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ABSTRACT
'Irilinear 

and quadriplanar coordinates are types of homogeneous coordinates that
have many applications in mineralogy and geochemistry, but the analytic geometry of
such coordinates is not generally known. It therefore happens that the data derived by
these systems are treated graphically rather than analytically. An analytical treatment
can be obtained without recourse to unfamiliar analytic geometry by the direct and
reverse transformation of trilinear and quadriplanar coordinates to cartesian coordinates,
thus resolving all such problems to conventional analytic geometry.

Formulae for the necessary transformations have been published in generalized form
to apply to triangles and tetrahedra of all kinds, with the origins of cartesian coordinates
variously placed inside these figures. Formulae with numerical constants, however, have
not been published for the simplest figures, with specifically placed origins, as required in
practical applications. Such transformations are the principal thesis of this paper.

The equilaterai triangle is used as a triangle of relerence for trilinear coordinates, and
the reguiar tetrahedron as a tetrahedron of reference for quadriplanar coordinates. The
origins of 2-dimensional and 3-dimensional cartesian coordinates are placed at the cen-
troids of these figures. Three transformation formulae are deduced for trilinear coordinates,
and four such formulae are derived for quadriplanar coordinates. Some suggestions are
made regarding a generalization of quadriplanar and 3-dimensional cartesian coordinates
into the fourth dimension, but no trans{ormation formulae are presented. Practical
applications are outlined for homogeneous and cartesian coordinates.

INrnorucrroN

The subject of trilinear coordinates is omitted from modern American
textbooks on analytic geometry, but has been fully developed in older
Brit ish treatises. Among these are the works of Whitworth (1866, 506 p.),
Ferrers (1876,  184 p.) ,  Loney (1923,  vol .  2 ,288 p.) ,  and a concise t reat-
ment by Smith (1919, p. 34I-371). Quadriplanar coordinates have been
discussed by Snyder and Sisam (1914, p. 109-123) under the heading of
tetrahedral coordinates, but this designation is misleading, as tetrahedral
coordinates are volumetric, referring to the ratios of the volumes of four
minor tetrahedra within a tetrahedron of reference. Quadriplanar co-
ordinates are aiso discussed in books on projective geometry, mainly in
connection with general homogeneous coordinates and equations.

Trilinear and quadriplanar coordinates, for reasons later stated, may
need to be transformed into 2-dimensional and 3-dimensional cartesian
coordinatesl and the reverse transformations are equally necessary.
Tril inear coordinates constitute a system of analytic geometry whereby
points and curves are located in relation to a triangle of reference. Any
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triangle may be used for this purpose; and in a transformation to car-
tesian coordinates, the origin may be placed anywhere within the selected
triangle. Generalized formulae for such transformations are given in the
books cited above, and also in the volume by Carr (1886, p. 562); but
specialized formulae with numerical constants for simplified calculations
have not been published. Two limitations are necessary. It is obvious
that an equilateral triangle is the simplest triangle of reference; and the
logical and most practical placement for the origin of 2-dimensional car-
tesian coordinates is at the centroid of the equilateral triangle. With these
two restrictions, simple transformation formulae may readily be de-
veloped.

Generalized formulae have also been published for the transformation
of quadriplanar coordinates to 3-dimensional cartesian coordinates, and
vice versa. But no simplified transformation formulae with numerical
constants for practical calculations have been made available. Points,
space curves, and surfaces are located in quadriplanar coordinates with
regard to a tetrahedron of reference. Such a tetr,ahedron may have tri-
angular faces of various shapes, but the simplest figure is that of a regular
tetrahedron with equilateral triangular faces. This is selected as the tetra-
hedron of reference; and the origin of 3-dimensional cartesian coordinates
is placed at the centroid of the tetrahedron.

One or two trilinear coordinates may be negative, but not three. If one
coordinate is negative, the corresponding point lies outside one of the
edges of the triangle of referencel but if two coordinates are negative, the
point lies within an exterior angle of the triangle. Points in quadriplanar
coordinates may have one, two, or three negative values. If one coordi-
nate is negative, the corresponding point lies outside one of the faces of
the tetrahedron of reference; if two coordinates are negative, the point
lies within an exterior dihedral angle of the tetrahedronl and if three
coordinates are negative, the point lies within an exterior trihedral angle
of the tetrahedron.

