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PBC VECTOR, CRITICAL BOND ENERGY RATIO AND
CRYSTAL EQUILIBRIUM FORM

G. A. Worrr! aND J. G. GuaLrTikERry, U. S. Army Signal Research
and Development Agency Fort Monmouth, New Jersey.

ABSTRACT

The various methods of deriving crystal equilibrium forms are reviewed. Crystal habit
and microcleavage are presented in terms of specific surface energy, PBC vectors and two-
dimensional nucleation. The influence of hemihedrism on the specific surface energy is
discussed. For compounds or elements having bonds of different strengths, the concept of
a critical bonding ratio is introduced, and its value shown to be readily determined. The
role of adsorption and of departures from ideal surface structure is demonstrated.

INTRODUCTION

The idea that crystal habit is closely related to the internal structure of
the crystal was first expressed by A. Bravais, who emphasized the im-
portance of crystal planes of high reticular density. Along this line,
Donnay and Harker (1937) later demonstrated the influence of screw
axes and glide planes on crystal habit. Wells (1946) and Buerger (1947)
also dealt with this subject. The significance of the atomic array in deter-
mining crystal habit was then shown by Kossel (1928), Stranski (1928),
Hartman (1938), Kern et al. (1956) and Kleber (1937). Stranski and
others later estimated the influence of departures from the ideal surface
structure (Stranski and Honigmann, 1950) and of adsorption (Stranski,
1956; Kleber, 1957; Hartman, 1959) on crystal morphology. There also
have been several attempts at correlating crystal habit with surface free
energy and its plot in spherical coordinates (Wulff’s plot or “y plot”
(Wulff, 1901; Yamada, 1924; Herring, 1950)). This approach appears de-
sirable to the authors since it permits generalizations and predictions to
be made with regard to the theoretical growth, or cleavage habit. It is
demonstrated herein that differences between experimental and derived
habits yield specific information with regard to the nature of adsorption,
surface lattice deformation, and the character of bonding, both in the
bulk and at the surface of crystals. The special role of microcleavage
habit (Wolff and Broder, 1959) is also discussed. A correlation of Wulff’s
plot, PBC (Periodic Bond Chain) vectors (Hartman and Perdok, 1955)
crystal habit, microcleavage and activation energy of two-dimensional
nucleation will be presented. In addition, the relation of Wulff’s plot to
Stranski’s method (Stranski, 1928) of determining equilibrium forms is
shown. The development of crystal habits differing from the theoretically
derived equilibrium forms can be explained through the establishment of
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new PBC vestors; the latter result from atomic displacements (Stranski
and Honigmann, 1950; Wolff and Broder, 1959; Wolff, 1962) in the sur-
face or through the adsorption of foreigh atoms.

The utilization of the PBC vector as introduced by Hartman and
Perdok (1955) greatly facilitates the understanding of the equilibrium
form of crystals and its derivation from the crystal structure. A periodic
bond chain in a crystal plane is an array of atoms or crystal building
blocks which are held together by bonds. In each array every atom, or
building block, is bonded more strongly to the crystal than the atom or
building block in the equilibrium position on the crystal surface; or, ex-
pressed in a different way, the detachment energy of each atom, or build-
ing block, is greater than the average or mean detachment energy of the
atoms or building blocks of the surface layer when they are detached from
the crystal one by one. In this way, the periodic bond chains are easily de-
termined for simple crystal structures. For complicated structures an
unambiguous and easy way for their determination is by the calculation
of Wulll’s surface energy plot as shown in this paper. The periodic bond
chains are identical to the directions of the “surface energy valleys” of
this plot. The PBC vectors denote the direction and magnitude of the full
translation distance of the periodic bond chains.

ForMULAE OF GIBBS AND WULFF

Gibbs (1928) found that a crystal is in equilibrium with its own vapor
phase when for constant volume, its total surface energy is a minimum.

2 A = a1A1 + 3Ae + - - - 0pAn = minimum 1)

1

oi=specific free surface energy of the ith crystal plane.
A;=area of the ith crystal plane.

Wulff (1901) showed that this statement is equivalent to the equation

;—1=;—Z=%§---;—:=%:=constant (2)
where h;= central distance of the i*» crystal plane.

