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Assrnacr

The various methods of deriving crystai equiiibrium forms are reviewed. Crystal habit
and microcleavage are presented in terms of specific surface energy, PBC vectors and two-
dimensional nucleation. The influence of hemihedrism on the specific surface energy is
discussed. For compounds or elements having bonds of different strengths, the concept of
a critical bonding ratio is introduced, and its value shown to be readily determined. 

'l'he

role of adsorption and of departures from ideal surface structure is demonstrated.

IurnopucrroN

The idea that crystal habit is closely related to the internal structure of
the crystal was first expressed by A. Bravais, who emphasized the im-
portance of crystal planes of high reticular density. Along this l ine,
Donnay and Harker (1937) later demonstrated the influence of screw
axes and glide planes on crystal habit. Wells (1946) and Buerger (1947)
also dealt with this subject. The significance of the atomic array in deter-
mining crystal habit was then shown by Kossel (1928), Stranski (1928),
Hartman (1958), Kern et al. (1956) and Kleber (1937). Stranski and
others later estimated the influence of departures from the ideal surface
structure (Stranski and Honigmann, 1950) and of adsorption (Stranski,
1956; Kleber,1957; Hartman, 1959) on crystal morphology. There also
have been several attempts at correlating crystal habit with surface free
energy and its plot in spherical coordinates (Wulfi 's plot or 1'7 plot"
(Wulff, 1901 ; Yamada, 1924; Herring, 1950)). This approach appears de-
sirable to the authors since it permits generalizations and predictions to
be made with regard to the theoretical growth, or cleavage habit. It is
demonstrated herein that differences between experimental and derived
habits yield specific information with regard to the nature of adsorption,
surface lattice deformation, and the character of bonding, both in the
bulk and at the surface of crystals. The special role of microcleavage
habit (Wolff and Broder, 1959) is also discussed. A correlation of Wulff 's
plot, PBC (Periodic Bond Chain) vectors (Hartman and Perdok, 1955)
crystal habit, microcleavage and activation energy of two-dimensional
nucleation wil l be presented. In addition, the relation of Wulff 's plot to
Stranski's method (Stranski, 1928) of determining equil ibrium forms is
shown. The development of crystal habits differing from the theoretically
derived equil ibrium forms can be explained through the establishment of

I Present address: The Harshaw Chemical Company, Solid State Research Laboratory,
2240 Prospect Avenue, Cleveland 15, Ohio.
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PBC VECTOR 563

new PBC vestors; the latter result from atomic displacements (Stranski
and Honigmann, 1950; Wolfi and Broder, 1959; Wolff, 1962) in the sur-
face or through the adsorption of foreigh atoms.

The uti l ization of the PBC vector as introduced by Hartman and
Perdok (1955) greatly facil i tates the understanding of the equil ibrium
form of crystals and its derivation from the crystal structure. A periodic
bond chain in a crystal plane is an array of atoms or crystal building
blocks which are held together by bonds. In each aftay every atom, or
building block, is bonded more strongly to the crystal than the atom or
building block in the equil ibrium position on the crystal surfaEe; or, ex-
pressed in a dif ierent way, the detachment energy of each atom, or build-
ing block, is greater than the average or mean detachment energy of the
atoms or building blocks of the surface layer when they are detached from
the crystal one by one. In this way, the periodic bond chains are easily de-
termined for simple crystal structures. For complicated structures an
unambiguous and easy way for their determination is by the calculation
of Wulff 's surface energy plot as shown in this paper. The periodic bond
chains are identical to the directions of the "surface energy valleys" of
this plot. The PBC vectors denote the direction and magnitude of the full
translation distance of the periodic bond chains.

FonMur,A,B ol GrBBS AND WuLFF

Gibbs (1928) found that a crystal is in equil ibrium with its own vapor
phase when for constant volume, its total surface energy is a r-ninimum.

I o , A i :  o r A r *  o r A z l " ' o o A o :  m i n i m u m  ( 1 )

oi:specific free surface energy of the ith crystal plane.
Ai:area of the ith crystal plane.

