some of the crystals. These markings are not due to etching, but are connected with the growth of the crystals. They are not depressed, but slightly stepped and do not affect the brilliancy of the base. The sides of the triangles are parallel to +1 faces while the angles point toward -1. These markings are sketched on the orthographic projection shown (Fig. 31.). The forms present are 0(0001), $\infty 0 (10\overline{1}0)$, $10(10\overline{1}1)$, $20(20\overline{2}1)$, $\pm 1(11\overline{2}1)$. The signals were sharp and the deviations in the measurements from those given in Goldschmidt's tables and those of Melczer1 are so slight, amounting to almost perfect agreement, that it is evident that this hematite is essentially pure and free from any great amount of FeO, TiO2 or other constitu- ents in solid solution. The zonal relations are brought out to better advantage in the hexagonal system, as well as in the other systems, with the Goldschmidt than the other symbols. Thus in the hematite measured, $\infty 0$, 0, 10, 20, are in a zone, as shown by the common value for q (G₂), while the corresponding Bravais symbols $10\overline{10}$, 0001, $10\overline{11}$, $20\overline{21}$, do not show this relation so well. TABLE OF ANGLES OF HEMATITE | Form | G ₁ Gdt. G ₂ | Bravais | Meas | sured | Calculated | | | | |------------------------|--|-----------------------------------|--------------------------------------|--|--------------------------------------|--|--|--| | 0
a
π
λ
px | $ \begin{array}{cccc} 0 & 0 \\ \infty & \infty 0 \\ \frac{1}{3} & \frac{1}{3} & 10 \\ \frac{2}{3} & \frac{2}{3} & 20 \\ 1 & 0 & +1 \end{array} $ | $11\overline{2}3 10\overline{1}1$ | φ
0° 00′
0 00
0 00
30 00 | $0^{\circ} 00'$ $90 00$ $42 10$ $61 8$ $57 31$ | φ
0° 00'
0 00
0 00
30 00 | 0° 00'
90 00
42 14
61 10
57 33 | | | LISTS OF THE HEXAGONAL AND TRIGONAL MINERALS INCLUDED IN GOLDSCHMIDT'S WINKELTABELLEN. Edgar T. Wherry. Washington, D. C.—This list follows the plan used with tetragonal minerals, altho it has seemed best to separate the hexagonal from the trigonal classes. In the event of the axial ratio obtained on an unknown crystal not fitting in the table, the factor by which it may be multiplied or divided is $\sqrt{3}$ or $\frac{1}{2}\sqrt{3}$. For example, a crystal of a mineral found to contain calcium and phosphorus may give on measurement $c=0.73\pm$. No corresponding mineral ¹ Z. Kryst. Min., 37, 580, 1903. can be found in the lists, but on multiplying by 1.732 the value 1.27 will be obtained, which will be found to correspond to apatite. ## HEXAGONAL MINERALS | ILLAAGUN | AL | MINERALS | | |---|-------|---|-------------| | c Pag | ge | ë | Page | | Cancrinite0.7637 8 | | Pyrrhotite (Magnetkies) .1.4291
Microsommite (Mik- | 227 | | Ettringite 0.8170 13 | 33 | rosommit) 1.4490 | 241 | | Beryl | 35 | Nephelite (Nephelin)1.4530 | 247 | | Stuetzite (Tellurblende) 1.0851 33 | 39 | Molybdenite (Molyb- | | | Milarite | | dänglanz)1.5400 | 242 | | Eremeyevite (Jereme- | | Trimerite | 349 | | jewit) | 39 | Loangbanite (Longbanit). 1.6437 | 211 | | Tysonite | 03 | Covellite (Kupferindig)1.7200 | 206 | | Hedyphanite1.2234 17 | 3 | Hanksite 1.7563 | 169 | | Vanadinite | | Connellite | | | Svabite | | Cappelenite2.2349 | 88 | | Apotito (Miniecesia)1.2000 24 | | Catapleiite (Katapleit)2.3605 | 196 | | Apatite | | Fluocerite | | | Penfieldite | 0 7 | Hessenbergite2.7070 | 176 | | Greenockite1.4061 16 | | Zincite (Rothzinkerz) 2.7846 | 307 | | Wurtzite | | Tridymite2.8624 | 349 | | Niccolite (Rothnickelkies) 1.4193 30 | 16 | Spangolite | 323 | | Iodyrite (Jodsilber)1.4196 19 | 00 | Chalcomorphite 3.3067 | 92 | | | | | | | | SES T | WITH DIMINISHED SYMMETRY | | | CLASS HEMIMORPHIC | 3 | Peri-hexagonal, (that is, really | pos- | | Greenockite 1.41 – Wurtzite 1.41 + Iodyrite 1.42 Zincite 2.78 + |] | sessing lower symmetry, but proaching so close to the hexag system in angles and habit as t profitably included here). Eremeyevite | ap-