It is implicit in Gibbs’ original formula (not given here) that a crystal
will assume the equilibrium form only when it is of microscopic dimen-
sions. Polyhedral macroscopic crystals are, in all probability, not equi-
librium forms but growth forms. Whereas the boundary planes of the
former are determined by their specific surface free energies, the boundary
planes of the latter result from slow growth in the normal direction
which, in turn, is induced by the presence of a two-dimensional nuclea-
tion energy. According to Stranski and Kaishev, (1935) these planes are
the same as the planes that belong to the equilibrium form. This does not
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mean, however, that the growth form is identical with the equilibrium
form, since the relative sizes of the various planes usually differ in the two
forms. In a limited way, this consideration holds true also for imperfect
crystals which grow via screw dislocations. Their growth rate is largely
determined by the activation energy of the one-dimensional nucleation.

Pracrical DERIVATION OF EQUILIBRIUM FORMS

A crystal equilibrium form may be derived in two ways:

1. The first method consists of varying the central distance of all
crystal planes until they are proportional to the specific surface free
energy (Wulff’s method) (Stranski, 1956). This construction follows
from eq. (2). In a first approximation, the specific surface free
energy may be replaced by the specific surface free energy at 0° K,
i.e., the specific surface energy.

2. In the second method, one removes from a crystal model all “build-
ing blocks” that are bonded less strongly than those in the semi-
crystalline position, i.e., growth position (Stranski, 1928). As an
example, should the evaporation probability of a “building block”
occupying a corner position be greater than that in a semicrystal-
line position, the corner “building block’ will evaporate and leave
the position vacant. In a like manner, neighboring loosely bound
“building blocks” will evaporate and a new plane will appear. The
resulting form, the equilibrium form, will contain “building blocks”’
whose evaporation probability is less than or equal to that of the
semicrystalline position.

The specific surface energy o; is defined as being half the energy per unit
area required to separate the crystal along the i** plane. This results from
the fact that two surfaces are created and only half the energy of separa-
tion per surface need to be considered. This is correct, however, only
when both surfaces are identical. For Van der Waals, metallic and co-
valent bonding where the interaction energy decreases with interatomic
distance; the separation energy increases with the number of atoms at
first, second or higher nearest neighbor distances which are separated
from their respective neighbors during the process. Consequently, o; will
be equal to half the sum of the products Z;N;E; of the number of different

neighbors (N;, Ny, N3 . . . etc.) involved in the separation process and
their energy of interaction (Ei, Ez, E; . . . etc.) per unit area of the i**
plane.

In two dimensions, Wulff’s construction is a polar diagram of the
specific surface energies of the various planes which belong to a particular
zone. (Fig. 5 and 6). The crystal form which corresponds to the lowest
surface energy may be obtained by selecting the planes enclosing the
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smallest area. The respective planes are orthogonal to lines drawn from
the origin and intersect these lines at distances proportional to the specific
surface energy of the specific plane.

In a three-dimensional representation, the specific surface energies o;
of all planes are plotted in spherical coordinates (Fig. 1). Equations
for ¢; may then be derived in terms of crystalligraphic indices hkl.
Once these equations are determined for a sufficient number of planes,
the areas can be found in spherical space where the equations hold for all
planes. These areas are bounded by crystallographic zones of low surface
energy which form spherical polygons. Each of the areas has one maxi-
mum (omax) representing the antipole of a sphere with the pole passing
through the origin (Wulff’s point, or center) of the crystal. The surface
energy diagram of the boundary zones, or “‘valleys,” are intersections of
two such spheres. The intersections of “valleys’ are known as “cusps.”
Hence, “cusps,” “valleys,” and “maxima’” in a Wulff’s diagram corre-
spond respectively to “planes,” “edges,” and “corners” in an equilibrium
form (Fig. 1).