Wulff (1901) showed that this statement is equivalent

Ot 62 6B Ca 6i
: constant

hr hz hB h" hi

where hi:central distance of the i ih crystal plane.
It is implicit in Gibbs' original formula (not given here) that a crystal

wil l assume the equil ibrium form only when it is of microscopic dimen-
sions. Polyhedral macroscopic crystals are, in all probabil ity, not equi-
l ibrium forms but growth forms. Whereas the boundary planes of the
former are determined by their specific surface free energies, the boundary
planes of the latter result from slow growth in the normal direction
which, in turn, is induced by the presence of a two-dimensional nuclea-
tion energy. According to Stranski and Kaishev, (1935) these planes are
the same as the planes that belong to the equil ibrium form. This does not

to the equation

(2)
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mean, however, that the growth form is identical with the equilibrium
form, since the relative sizes of the various planes usually difier in the two
forms. In a limited way, this consideration holds true also for imperfect
crystals which grow via screw dislocations. Their growth rate is largely
determined by the activation energy of the one-dimensional nucleation.

Pnactrcer- DBnrvertoN ol EeurLrBRruM FoRMS

A crystal equilibrium form may be derived in two ways:
1. The first method consists of varying the central distance of all

crystal planes until they are proportional to the specific surface free
energy (Wulff 's method) (Stranski, 1956). This construction follows
from eq. (2). In a first approximation, the specific surface free
energy may be replaced by the specific surface free energy at 0o K,
i.e., the specific surface energy.

2. In the second method, one removes from a crystal model all "build-
ing blocks" that are bonded less strongly than those in the semi-
crystalline position, i.e., growth position (Stranski, 1928). As an
example, should the evaporation probability of a "building block"
occupying a corner position be greater than that in a semicrystal-
line position, the corner "building block" will evaporate and leave
the position vacant. In a like manner, neighboring loosely bound
"building blocks" will evaporate and a new plane will appear. The
resulting form, the equilibrium form, will contain "building blocks"
whose evaporation probability is less than or equal to that of the
semicrystalline position.

The specific surface energy ai is defined as being half the energy per unit
area required to separate the crystal along the ith plane. This results from
the fact that two surfaces are created and only half the energy of separa-
tion per surface need to be considered. This is correct, however, only
when both surfaces are identical. For Van der Waals, metallic and co-
valent bonding where the interaction energy decreases with interatomic
distance; the separation energy increases with the number of atoms at
first, second or higher nearest neighbor distances which are separated
from their respective neighbors during the process. Consequentl/, o; will
be equal to half the sum of the products 2;N;E; of the number of different
neighbors (Nr, Nr, Na . . . etc.) involved in the separation process and
their energy of interaction (E1, E2, Er . . . etc.) per unit area of the ith
plane.

fn two dimensions, Wulff's construction is a polar diagram of the
specific surface energies of the various planes which belong to a particular
zone. (Fig.5 and 6). The crystal form which corresponds to the lowest
surface energy may be obtained by selecting the planes enclosing the
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smallest area. The respective planes are orthogonal to lines drawn from

the origin and intersect these lines at distances proportional to the specific

surface energy of the specific plane.
In a three-dimensional representation, the specific surface energies oi

of all planes are plotted in spherical coordinates (Fig. 1). Equations

for o1 may then be derived in terms of crystalllgraphic indices hkl.

Oncc these equations are determined for a sufficient number of planes,

the areas can be found in spherical space where the equations hold for all

planes. These areas are bounded by crystallographic zones of low surface

energy which form spherical polygons. Each of the areas has one maxi-

mum (o-u*) representing the antipole of a sphere with the pole passing

through the origin (Wulff's point, or center) of the crystal. The surface

energy diagram of the boundary zones, or "valleys," are intersections of

two such spheres. The intersections of "valleys" are known as "cusps."
Hence, t 'cusps," t 'valleys," and t 'maximatt in a Wulffts diagram corre-

spond respectively to "planesr" t 'edges," and t 'corners" in an equil ibrium

form (Fig.  1) .
For any type of bonding, such as nearest neighbor bonding, it can be

shown that the ratio 

oif o^u*: cos 6

where 6 is the angle between the ith plane vector and the maximum plane

vector. This is equivalent to: (See Figure 2)

i r ( J r -7 - " * ) : o  (3 )

or

oi(oi - o-o* cos (ir, i*'*)) : 0

with

7r : ,rrf + vr6'+ wi

and

7-,* :u-"*d*"**6 1w** i

and since

cos (ir,7-*) : cos (ir*,7-^*) : 
;=t::

substitution yields

7,*.7-"*
" r :  

- o r _

Defining

oi : ohkl
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Ftc. 1 A) surface free energy plot of a crystal of simple cubic structure in spherical co-
ordinates. only nearest neighbor interaction is taken into account. Each cusp corresponds
to an equilibrium plane (001); each valley connecting the cusps correspondingly represents
an edge. This edge is [100] and is the common boundary to two adjacent (001) planes. The
valleys are "complete," i,.e. they can be traced 360o from cusp to cusp around the plot
along one zone. A complete valley corresponds to a straight array of atoms. The equilibrium
form (001) is inscribed.