Another limitation exists regarding negative values for trilinear and
quadriplanar coordinates. If the sum of two negative trilinear coordinates
equals or exceeds the value of the positive coordinate, or if one negative
trilinear coordinate equals or exceeds the sum of two positive coordinates,
no point can be charted. Similarly, if one or the sum of two or three quad-
riplanar coordinates equals or exceeds the value of the positive coordi-
nate or coordinates, no chartable point exists.

Trrr-rNBen CoonorNerps

The triangular coordinate paper (no. 358-32) furnished by Keufel and
Esser, New York, is built upon an equilateral triangle, and exemplifies the
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form and calibration commonly used in charting trilinear coordinates. An
equilateral triangle of reference is shown in Fig. 1, with the origin of
2-dimensional cartesian coordinates at the centroid of the triangle, and
with the X-axis parallel to the base of the triangle. Also shown are the
trilinear coordinates a, B, and 7 of a point P, and the angles uL, o)2, and
co3, which these coordinate lines make respectively with the X-axis. By

Frc. 1. Relationship between trilinear and 2-dimensional cartesian coordinates.

drawing the construction l ines PS, SR, and RT, the length of the coordi-
nate alpha is so self-apparent that no formal proof is needed; and the
same relationships hold with regard to beta and gamma. Hence, on the
assumption that the sum of the trilinear coordinates is 100, the transfor-
mation formulae are readily seen to be the followinq:

@ :  p t  -  x C o s o l  -  y S i n o l

0 : p r -  x c o s @ s - y s i n o 2

7 : P 3 - x c o s @ 3 - Y S I n @ 3

pr : p2': pr : 33i ,, : 
+,r, 

: t;, 
una ,, :3t

(1)
(2)
(3)

where



TRILINEAI\

In their simplest form,
follows:

AN D QU A RDI P LAN AR COORDI N ATES

equations (1), (2), and (3) may be written as

a : 3 3 . 3 3 3 3 - . 8 6 6 0 x - . 5 y

P:  33.3333 * .8660x -  .5y

z : 3 3 . 3 3 3 3 + 0 + y

By means of these formulae, 2-dimensional cartesian coordinates may

quickly be transformed to trilinear coordinates. In the reverse transfor-

(4)

(s)
(6)

Frc. 2. Perspective view of a regular tetrahedron with the face ABD removed. Illustrates

relationship between quadriplanar and 3-dimensional cartesian coordinates.

mation, the value of y is obtained from formula (6); and the value of x

may be obtained either from formula (4) or (5), as these three formulae

are consistent.

Quaonrer-nNAR cooRDTNATES

The relationship between quadriplanar and 3-dimensional cartesian

coordinates is somewhat more involved, but the final formulae that are

deduced are readily applied. Figure 2 shows a perspective view of a regu-

lar tetrahedron of reference, with the front face removed. The origin of
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3-dimensional cartesian coordinates is made coincident with the centroid
of the tetrahedron. The Y-axis is parallel to the edge AB, and the Z-axis
is congruent with the normal from D to the face ABC. A simple trigo-
nometric computation shows that the four normals from the vertices to
the four opposite faces, exemplif ied by AQ, BR, and DS, meet in a point
that is the centroid of the tetrahedron. (This is true only for a regular
tetrahedron.) Another calculation shows that each of the segments OQ,
OR, and OS, as well as the distance from O to the face ABD, is equal to
25, if the sum of the quadriplanar coordinates is 100.

A concise proof is given by Yates (1961, p. 190-191) that the distance
of a point (*, y, 

") 
to a plane, exemplified by any of the four faces of a

tetrahedron, is represented in cartesian coordinates by the following
ecuation:

s :  xcosa *  y cos p I  z  cos 7 -  p

where

s: the length of a directed l ine from P to the given plane.
x, y, and z:the cartesian coordinates of P.
a, B, and7 : the direction angles (not the trilinear coordinates) of

normals AQ, BR, DS, and a similar normal from C to
face ABD.

and
p: the length of each of the segments OQ, OR, OS, and a similar

segment from O to the face ABD.
The directed distances in quadriplanar coordinates, however, are

measured in the opposite direction, that is, from the four faces of the
tetrahedron of reference to the given point. Hence the algebriac signs of
the right side of equation (7) must be reversed in order to show the
proper relationship, as given below.

s i :  p i  -  x  c o s c i  -  y c o s  p i -  z c o s l t G : 1 , 2 , 3 , 4 )  ( 8 )

Equation (8) is found to be the one required for the transformation of 3-
dimensional cartesian to quadriplanar coordinates, and vice versa. Hence
the quadriplanar coordinates of a set of 3-dimensional cartesian coordi-
nates may be written as follows:

(e)
(10)

(  1 1 )
(r2)

It has already been stated that p1: p2: pa: p4: 25. The direction angles
and cosines of the four coordinate lines are the same as those of the nor-
mals from the four vertices to the opposite faces. It remains, therefore, to

(7 )

the
the

€ : pr - x COSaI - y CoS Br - z CoS ar

f :  Pz  . . .  x  cose2  -  Ycos  Bz  -  z cos l z

n : ps - x cosa3 - Y cos Pt - z cosys

0 : p4 - x cos a4 - y cos pa - z cos ya
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determine the magnitudes of these 12 direction angles and their cosines.
The direction angles have been found to have the following values.