For any type of bonding, such as nearest neighbor bonding, it can be
shown that the ratio

01/0max = COS &

where § is the angle between the i** plane vector and the maximum plane
vector. This is equivalent to: (See Figure 2)

71(6i — Omax) = 0 3
or
0i(0i — Gmax €08 (T4, Tmax)) = 0 4)
with
i = wia + vib + wic (5)
and
Tmax = Umaxd - VinaxD + WinaxC (0)
and since
08 (75, Tmax) = €08 (01%, Omax) = ;max.;i—:' 0))
Tmax "0
substitution yields
gi = LnC" (8)

oi*

Defining

Oi = Ohkl
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(A) (B)

Fic. 1 A) Surface free energy plot of a crystal of simple cubic structure in spherical co-
ordinates. Only nearest neighbor interaction is taken into account. Each cusp corresponds
to an equilibrium plane (001); each valley connecting the cusps correspondingly represents
an edge. This edge is [100] and is the common boundary to two adjacent (001) planes. The
valleys are “‘complete,” i.e. they can be traced 360° from cusp to cusp around the plot
along one zone. A complete valley corresponds to a straight array of atoms. The equilibrium
form (001) is inscribed.

B) Surface free energy plot for a crystal of diamond structure in spherical coordinates.
Only nearest neighbor interaction is taken into account. The cusps correspond to (111)
planes and the valleys connecting them correspond to [011] edges which are common to
two neighboring (111) planes. The valleys are “incomplete,” 7.e. they cannot be traced 360°
around the plot. An incomplete valley corresponds to a zig-zag array. The equilibrium
form (111) is inscribed. The corresponding PBC vectors are given at the right.
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a

u

Fic. 2. Vector representation of surface energy. ¢max=maximum point in Wulff’s plot.
¢=surface energy of any plane.

and its respective vector in reciprocal space
o = ha* + kb* + Iict,
we then have
onkt = (Umaxhi + Vmaxki + Wmaxli) /(B2b%c? sin? o + k%c?a? sin? 8 + 12a2b? sin? v
+2kIbca(cos B cos v — cos &) + 2lhcab?(cos v cos a — cos )
+ 2hkabc?(cos o cos B — cos 7)) V2. {9

max can be derived by simply summing all PBC vectors of the unit cell
which form an angle of less than 90° with any vector within a spherical
polygon. For example, [001]4-[010]4-[100]=[111] for the spherical tri-
angle %, k, 1> 0 in simple cubic structure. This holds for structures having
linear atomic arrays. For structures having zig zag arrays, only so-called
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F1c6. 3. Nos. 1-20 Three-dimensional drawings of the equilibrium forms in clinographic
projection.

1) s.c. as a result of 1st NN interaction only. 2) s.c. 1st and 2nd NN only. 3) f.c.c. 1st.
4) f.c.c. Ist and 2nd. 5) b.c.c. 1st. 6) b.c.c. 1st and 2nd. 7) diamond 1st. 8) diamond 1st and
2nd. 9) 8-Sn 1st. 10) B-Sn 1st and 2nd. 11) h.c.p. Ist. 12) h.c.p. 1st and 2nd. 13) wurtzite
Ist. 14) wurtzite 1st and 2nd. 15) Se, where Fg<3Ey.16) Se, Eg=3%E,. 17) Se, Eg>3E,.
18) As, Eg<iE.. 19) As, Eg=1E,. 20) As, Eg>3E,. (s.c.—simple cubic; f.c.c.—face cen-
tered cubic; b.c.c.—body centered cubic; h.c.p.—hexagonal close-packing; NN—nearest
neighbor.)
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“effective” PBC vectors alone are added. For example, in diamond for
the spherical square %, £ <1, o1max is given by

2[011] 4+ 21011] or 2[T01] + 2[101] = [004]

In this case, the prospective vectors [110], [110], [110], and [110] are not
effective PBC vectors since after a separation parallel to these vectors,
every atom or molecule becomes separated from as many neighbors as
there are in the equilibrium position; that is, from one atom or molecule
too many.