B) Surface free energy plot for a crystal of diamond structure in spherical coordinates.
only nearest neighbor interaction is taken into account. The cusps correspond to (111)
planes and the valleys connecting them correspond to 1011] edges which are common to
two neighboring (11 1) planes. The valleys are ,,incomplete,,, i.e. they cannot be traced 3600
around the plot. An incomplete valley corresponds to a zig-zag array. The equilibrium
form (111) is inscribed. The corresponding PBC vectors are given at the right.

(B)(A)
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MAX

u
Frc 2. Vector representation of surface energy. ?max:maximum point in Wulfi's plot'

7:surface energy of any plane.

and its respective vector in reciprocal space

i i * :  h i i . *  +f t iB*+r i t * ,

we then have

an*t : (t^^*h; * v-'*fti t w^**ti)/(h2b2c2 sin2 a | fuzs2az sin'90 * l2a2b2 sirrz 7

-l2ktbca2(cosB cos 7 - cos a) * 2lhcabz(cos7 cos o - cosp)

I 2hkzbc2(cosa cos p - cos ?))1/2. 
(9)

6max can be derived by simply summing all PBC vectors of the unit cell

which form an angle of less than 90o with any vector within a spherical

polygon. For example, [001]+t0101+t1001: [111] for the spherical tri-

angle h, k, t> 0 in simple cubic structure. This holds for structures having

linear atomic arrays. For structures having zig zag arrays, only so-called
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Fro. 3. Nos. 1-20 Three-dimensional drawings of the equilibrium forms in ciinographic
projection.

1 )  s . c ' asa resu l t o f  l s tNN in te rac t i onon l y .2 )  s . c .  l s t and2ndNNon l y .3 ) f . c . c .  1s t .
4) f 'c.c. lst and 2nd. 5) b.c.c. 1st. 6) b.c.c. 1st and 2nd. 7) diamond lst. g) diamond 1st and
2nd.9) B-sn ls t .  10) 0-Sn lst  and 2nd.  11) h.c.p.  ls t .  12) h.c.p.  1st  and 2nd.  13) wurtz i te
lst. 14) wurtzite 1st and 2nd. 15) Se, where E91lE,.16) Se,EB:\E". 17) Se, F,p)|E,.
18) As, EB<|Eo. 19) As, EB:+Ea.20) As, EB>$Eo. (s.c.-simple cubicl f.c.c.-face cen-
tered cubic; b.c.c'-body centered cubic; h.c.p.-hexagonal close-packing; NN-nearest
neighbor.)
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"effective" PBC vectors alone are added. For example, in diamond for
the spherical square h, h<1, d-u* is given by

2[011]  + 2tor t l  or  2[ rot ]  + 2[101]  :  [oo+]

In this case, the prospective vectors [110], [110], [110], and [110] are not
effective PBC vectors since after a separation parallel to these vectors,
every atom or molecule becomes separated from as many neighbors as
there are in the equil ibrium position; that is, from one atom or molecule
too many.

As a result, the following three conditions hold:1) Any plane which
truncates a corner of the equilibrium form contains atoms or molecules in
the equilibrium position. These may be attached or detached without any
activation energy of one- or two-dimensional nucleation " 1^0" f i.e. one- or
two-dimensional nucleation in this plane is not necessary. 2) Any plane
parallel to and truncating an edge of the equilibrium form is parallel to one
PBC vector and hence has atoms or molecules bonded to one neighbor
more than the atom or molecule in the equilibrium position. A one-dimen-
sional nucleation energy "Ar" is a requisite for the growth of such planesr.
3) A plane which is parallel to a plane of the equilibrium form is parallel to
at least two PBC vectors, and thus contains atoms or molecules that are
bound to at least two more neighbors than those atoms or molecules in
the equilibrium position. In this type of plane there exists a two-dimen-
sional nucleation energy t 'A2"; i.e,, these planes grow via two-dimen-
sional nucleation. This holds true mainly for perfect crystals. As a con-
sequence, there exists in crystal equilibrium forms and growth or solution
forms only flat Az planes of the type mentioned under 3), striated ,{1
planes of the type mentioned under 2), or roughened ,{6 planes as men-
tioned under 1). (These terms have been used by Honigmann (1959), and
the planes correspond to "K," "S" and "F" planes (kinked, stepped and
flat) of Burton and Cabrera (1949).)