Direction angles

A r :  3 5 "  1 5 '  5 1 ' 8 "

Fz: l44o 44' 8'2"

T

B t :  -
2

T
B ^ : -

2

Direction cosines

cos @1 : - .4714 cos B1 : .8165 cos ?1 : .3333

cos a2 : - .4714 cos B2 : - .8165 cos ?2 : .3333

cos qs : .9428 cos B3 : 0 cos 73 : .3333

c o s @ 4 :  0  c o S B 4 :  0  c o s ? a : - 1 . 0 0 0 0

Hence, in their simplest form, the formulae for transforming 3-dimen-

sional cartesian to quadriplanar coordinates and vice versa, are the fol-

lowing:

ar : 1180 7' 31.8"

oz:  24lo 52'  28.2"

a : :  19o  28 ' 16 .4 "

T

z

y :  7Oo 3 l '  43 .6"

v: 70" 3l '  43.6"

y :  700 3 l '  43  6"

e : 25 I .4714x - .8165y - .33332

| :  25 1- .4714x 1.8165y - .33332

n : 2 5 - . 9 4 2 8 x | _  0  - . 3 3 3 3 2

o : 2 s +  0  +  0  +  z

In the reverse transformation from quadriplanar to 3-dimensional car-

tesian coordinates, the value of z is obtained directly from equation (16);

and by substituting in equation (15), the vaiue of x emerges. As these four

equations are consistent, the value of y may be computed either from

equation (13) or equation (14).

Pont,q.uvpBnllAT C ooRDTNATES

Five variables, of which four are independent, are theoretically charta-

ble in what may be described as pentahyperflat coordinates, which are

referred to a regular hypertetrahedron of the fourth dimension. Such a
polytope, called a regular simplex, has 5 vertices, 10 edges, 10 equiiateral
triangular faces, and 5 bounding hyperflats (which are in fact regular

tetrahedra). The coordinates are parallei to the 5 normals from the

vertices to the hyperflats. As the available data cannot be charted in four

dimensions, they may be projected either onto the triangular faces or

onto the bounding hyperflats (tetrahedra). Charts designed for these
purposes have been prepared by Mertie (1948, p. 324-336, and 1949, p.

106-7 16).
The analytic transformation of five pentahyperflat coordinates to four

4-dimensional cartesian coordinates, and vice versa, might be useful. In

(13)
(14)
(1s)
(16)
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particular, the elimination of one variable in mathematical analysis
should be an important asset. The necessary transformation formulae,
however, are not known to the writer. If they are analogous to those used
for quadriplanar coordinates, five formulae are needed, and 20 direction
angles must be determined.

Appr,rc.q.rroNs

Trilinear and quadriplanar coordinates are species of homogeneous co-
ordinates that are characterized by two or three independent variables
and one dependent variable. Such coordinates add to 100, or by recornpu-
tation can be made to do so. The transformation formulae so far de-
veloped make it possible to transform trilinear and quadriplanar coordi-
nates to cartesian coordinates, and vice versa; but in this process no sum-
mation of the cartesian coordinates is involved.

Originally determined cartesian coordinates differ from homogeneous
coordinates in that all the coordinates are independent variables. There-
fore it would be quite improper to recompute a set of cartesian coordi-
nates to total 100, with the objective of utilizing them in the preceding
transformation formulae. The result would be the derivation of number
sets that would not be uniquely distinctive of the original coordinates.
Thus the cartesian coordinates (10, 15, 25) and (20,30,50), whose sums
are respectively 50 and 100, represent two distinct 3-dimensional points.
Yet with certain modifications, formulae (4)-(6) and (13)-(16) may be
used to handle cartesian coordinates homogeneously. The charting and
analysis of homogeneous coordinates and independent cartesian coordi-
nates are separately discussed in the following pages.