As a result, the following three conditions hold: 1) Any plane which
truncates a corner of the equilibrium form contains atoms or molecules in
the equilibrium position. These may be attached or detached without any
activation energy of one- or two-dimensional nucleation ““A¢’; i.e. one- or
two-dimensional nucleation in this plane is not necessary. 2) Any plane
parallel to and truncating an edge of the equilibrium form is parallel to one
PBC vector and hence has atoms or molecules bonded to one neighbor
more than the atom or molecule in the equilibrium position. A one-dimen-
sional nucleation energy ““A;”’ is a requisite for the growth of such planes!.
3) A plane which is parallel to a plane of the equilibrium form is parallel to
at least two PBC vectors, and thus contains atoms or molecules that are
bound to at least two more neighbors than those atoms or molecules in
the equilibrium position. In this type of plane there exists a two-dimen-
sional nucleation energy “A,’”’; i.e., these planes grow via two-dimen-
sional nucleation. This holds true mainly for perfect crystals. As a con-
sequence, there exists in crystal equilibrium forms and growth or solution
forms only flat A, planes of the type mentioned under 3), striated A;
planes of the type mentioned under 2), or roughened A, planes as men-
tioned under 1). (These terms have been used by Honigmann (1959), and
the planes correspond to “K,” “S’” and “F” planes (kinked, stepped and
flat) of Burton and Cabrera (1949).)

It was mentioned earlier that the atoms or molecules in the corner posi-
tions of the equilibrium form are attached to as many neighbors as those
in the equilibrium position. Consequently these same corner atoms or
molecules will be left untouched in Stranski’s derivation of the equi-
librium form.

The formulae for specific surface energy of the planes of some of the
more common structures are listed in Table I. The equilibrium forms
which result when only first nearest neighbor interaction is taken into ac-
count, or when interaction is considered of first-plus-second nearest
neighbors, have been drawn in Fig. 3 in three-dimensional perspective by
standard crystallographic techniques. Stereographic plots of the equi-

i This result holds true for perfect and imperfect crystals (ideal and real crystals)
as well.
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Fie. 4. Nos. 21-44. Stereograms of equilibrium forms, microcleavage patterns, and
thermal etch patterns. In stereograms of equilibrium forms, heavy lines represent crystal
zones (or crystal edges) as a result of 1st NN interaction only. Light lines correspond to
zones as a result of 2nd NN interaction only. Large filled circles represent cusps due to 1st
NN valleys intersecting each other. Small filled circles represent cusps due to 2nd NN
valleys intersecting each other; and large open circles represent cusps due to I1st NN
valleys intersecting 2nd NN valleys.

Filled circles in all other stereograms represent planes with their degree of development
indicated by the size of the circles. Lines represent zones, and dashed lines are used only to
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librium planes for all structures investigated are to be found in Fig. 4.
Figure 1 gives two examples of three-dimensional Wulff’s plots with their
corresponding PBC vectors.

Discussion oF Wurrr’s ProTs, HaBit, AND PBC VECTORS,
MICROCLEAVAGE AND ACTIVATION ENERGY OF NUCLEATION

In evaluating Wulff’s plots it is useful to correlate the crystallographic
zones to the corresponding strong bonding arrays or PBC vectors (Hart-
man and Perdok, 1955). These zones may be found by a microcleavage
(Wolff and Broder, 1959; Wolff, 1962) or habit study. The three-dimen-
sional Wulff’s plots (Fig. 1) exhibit maxima, valleys and cusps. Where the
valleys (Kleber, 1959) include an angle of 360° (Fig. 1) the atoms lie
either along one straight array ([001] in s.c.) or are composed of double or
triple zig zag arrays ([001] in rutile and marcasite structures, or [001] in
wurtzite and h.c.p., respectively). Any other zig zag array or PBC vector
of this type results in a valley and includes an angle of less than 360°.
This is also true for a PBC vector composed of two vectors of different
strengths (E;, Es), e.g., in As and Se. In cases such as these, at some crit-
ical ratio of the strengths of the two vectors (Eo/ E1=7} for As and Ey/E,
=1 for Se), one type of valley disappears to be replaced by another type.
A very good approximation of the ratio of the bond strengths is arrived
at by comparing these theoretically derived habits with those observed on
natural, synthetic or microcleaved crystals. For example, the three forms
of this type are shown for As, Sb and Bi in Fig. 3, Nos. 18, 19 and 20, re-
spectively, and for Se and Te in Fig. 3, No. 15 (Dana, 1920, 1951).

There are certain cases where experimentally observed and theoreti-
cally calculated crystal forms are not identical. In this case, valleys in the
Wulff’s plot of these crystals exist for the experimental form but do not
exist in the derived form and, in some cases, valleys do not exist for the
experimental form where they do exist for the derived form. These valleys

indicate the outline of the stereograms.