onal | | CHASS I INAMIDAL | 1 | Hospon howeite 0.71 | | | Vanadinite | | | | | | 1.23 + | |--------------|--|--|--|--|--|--------| | Mimetite | | | | | | 1.26 | | Pyromorphite | | | | | | 1.28 - | SYN-HEXAGONAL (thru twinning) Tridymite 2.86 ## TRIGONAL MINERALS | C | Page | c | Page | |-----------------------------------|------|----------------------------------|------| | (Beyrichite) [variety of | | Soda-niter (Natronsal- | | | millerite] 0.3277 | 68 | peter)0.8266 | 947 | | Millerite | 242 | Dolomite | 110 | | Tourmaline (Turmalin)0.4477 | 352 | Coloito | 119 | | Friedelite0.5470 | 152 | Calcite | 82 | | Ferronatrite | 145 | Martinite0.8559 | 232 | | Phenacite (Phenakit) 0.6611 | 264 | Hematolite (Diadelphit) .0.8885 | 114 | | Willemite, troostite 0.6695 | 204 | Dioptasite 1.0622 | 118 | | Pyrargyrite (Rothgil- | 505 | Chabazite (Chabasit) 1.0860 | 91 | | | 000 | Steenstrupite 1.1100 | 327 | | tigerz) | | Hamilinite 1.1353 | 169 | | Proustite (Rothgiltigerz) .0.8034 | | Utahite 1.1389 | 356 | | Smithsonite (Zinkspath) 0.8062 | 374 | Beudantite | 68 | | Magnesite 0.8095 | 225 | Caryocerite (Karyocerit) .1.1845 | 196 | | Rhodochrosite (Man- | | Syanbergite | 334 | | ganspath)0.8183 | 231 | Jarosite | 197 | | Siderite (Eisenspath)0.8184 | 124 | Alunite | 101 | | Nordenskioeldite0.8221 | 250 | Melanogorita 1.0774 | 35 | | | _00 | Melanocerite1.2554 | 230 | | | Page | | Page | |--------------------------------|------|---------------------------------|------| | C | | | 257 | | Aphthitalite (Glaserit) 1.2839 | | Parisite | | | Bismuth (Wismut)1.3035 | | Pyrosmalite1.8380 | 280 | | Antimony | 46 | Tachydrite (Tachyhydrit) 1.9000 | 338 | | Tellurium | 338 | Quartz (Quarz)1.9051 | 288 | | Hematite, specularite | | Cinnabarite (Zinnober)1.9837 | | | (Eisenglanz) 1.3623 | | Eudialyte2.1116 | 134 | | Corundum (Korund)1.3636 | 200 | Ice (Eis) | 122 | | Ilmenite (Titaneisen) 1.3846 | 343 | Chalcophyllite (Kupfer- | | | Graphite | | glimmer) 2.5540 | 206 | | Pyrochroite1.4002 | 280 | Coguimbite2.7098 | 103 | | Arsenic | 54 | Tetradymite | 340 | | Iridium, osmium (Os- | | Chlorite group (Chlorit- | | | miridium)1,4105 | 256 | gruppe) | 95 | | Brucite | 81 | Chalcophanite3.5267 | 92 | | | | HER THAN RHOMBOHEDRAL SYMMI | ETRY | | Class Trigonal-hemimorph | | Dolomite0.83 | | | CLASS I RIGUNAL-HEMIMORPH | 10 | Dioptasite | | | Tourmaline | | Ilmenite1.38+ | | | Pyrargyrite0.79 | | IIIIeiiie | | | Proustite 0.80 | | Class Trapezohedral | | | Ice | | CLASS TRAPEZUHEDRAL | | | | | Quartz | | | Class Rhombohedral-tetar | TO. | Činnabarite | | | | 10- | | | | HEDRAL | | Peri-trigonal | | | Phenacite0.66 | | I EMI-IMGUNAL | | | Willemite, troostite 0.67 | | Chlorite (group)3.39 | | | <i>'</i> | | | | | | | | | ## BOOK REVIEW MICROSCOPIC EXAMINATION OF THE ORE MINERALS. W. MYRON DAVY and C. MASON FARNHAM. 154 pages. McGraw-Hill Book Co., New York. \$2.50. This book represents in a sense a new edition of Murdoch's "Microscopical determination of the opaque minerals" which was reviewed in this magazine in February, 1917. It represents, however, a great advance over that work, in that the methods originally proposed by Murdoch have been tried out by the two new authors on a large number of specimens, and modifications have been made in accordance with the experience obtained. The principal changes are these: The fine distinctions in color values have been found to be impracticable, and have been discarded as a basis of primary classification. Microchemical methods have been found to vary so much from one specimen to another of the same mineral, or even on different crystal faces on the same specimen, that little dependence is now placed upon their details. The number of reagents has been brought within practicable limits. And blowpipe reactions have been added, because they are of considerable confirmative value. It seems to the reviewer that all of these changes are distinct improvements. There are also several valuable new features. The chapter on photomicrography of polished sections is unusually full and helpful. There are, in addition to the regular determinative tables, in which the minerals are one by one eliminated until the one under study is identified, a few tables of special properties. In one the colors of about 20 minerals showing others than shades