ Research sponsored by the U. S. Atomic Energy Commission under contract with the Union Carbide Corporation.

Table 1. Comparison of Physical Properties and X-Ray Powder Diffraction Data for $\mathrm{Er}_2\mathrm{SiO}_5$ of Toropov $\mathit{et~al}$. And Present Authors

	Toropov et al.		Present ¹ authors			
Optic figure	biaxial $\gamma = 1.825$ $\alpha = 1.807$ 88°		biaxial $ \gamma \cong 1.825 $ $ \alpha \cong 1.810 $ $ \sim 90^{\circ} $			
Refractive indices						
2V (estimated)						
Density (measured g⋅cm ⁻³)	6.8			6.87		
	Diffraction Data					
	1	d(A)	I2	d(A)	hkl	
			M	6.075	002	
			\mathbf{M}	5.884	011	
			VVW	5.566	110	
			VVW	5.012	200	
			\mathbf{W}	4.380	$\bar{1}12, \bar{2}02$	
	12	4.08	\mathbf{M}	4.048	$\overline{2}11$	
	46	3.92	VS	3.883	112	
			VVW	3.628	211	
	41	3.55	S	3.531	202	
			VVW	3.445	013	
	12	3.37	MW	3.337	020	
	54	3.15	S	3.129	T21	
	82	3.03	VS	3.004	310	
	100	2.93	S	2.925	022	
			VS	2.885	204	
			W	2.792	220	
	30	2.67	\mathbf{M}	2.653	222	
			W	2.631	213	
	20	2.61	\mathbf{M}	2.583	123	
	68	2.55	VS	2.533	114	
	43	2.42	\mathbf{M}	2.412	123	
	36	2.27	MS	2.255	024	
			MW	2.235	411	
	93	2.19	MW	2.186	031	
			S	2.172	130	
			W	2.035	$\overline{2}31$	

 $^{^1}$ The x-ray powder diffraction data were obtained from Debye-Scherrer films using Cu K α ($\lambda = 1.5418$ Å) radiation.

(the purity of these powders are 99.95 wt % Y_2O_3 , 99.9 wt % Er_2O_3 , and 99.95 wt % SiO_2) of the constituent oxides in their proper proportions, then pelletizing this mixture and firing the pellet at a temperature greater

² S=strong; VS=very strong; M=medium; MW=medium weak; MS=medium strong; W=weak; VW=very weak; and VVW=very very weak.

	$\mathrm{Er_2SiO_5}$	Y_2SiO_5	
Color	Pink	Water clear	
Lattice parameters			
a	$10.33 \pm 0.03 \text{ Å}$	$10.34 \pm 0.02 \text{ Å}$	
b	$6.689 \pm 0.016 \text{ Å}$	$6.689 \pm 0.015 \text{ Å}$	
c	$12.37 \pm 0.02 \text{ Å}$	$12.38 \pm 0.03 \text{ Å}$	
β	102°57'	102°32'	
Z	8	8	
$\rho_0(\mathbf{g} \cdot \mathbf{cm}^{-3})$	6.86	1	
$\rho_{x-\text{ray}}(\mathbf{g}\cdot\mathbf{cm}^{-3})$	7.057	4.55	
Possible space groups	Ic, I2/c	Ic, I2/c	

Table 2. X-ray Diffraction Data for Er_2SiO_5 and Y_2SiO_5 Based on Single Crystals

than 1450° C. for 24 hr, in air, using a 60% Pt-40% Rh wound vertical tube furnace. The product obtained on air quenching was examined optically and by x-ray diffraction and found to be essentially a single phase, giving a diffraction pattern identical to the one obtained from powdered single crystals.

The diffraction data obtained in this study for $\operatorname{Er_2SiO_5}$ and $\operatorname{Y_2SiO_5}$ were found to differ from those reported by Warshaw and Roy for identical compounds. However, a comparison of physical properties and x-ray diffraction data (Table 1) for $\operatorname{Er_2SiO_5}$ given by Toropov et al. and the present authors shows them to be the same with the exception that the weaker reflections were not observed by Toropov et al.

The crystallographic data for ${\rm Er_2SiO_5}$ and ${\rm Y_2SiO_5}$ are summarized in Table 2. Rotation, Weissenberg, and precession films were obtained from crystals of both compounds using Cu K $\alpha(\lambda=1.5418~{\rm \AA})$ and Mo K $\alpha(\lambda=0.7107~{\rm \AA})$ radiations where appropriate.

References

WARSHAW, I. AND R. ROY (1961) Crystal chemistry of rare earth sesquioxides, aluminates, and silicates. *Progress in the Science and Technology of the Rare Earths*, Vol. 1, ed. by Leroy Eyring, Pergamon Press, New York, 203–221.

TOROPOV, N. A. AND J. A. BONDAR' (1961) Silicates of the rare earth oxides. Phase diagrams of the binary oxide system Y₂O₃-SiO₂. *Izv. Akad. Nauk SSSR Otd. Khim. Nauk*, 544-550 (in Russian).

— et al. (1961) Silicates of the rare earth oxides. Phase diagrams of the binary oxide systems Dy₂O₃-SiO₂ and Er₂O₃-SiO₂. Izv. Akad. Nauk SSSR Otd. Khim. Nauk, 8, 1365-1371 (in Russian).

¹ Sample was too small for accurate determination.