21) s.c. equilibrium form. 22) NaCl microcleavage. 23) f.c.c. equilibrium form. 24) b.c.c.
equilibrium form. 25) diamond equilibrium form. 26) diamond microcleavage. 27) HgTe
microcleavage. 28) AuGa, microcleavage. 29) InSb microcleavage. 30) o —Sn microcleav-
age. 31) 8— Sn equilibrium form. 32) h.c.p. equilibrium form. 33) wurtzite equilibrium form.
34) Cds microcleavage. 35) Se, Eg<3} E, equilibrium form. 36) Se, Eg=3 Eq, equilibrium
form. 37) Se, Eg>}% E,, equilibrium form. 38) Te thermally etched at 350° for three hours.
39) Te microcleavage. 40) HgS (cinnabar) microcleavage. 41) As, Eg<} Eq, equilibrium
form. 42) As, Eg=1 E, equilibrium form. 43) As, Eg>} E, equilibrium form. 44) Sb therm-
ally etched at 600° C. for six hours. Attention is called to the zones (lines) connecting two
planes (filled circles) which correspond to the edge joining the two planes. The lines also
correspond to PBC vectors. Light lines are not shown wherever heavy lines appear.
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F16. 5. A two-dimensional representation of the I, or Bry type structure in the b or
(010) plane. The direction follows c and a as indicated. Strong bonds are represented as
heavy lines; weak bonds are represented as light lines. The bonds above and below the
plane are not considered. They correspond to close-packing. It should be noted that the
straight vector AB represents the least energetic mode of bond separation when the
heavily drawn bonds are as strong as the light bonds. In this case, a square results as an
equilibrium form in two dimensions. The identical vectors Vo and Vio then prevail. When
the heavily drawn bonds are more than three times stronger than the weak bonds, the
two vectors Vi and Vi then prevail. It is obvious that a vector of the type Vioin the direc-
tion of AB will circumvent the strong bond and cut the three neighboring weak bonds
which, together, are weaker than the strong bond. Thus, in this case Vi and Vi3 holds for
R <3. R represents the bond strength ratio Eg/Eq. For R<} (I3) and (11) prevail; for
1>R>1% (13), (11), (01), and (10) are observed; and for R=1 there are only (01) and (10)
outlines, In this discussion, bondings ahove and below the plane are not considered.
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F16. 6. As-type structure; (1011) plane. The bonds above and below the plane of pro-
jection are not considered. Two types of bonds are present, strong bonds (heavy lines)
and weak bonds (light lines). Two typical types of cuts, parallel to (I1), AB or A'B’
are possible. AB cuts only strong honds, When Eg=Eq, i.c. the strengths of the bonds
are equal, it would make no difference cutting BC, AB or A’B’. The resulting habit in this
case is a square. For Eg<E, a truncation of type (I1) appears.

(and their associated PBC vectors) result from the absorption of foreign
atoms onto the crystal surface and/or from the displacement of surface
atoms into energetically more favorable positions. Such changes, although
quite negligible for close packed metals and Van der Waals type crystals,
are rather common in covalent type crystals.

1t is possible from a habit study to determine fairly precisely the posi-
tions of the displaced and/or absorbed atoms. The diamond structure,
for instance, presents a good example. In this structure the surface atoms
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lack either one or two neighbor atoms. This results in ‘““dangling”’ bonds.
For the planes [> 4>k, the number of single “dangling” bonds (denoted
by s) per unit area as a function of %, # and [/ is 4% and that of the double
“dangling” bonds (denoted by d) is —4%+4/. Bivalent foreign atoms ab-
sorbing to the surface will generally bond only to surface atoms with two
‘“dangling” bonds. Upon absorption the surface energy per bond E, (re-
ferring now to what were previously “dangling” bonds) will be lowered to
a new value Eq. This is equivalent to a= (Es— Eq4)/Es where « is the rela-
tive amount by which the surface energy per bond was lowered. The
specific surface energy in this case will be given by o =sE,+dEq per
planar cell area or by (4[{ak+(1—a)l|E,)/ac(h2+k*+1)*. For small values
of a(a< %) (001) appears in addition to (111) and two PBC vectors, [110]
and [110], (both associated with the appearance of (001)) come into
existence.