HolrocnNnous CooRDTNATES

Experimental results of numerous mineralogical and geochemical in-
vestigations, as well as analyses with three terms, are plotted in trilinear
coordinates; but analytical work on the points and curves thus charted is
rarely done, doubtless because the analytic geometry of trilinear coordi-
nates is not generally understood. Hence general relationships that could
be expressed by algebriac equations are not obtained. But if the desired
results could be obtained without recourse to this specialized analysis,
they probably would be acceptable. Such results can be gotten by the use
of formulae (4), (5) and (6). Trilinear points may obviously be trans-
formed to 2-dimensional cartesian coordinates, and joined graphically or
by analytic fitting to form smooth curves; and trilinear curves, using a
point-by-point technique, may be similarly transformed. The resulting
cartesian curves may then be differentiated, integrated, or subjected to
any other analytical process, after which they may be transformed back
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to trilinear coordinates. Thus the analytical geometry of trilinear coordi-
nates may be entirely avoided. It is true that the algebriac results of such
work wil l be available only in cartesian coordinates;but for most workers
and readers this will probabiy be an asset rather than a drawback.

Analyses with three terms, that chart naturally in trilinear coordinates,
may Iikewise be reduced to 2-dimensional cartesian coordinates. The two
resulting variables will have different meanings than the original three,
but the gain in simplicity of charting may under some circumstances be
desirable. In reverse, two variables that were derived originally as car-
tesian coordinates may be transformed into trilinear coordinates, if that
should be advantageous.

Examples of the transformation of trilinear to 2-dimensional cartesian
coordinates may be given by a mean analysis of beryl, derived from 11
analyses taken from Dana (1914, p. 407); and by a mean analysis of
olivine (chrysolite), derived ftom32 analyses from the same source (1914,

p. a53). These two analyses, recomputed free of minor impurit ies to total
100 per cent, are as follows.

933

SiOz
AlzOr
FeO
Mgo
BeO

Total

Ber1,I

67  .83
18.  84

I J . J J

Olioine

40.46

13.96
4 5 . 5 8

100.00 100.00

From formulae (4), (5), and (6), the values of the cartesian coordinates
are found to be the following:

Beryl (x, y) : (- 28.28, - 20.00) Olivine (x, y) : (- 15.30, 12.25)

Many mineralogical, geochemical, and geophysical investigations
yield four variables, of which three are independent of one another. These
are seldom charted directly, as this operation would require perspective
drawings of a tetrahedron of reference. Instead, the points, space curves'
or surfaces are projected, either apically or orthogonally, onto the tri-
angular faces of the tetrahedron, which is then developed as four tri-
angles. Or, if charting is not attempted, the numerical results are merely
tabulated. Such tetrahedral data can readily be transformed into 3-
dimensional cartesian coordinates by the use of formulae (13), (14)' (15)

and (16). Thereafter the analytical methods heretofore suggested may be
applied, and subsequently reverse transformations may be made. This re-

duces all problems in quadriplanar coordinates to conventional solid
analytica{geometry.
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Analyses with four terms, of which three are independent of one an-
other, may similarly be transformed into 3-dimensional cartesian coor-
dinates, if that should be desirable. The new points may then be located
graphically in three dimensions; or if a number of such points were to be
compared, they could be joined as space curves or surfaces, either by
graphical or analytical treatment.

The transformation of quadriplanar to 3-dimensional cartesian coor-
dinates may be exemplified by a mean anaiysis of orthoclase, taken from
23 analyses published by Dana (1914, p. 319); and by a mean analysis of
microcline, derived from 19 analyses from the same source (1914, p. 323,
324). These two analyses, recomputed free of minor impurit ies tb total
100 per cent, are as follows:

Orthocl,ase

JIU2 05 5 /

AlzO: 19.43
NarO 4.06
KzO 10.94

Microcline

6 5 . 1 8
19.82
2 . 3 0

12.70

Total 100.00 100.00

From formulae (13), (14), (15), and (16), the values of the corresponding
cartesian coordinates are found to be the following:

Orthoclase, (*, y, t) : (27.18, - 28.25, - 14.06)
Microcline, (x, y, z) : (28.43, - 27.78, - 12.30)

C,qnrBsreN CoonorN,q.rps

Four cartesian coordinates are now presented to i l lustrate independent
variables that may not be recomputed to total 100 per cent. These vari-
ables, which range in value from zero to infinity, represent the class, order,
rang, and subrang of analyzed rocks in the C.I.P.W. classification of
igneous rocks. The example is a biotite granite from El Capitan, Yosemite
Valley, California, whose analysis and molecular ratios are tabulated by
Washington (1917,  p.  185) .