It was mentioned earlier that the atoms or molecules in the corner posi-
tions of the equil ibrium form are attached to as many neighbors as those
in the equilibrium position. Consequently these same corner atoms or
molecules wiII be left untouched in Stranski's derivation of the equi-
Iibrium form.

The formulae for specific surface energy of the planes of some of the
more common structures are listed in Table I. The equilibrium forms
which result when only fi.rst nearest neighbor interaction is taken into ac-
count, or when interaction is considered of first-plus-second nearest
neighbors, have been drawn in Fig. 3 in three-dimensional perspective by
standard crystallographic techniques. Stereographic plots of the equi-

1 This result holds true for perfect and imperfect crystals (ideal and real crystals)

as well.
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t'

Frc. 4. Nos. 21-44. Stereograms of equilibrium forms, microcleavage patterns, and
thermal etch patterns. rn stereograms of equilibrium forms, heavy lines represent crystal
zones (or crystal edges) as a result of lst NN interaction only. Light lines correspond to
zones as a result of 2nd NN interaction only. Large filied circles represent cusps due to 1st
NN valleys intersecting each other. Small filled circles represent cusps due to 2nd NN
valleys intersecting each other; and large open circles represent cusps due to lst NN
valleys intersecting 2nd NN valleys.

Filled circles in all other stereograms represent planes with their degree of development
indicated by the size of the circles. Lines represent zones, and dashed lines are used only to

D'
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librium planes for all structures investigated are to be found in Fig' 4.
Figure 1 gives tlvo examples of three-dimensional Wulff's plots with their
corresponding PB C vectors.

Drscussrox oF WuLrF's Pr,ots, I lenrt, axo PBC Vrctons,
Mrcnocr-navAcE AND ActrvarroN Ewpncv oF NUcLEATToN

In evaluating Wulff's plots it is useful to correlate the crystallographic
zones to the corresponding strong bonding arrays or PBC vectors (Hart-

man and Perdok, 1955). These zones may be found by a microcleavage
(Wolff and Broder, 1959; Wolfi, 1962) or habit study. The three-dimen-
sional Wulfi's plots (Fig. 1) exhibit maxima, valleys and cusps. Where the

valleys (Kleber, 1959) include an angle of 360o (Fig. 1) the atoms lie

either along one straight array ([001] in s.c.) or are composed of double or

triple zig zag aftays (t0011 in rutile and marcasite structures, or [001] in
wurtzite and h.c.p., respectively).A.ty other zigzagafiay or PBC vector

oi this type results in a valley and includes an angle of less than 360".

This is also true for a PBC vector composed of two vectors of different

strengths (E,, Er), e.g.,in As and Se. In cases such as these, at some crit-
ical ratio of the strengths of the two vectors (Ez/ Fr:i for As andE2fEl
:I for Se), one type of valley disappears to be replaced by another type.

A very good approximation of the ratio of the bond strengths is arrived

at by comparing these theoretically derived habits with those observed on

natural, synthetic or microcleaved crystals. For example, the three forms

of this type are shown for As, Sb and Bi in Fig. 3, Nos. 18, 19 and 2O, re-

spectively, and for Se and Te in Fig. 3, No. 15 (Dana, 1920, 1951)'
There are certain cases where experimentally observed and theoreti-

cally calculated crystal forms are not identical. In this case, valleys in the

Wulff's plot of these crystals exist for the experimental form but do not

exist in the derived form and, in some cases, valleys do not exist for the

experimental form where they do exist for the derived form. These valleys

indicate the outline of the stereograms.
21) s.c. equilibrium form. 22) NaCl microcleavage. 23) t.c.c. equilibrium form' 24) b.c.c'

equilibrium form. 25) diamond equilibrium form. 26) diamond microcleavage. 27) HgTe

microcleavage. 28) AuGaz microcleavage. 29) InSb microcleavage. 30) a-Sn microcleav-

age.31) B- Sn equilibrium form.32) h.c.p. equilibrium form.33) wurtzite equilibrium form'

34) Cds microcleavage. 35) Se, EB<| Eo equilibrium form. 36) Se, Ep:1 Eo, equilibrium

form. 37) Se, EB)f Eo, equilibrium form. 38) Te thermally etched at 350o for three hours.