CriTicalL BoNDING RaTIO

An investigation has been made of crystal habit of the elements Se, Te,
Po, Sn, As, Sb, Bi, Br; and I.. All exhibit a bonding which could be de-
scribed as mixed sp® and p® bonding. The atoms of Vb and VIb elements
are in a nearly octahedral arrangement, surrounded respectively by
34-3 and 244 nearest and next-nearest neighbors. In simple cubic Po,
which has a 6-fold coordination, there is no difference between nearest
and next-nearest neighbors. In arsenic type structures the theoretical
habit is shown in Fig. 3, Nos. 18, 19, 20. Here, the interaction between
next-nearest neighbors is less than %, equal to % and greater than §, re-
spectively, of the interaction between nearest neighbors. In this case the
habit changes from tabular to pseudo-cubic (For comparison with natural
habit, see Dana, 1951). The theoretical habit for the selenium type struc-
ture is given in Nos. 15, 16, and 17 of Fig. 3. The interaction between
next-nearest neighbors is less than %, equal to %, and greater than % of
that between nearest neighbors, respectively. As a result, the habit
changes from hexagonal prismatic to pseudocubic.

To illustrate this principle of critical bonding ratio, consider a crystal
of only two dimensions as shown in Fig. 5. It is seen that (11) and (13)
are the lines (two-dimensional “planes’) with the lowest ““specific outline
free energy,” i.e. the two dimensional “specific surface free energy.”
(Wulff’s two-dimensional plots and crystals are enclosed.) The crystal
habit corresponding to the outermost ‘“‘habit” outline is observed only
when the bond energy between next-nearest neighbors E, is less than or
equal to one-third the bond energy between nearest neighbors E;. When
the ratio Es/E; is greater than the critical value 3, it is obvious that the
habit changes. In Case 1 with E,/E;<%, only the PBC vectors V7, and
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Vi1; exist (outermost “habit” outline); in Case 2, with 1>E;/E;1>3, the
two equivalent vectors Vi and Vo also exist (intermediate “habit” out-
line). In Case 3, with E;/E;=1, only Vo1 and Vy, exist (innermost square
“habit” outline). In each case, the following habits are derived:

Case 1) {11} and {13} are present. Vectors Vi; and V15 are parallel to
the corresponding outline of the two-dimensional crystal.

Case 2) {11}, {13} and {01} are present. With increasing Eo/E,, {01}
increases in size as compared to {11} and {13}.

Case 3) The last two outlines disappear when E;=E; (or E;/E,=1)
and only {01} is found. The symmetry obtained is now quadratic and
shows (Fig. 5) the cross section (100) of a crystal with simple cubic struc-
ture.

In this connection it should be noted that the crystal illustrated in Fig.
5 can be cut in two ways between A and B. Either six bonds between
next-nearest neighbors (vectors V3) are cut or three bonds between next-
nearest neighbors and one bond (vector V1) between nearest neighbors
are cut. If the former is true (Es/E;<%), the strong Vi bond is cir-
cumvented by cutting the three weak V, bonds next to Vi. Should the
latter be true, 1> Ey/E;> 3. Then less energy is expended when Vi is cutin
the process. Consequently, V1o is established as the new PBC vector.

There are two more examples, enargite and chalcopyrite, which may
be used to demonstrate the estimation of the bond strength ratio which
is obtained by comparing habits which have been theoretically and
experimentally derived. The experimentally determined microcleavage
habit is used in these examples. The advantage of this method of de-
termining habit is that a unique form results, that is, there is only one
such habit for each material (Wolff and Broder, 1960). While there is a
disadvantage to this method in the neglect of hemihedral properties,
conclusions drawn concerning bond strengths within the bulk of the
crystal are unaffected.

For enargite a bond ratio estimate of three between the As—S bond
and the Cu—S bond results, giving good agreement between the
theoretical and microcleavage habit. For chalcopyrite the bond strength
ratio between Fe—S and Cu—S (or vice versa) is at least two (or 3).
For symmetry reasons it is not possible to decide which bond is stronger.