Constonts oJ biotite granite

Class 19. 68
Order 2.34
Rang 2 .13
Subrang 0.75

Total 24.90 whence 
'n 

.90 : u.rrs

I t  w i l l  be  no ted  in  fo rmulae  (13) ,  (14) ,  (15) ,  and f fO l  t f r " t  p i :25 .  In
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order to treat this analysis as if i ts variables were homogeneous, it is only

necessary to substitute the values of pi:6.225. This is equivalent to
imagining that the point represented by this analysis is charted in a
tetrahedron whose normals from the vertices to opposite faces have a
length of 24.90. This treatment also implies that one of the four variables
is dependent on the other three, which is not true, but is warranted as an

empirical procedure. The resulting coordinates are as follows:

19.68 : 6.225 + .4714x - .8165y - .33332
2.34: 6.225 I .47r4x f .8165y - .33332
2.13 : 6.225 - .9428x * 0 - .33332
0 . 7 s : 6 . 2 2 s +  0  +  0  +  z

The desired values of the cartesian coordinates are

(t, y, 
") 

: (6279, - 10.618, - 5.475).

Now using the unmodified form of formulae (13), (14), (15) and (16), it

is possible to obtain a set of quadriplanar coordinates. These are found to
have the following values.

(e, (, n,0) : (38 46' 21.12' 20.90, r9.s2)

Thus the C.I.P.W. constants may be expressed either as three cartesian

coordinates, or as four quadriplanar coordinates, and may therefore be

charted.
The question may be raised whether the empirical operation applied to

the C. I. P. W. constants may not be repeated for the three derived car-

tesian coordinates, in order to reduce their number to two. Obviously this

may not be done for the values of (x, y, z) shown above, because if these

are interpreted as tri l inear coordinates, the sum of the negative coordi-

nates exceeds the value of the positive coordinate, and the point retreats to

infinity. The same is true for the three cartesian coordinates derived for

orthoclase and microcline. Inasmuch as such a repeated treatment is not

generally applicable, it is not regarded as usable. The method does ap-

pear to be useful, however, for all original positive cartesian coordinates

that are interpreted empirically as tri l inear or quadriplanar coordinates;

and for all such coordinates that conform to the l imitations heretofore

stated for positive and negative homogeneous coordinates'

RnpnnnNces

Cnrn, G. S (1836) A Synopsis oJ Elementary Results, Pure Mathemotacs. Francis Hodgson,

London.
DaNa, Erwano S. (1914) The System of Mi'neralogy o.f fames Dwight Dana (sixth ed.).

John Wiley & Sons, Inc., New York, p. 379,323-325,407 and 453.

Fnnnrns, N. M (1876) An Elementary Treat,ise on Trilinear coorilinates, the Method. oJ

Reci\rocal Polars, and. the Theory oJ Projections (third ed.). Macmillan and Co',

London.



936 JOHN B. MERTIE, JR.

Lornv, S. L. (1923) The Elem.ents o.f Coord.inate Geometry, vol. 2, Trilinea.r Coordinates.
Macmillan and Co., London.

Mrnun, J.B., Jn. (1948) Charting five, six, and seven variables on hypertetrahedralfaces.
Am. Minerotr. 33, 324-336.

--- (1949) Charting five and six variables on the bounding tetrahedra of hypertetra-
hedra. Am. Mineral,. 34,706_716.

Surnr, Cnenrrs (1919) An El,emmtary Treatise 0n Conic Secli.ons, by the Method.s oJ
C o o r d.inate G eo m etr y. Macmillan and Co., London, p. 341-37 7 .

SNronn, Vrnorr, ero C. H. Srssml (1914) AnoJltic Geometry oJ Space. Henry Holt and Co.,
New York, p. 1@-123.

WesurNctoN, H. S. (1917) Chemical analyses of igneous rocks. t/. S. Geotr. Surley ProJ.
Paper 99, 785.

Wnrtwontr, W. A. (1866) Tril,inear Coordinates, and, Other Method.s oJ Modern Anolytica)
Geometry oJ Tuo Dimensions.Deighton, Bell, and Co., Cambridge, England.

Yrres, R. C. (1961) Analytic Geometrl uitk Calculus. Prentice-Hall, Inc., Englewood
Clifis, N. J., p. 190 191.

Manuscri,pt receioed, Noaember 22, 1963; aecepteil Jol publicotion, December 31, 1963.