39) Te microcleavage. 40) HgS (cinnabar) microcleavage. 41) As, EB($ E", equilibrium

form. 42) As, Ep: $ Eo equilibrium form. 43) As, Bp)] Eo equilibrium form. 44) Sb therm-

ally etched at 600o C. for six hours. Attention is called to the zones (lines) connecting two

planes (filled circles) which corespond to the edge joining the two planes. The lines also

correspond to PBC vectors. Light lines are not shown wherever heavy lines appear.
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Frc. 5. A two-dimensional representation of the Iz or Br2 type structure in the b or
(010) plane. The direction follows c and a as indicated. Strong bonds are represented as
heavy lines; weak bonds are represented as light lines. The bonds above and below the
plane are not considered. They correspond to close-packing. It should be noted that the
straight vector AB represents the least energetic mode of bond separation when the
heavily drawn bonds are as strong as the light bonds. In this case, a square results as an
equilibrium form in two dimensions. The identical vectors Vor and Vro then prevail. When
the heavily drawn bonds are more than three times stronger than the weak bonds, the
two vectors Vu and Vra then prevail. It is obvious that a vector of the type Vro in the direc-
tion of AB will circumvent the strong bond and cut the three neighboring weak bonds
which, together, are weaker than the strong bond Thus, in this case V1 and Vr: holds for
R<+. R represents the bond strength ratio F,BfF.o. For R{} (T3) and (11) prevail; for
1>R>+ (T3),  (11),  (01),  and (10) are observedl  and for  R:1 there are only (01) and (10)

outiines In this discussion, bondings above and below the piane are not considered.
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Frc. 6. As type structure; (10T1) plane. The bonds above and below the plane of pro-

jection are not considered. Two types of bonds are present, strong bonds (heavy lines)

and weak bonds (light lines). Two typical types of cuts, parallel to (T1), AB or A'B'

are possible. AB cuts only strong bonds, when EB:E', i'c' the strengths of the bonds

are equal, it would make no difterence cutting BC, AB or A'B'' The resulting habit in this

case is a square. For EB(E. a truncation of type (T1) appears.

(and their associated PBC vectors) result from the absorption of foreign

atoms onto the crystal surface andf or from the displacement of surface

atoms into energetically more favorable positions. Such changes, although

quite negligible for close packed metals and Van der Waals type crystals,

are rather common in covalent type crystals.
It is possible from a habit study to determine fairly precisely the posi-

tions of the displaced and/or absorbed atoms. The diamond structure,

for instance, presents a good example. In this structure the surface atoms
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lack either one or two neighbor atoms. This results in "dangling" bonds.
For the planes l> h> h, the number of single "dangling" bonds (denoted
by s) per unit area as a function ol h, k and I is 4h a"nd that of the double

"dangling" bonds (denoted by d) is -4h*41. Bivalent foreign atoms ab-
sorbing to the surface will generally bond only to surface atoms with two
"dangling" bonds. Upon absorption the surface energy per bond E" (re-
ferring now to what were previously "dangling" bonds) will be lowered to
a new value Ea. This is equivalent 1e a: (E"-Ea)/E" where a is the rela-
tive amount by which the surface energy per bond was lowered. The
specific surface energy in this case wil l be given by ouor:sE"*dEa per
planar cell area or by ( fahl (l - a)l lF,") / ao2(h2l k2ll,2)'. For small values
of a(a(f) (001) appears in addition to (111) and two PBC vectors, [110]
and [110], (both associated with the appearance of (001)) come into
existence.