DiscussioN oF HEMIHEDRISM

Most experimental or theoretical determinations of o consider only
the energy of separation parallel to the plane (kkl). What is found is the
sum of surface energies of the two new planes. The specific surface
energy, however, of each plane remains obscure. The usual procedure is
to divide the total surface energy by two so as to assign a surface energy
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to each plane; but, as previously mentioned, this holds only when the
new planes possess identical structure. That this is, indeed, true may be
drawn from conclusions made from habit studies. For example, the
tetrahedral habit of sphalerite (ZnS) shows the negative (111) plane to
be more developed than its positive (111) counterpart. This indicates
that the negative (111) plane is the more stable plane. It, therefore, in
accordance with Wulff’s law has a lower specific surface energy.

The differences in the two planes can be described in terms of the
differences in rearrangement of atoms, chemical bonds, and bonding
orbitals of the atoms in their surfaces. For example, in sphalerite the two
new planes would have zinc atoms on (111) and sulfur atoms on (111).
Since in the bulk sulfur has ca. 7 electrons and zinc ca. 1 (Wolff and
Broder, 1959), it is very probable that the sulfur (111) electronic con-
figuration would be more stable by virtue of its extra electrons with re-
spect to tetrahedral bonding. The conclusion arrived at is that for
materials lacking a center of symmetry the “anionic” plane is more
stable. Habit studies, in confirmation of this, indicate a more highly
developed “‘anionic” plane. A difference in the two planes appears also
in the ITI-V compounds and in etching experiments.

Assuming a surface energy assigned to the different surface atoms as
denoted by (A);, (A)q, (C)s, and (C)q for anionic and cationic single and
double “dangling” bonds, then the ou; formula for sphalerite structure
materials is
2[(8)s — 2(8)a + ()]l + 2[(A)s = (O] + 4(A)al

a2(h? + k* + 12)1/2
When (A)s=(A)a=(A), (C)s=(C), and (C)/ =823,

_ e =10 - b +ul®
a2(h? + k2 + 1212

and a tetrahedron with only tetrahedral “anionic” planes appears. For
many materials of this structure type (GaP, ZnS and others) (111),
(111) and (001) are observed. This can easily be explained when
(A)a/(A)s<1. This is illustrated in Fig. 7. In this way, therefore, it is
possible to investigate the bonding structure of the surface atoms.

Thkl =

Tonic CRYSTALS

Most arguments which have been set forth thus far may correctly be
applied only to elements, i.e., to materials with Van der Waals, metallic
or covalent bonding. In this case, the bonding and electron distribution
between the atoms is symmetrical and the interaction energy between
the atoms falls off rapidly with interatomic distance. As a rule, however,
compounds differ from elements in that the electron distribution of the
bonding is asymmetrical. This is due to the partial ionic character of the
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F16. 7. Stereograms representing equilibrium forms of crystals having sphalerite struc-
ture. A) a negative tetrahedron (111) exists when o111/0171 =82 3; B) a negative tetrahedron
(111) with minor development of the positive tetrahedron (111) for 3>8>1. C) major
(1T1), minor (111), (001); not shown here. This form is quite common and appears when
the atoms with two “dangling” bonds move to more favorable surface positions or re-
arrange their electronic structure.

bonding in which there is an attractive force exerted by first nearest and
other neighbor atoms as well as a repulsive force exerted by still other
neighbors.

For crystals with Van der Waals, metallic and covalent bonding the
interaction energy between atoms decreases with r™ where n=6 and r
is the interatomic distance. For electrostatic bonding, on the other hand,
n=1. In this type of bonding it appears that the interaction energy of
more distant atoms should still be considered while, for all practical
purposes, in the former type only up to next-nearest neighbors need to
be considered. This renders the calculation of the surface energy and the
equilibrium form for ionic crystals extremely difficult by the method
outlined here. Sufficient experimental agreement has been found, how-
ever, between the calculated equilibrium forms and observed micro-
cleavage forms to justify, in a first approximation, the validity and use-
fullness of the principles cited herein. This agreement is probably due
to the partial ionic character of most compounds and also probably to
the screening effect of nearer ions on the interaction on more distant ions.

To take into account the ionic nature of compounds, the specific surface
free energy may be approximated by a formula of the type

ont = (o1 + aon + bom + corv)hkl

where a, b, and c are constants and I, II, III, IV refer to 1st, 2nd, 3rd,
and 4th nearest neighbor interactions.
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