Cnrrrcer BoNrrNc Rerro

An investigation has been made of crystal habit of the elements Se, Te,
Po, Sn, As, Sb, Bi, Br2 and fz. AII exhibit a bonding which could be de-
scribed as mixed sp3 and p3 bonding. The atoms of Vb and Vfb elements
are in a nearly octahedral arrangement, surrounded respectively by
3*3 and 2*4 nearest and next-nearest neighbors. fn simple cubic Po,
which has a 6-fold coordination, there is no difierence between nearest
and next-nearest neighbors. In arsenic type structures the theoretical
habit is shown in Fig. 3, Nos. 18, 19, 20. Here, the interaction between
next-nearest neighbors is less than ], equal to $ and greater than $, re-
spectively, of the interaction between nearest neighbors. In this case the
habit changes from tabular to pseudo-cubic (For comparison with natural
habit, see Dana, 1951). The theoretical habit for the selenium type struc-
ture is given in Nos. 15, 16, and 17 of Fig. 3. The interaction between
next-nearest neighbors is less than ], equal to f, and greater than I of
that between nearest neighbors, respectively. As a result, the habit
changes from hexagonal prismatic to pseudocubic.

To illustrate this principle of critical bonding ratio, consider a crystal
of only two dimensions as shown in Fig.5. It is seen that (11) and (13)
are the l ines (two-dimensional "planes") with the lowest "specific outl ine
{ree energy," i.e. the two dimensional "specific surface free energy."
(Wulff's two-dimensional plots and crystals are enclosed.) The crystal
habit corresponding to the outermost "habit" outline is observed only
when the bond energy between next-nearest neighbors Ez is less than or
equal to one-third the bond energy between nearest neighbors E1. When
the ratio Ez/Er is greater than the crit ical value ], it is obvious that the
habit changes. In Case 1 with Er/Et(E, only the PBC vectors V11 and
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Vrr  ex is t  (outermost  "habi t "  out l ine) ; in  Case 2,  wi th 1)Ez/Er) t ,  the

two equivalent vectors Vor and Vro also exist (intermediate "habit" out-

Iine). In Case 3, with E2/Er:1, only Vor and Vro exist (innermost square

"habit" outl ine). In each case, the following habits are derived:

Case 1) {11} and {13f are present. Vectors V11 and Vrs are parallel to

the corresponding outline of the two-dimensional crystal'
Case 2)  {11} ,  {13}  and {01}  are present .  Wi th increasing Ez/Er ,  t01}

increases in size as compared to { 11 } and { 13 } .
Case 3)  The last  two out l ines d isappear when E1:Ez (or  E2/Er: l )

and only {01} is found. The symmetry obtainqd is now quadratic and

shows (Fig. 5) the cross section (100) of a crystal with simple cubic struc-

ture.
In this connection it should be noted that the crystal illustrated in Fig'

5 can be cut in two ways between A and B. Either six bonds between

next-nearest neighbors (vectors Vz) are cut or three bonds between next-

nearest neighbors and one bond (vector Vr) between nearest neighbors

are cut. If the former is true (Ez/Et ($), the strong Vr bond is cir-

cumvented by cutting the three weak Vs bonds next to Vr. Should the

Iatter be true,l lE2fEr) t.Then less energy is expended when Vr is cut in

the process. Consequently, Vro is established as the new PBC vector.

There are two more examples, enargite and chalcopyrite, which may

be used to demonstrate the estimation of the bond strength ratio which

is obtained by comparing habits which have been theoretically and

experimentally derived. The experimentally determined microcleavage

habit is used in these examples. The advantage of this method of de-

termining habit is that a unique form result3, that is, there is only one

such habit for each material (Wolfi and Broder, 1960). While there is a

disadvantage to this method in the neglect of hemihedral properties,

conclusions drawn concerning bond strengths within the bulk of the

crystal are unaffected.
For enargite a bond ratio estimate of three between the As-S bond

and the Cu-S bond results, giving good agreement between the

theoretical and microcleavage habit. For chalcopyrite the bond strength

ratio between Fe-S and Cu-S (or vice versa) is at least two (or |).
For symmetry reasons it is not possible to decide which bond is stronger.

DrscussroN oF HEMTHEDRTSM

Most experimental or theoretical determinations of oDl,, consider only

the energy of separation parallel to the plane (hkl).What is found is the

sum of surlace energies of the two new planes' The specific surface

energy, however, of each plane remains obscure. The usual procedure is

to divide the total surface energy by two so as to assign a surface energy



582 G. A, WOLFF AND J, G. GUALTIERI

to each plane; but, as previously mentioned, this holds only when the
new planes possess identical structure. That this is, indeed, true may be
drawn from conclusions made from habit studies. For example, the
tetrahedral habit of sphalerite (ZnS) shows the negative (111) plane to
be more developed than its positive (111) counterpart. This indicates
that the negative (111) plane is the more stable plane. It, therefore, in
accordance with Wulfi 's law has a lower specific surface energy.

The difierences in the two planes can be described in terms of the
differences in rearrangement of atoms, chemical bonds, and bonding
orbitals of the atoms in their surfaces. For example, in sphalerite the two
new planes would have z inc atoms on (111)  and sul fur  atoms on (111) .
Since in the bulk sulfur has ca. 7 electrons and zinc ca. 1 (Wolff and
Broder, 1959), it is very probable that the sulfur (111) electronic con-
figuration would be more stable by virtue of its extra electrons with re-
spect to tetrahedral bonding. The conclusion arrived at is that for
materials lacking a center of symmetry the "anionic" plane is more
stable. Habit studies, in confirmation of this, indicate a more highly
developed "anionic" plane. A difference in the two pianes appears also
in the III-V compounds and in etching experiments.

Assuming a surface energy assigned to the different surface atoms as
denoted by (A)", (A)u, (C)", and (C)a for anionic and cationic single and
double "dangling" bonds, then the ahil formu.la for sphalerite structure
materials is

"o,,:4(oL-?(e)a 
+ (c)J +_zke)" - (c)"le + 4(A)"1

a o 2 ( h 2 l k 2 + 1 2 ) r t 2

When  (A ) " :  (A )u= (A ) ,  (C ) " : (C ) ,  and  (C ) /< "> :p>3 ,

l z ( B - 1 ) ( h - k ) + 4 l l ( A )ohk t : -  
ao r7 t r+ezaFy

and a tetrahedron with only tetrahedral "anionic" planes appears. For
many materials of this structure type (GaP, ZnS and others) (111),
(111) and (001) are observed. This can easily be explained when
(A)u/(A)"<1. This is i l lustrated in Fig. 7. In this way, therefore, it is
possible to investigate the bonding structure of the surface atoms.

Ioxrc Cnysrars

Most arguments which have been set forth thus far may correctly be
applied only to elements, i.e., to materials with Van der Waals, metall ic
or covalent bonding. In this case, the bonding and electron distribution
between the atoms is symmetrical and the interaction energy between
the atoms falls off rapidly with interatomic distance. As a rule, however,
compounds differ from elements in that the electron distribution of the
bonding is asymmetrical. This is due to the partial ionic character of the
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Frc. 7. Stereograms representing equilibrium forms of crystals having sphaierite struc-

ture. A) a negative tetrahedron (111) exists whenonf art:9)3; B) a negative tetrahedron

(1T1) with minor development of the positive tetrahedron (111) for 3>p>1. C) major

(1f1), minor (111), (001); not shown here. This form is quite common and appears when

the atoms with two "dangling" bonds move to more favorable surface positions or re-

arrange their electronic structure

bonding in which there is an attractive force exerted by first nearest and

other neighbor atoms as well as a repulsive force exerted by sti l l  other
neighbors.

For crystals with Van der Waals, metall ic and covalent bonding the
interaction energy between atoms decreases with r-" where n:6 and r

is the interatomic distance. For electrostatic bonding, on the other hand,
n:1. In this type of bonding it appears that the interaction energy of
more distant atoms should sti l l  be considered while, for all practical
purposes, in the former type only up to next-nearest neighbors need to
be considered. This renders the calculation of the surface energy and the
equilibrium form for ionic crystals extremely difficult by the method
outlined here. Sufficient experimental agreement has been found, how-

ever, between the calculated equil ibrium forms and observed micro-
cleavage forms to justify, in a first approximation, the validity and use-
fullness of the principles cited herein. This agreement is probably due
to the partial ionic character of most compounds and also probably to
the screening effect of nearer ions on the interaction on more distant ions.

To take into account the ionic nature of compounds, the specific surface
rree energv mav be "':i:T:T:iJ.';::T".': l,t,ll" "o"
where a, b, and c are constants and I, II, III, IV refer to 1st, 2nd, 3rd,
and 4th nearest neighbor interactions.
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