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SOME PROPERTIES OF a-MONOCHLORONAPHTHALENE-
DIIODOMETHANE IMMERSION MEDIA

Texnsur Fu;rr eno F. Donarn Bloss, Department oJ
Geolo gy, S outhern I lliruois U niaer s,i.ly.

AssrRAcr

The density and refractive index for various blends of diiodomethane (methylene iodide)
and a-monochloronaphthalene were measured at 15.0, 20.0, 22.0,25.O, and 30.0' C. Little
deviation from ideality was detectable for the series if density was plotted against volume
fraction or if specific volume was plotted against weight fraction. However, a plot of the
thermal expansion coefficients versus volume fraction showed significant deviation from
linearity and therefore demonstrated the solutions to be non-ideal. Plots of refractive index
against composition, regardless of the compositional units used, resulted in non-linear
curves. The relation between refractive index, density, and composition in weight fractions
for the series most closely conlorms to the Lorentz-Lorenz equation, almost as lvell to the
Lichtenecker equation, but increasingly less satisfactorily to the Gladstone-Dale, Newton-
Drude, and Alien equations. The relation between refractive index and density for this
series is non-linear in contrast to what is commonly thought.

For solutional series in general, refractive index and density are linearly related only if

(#)": (H),
(refractive index being here considered as just afunction of composition and temperature).
In the event of such linearity, this line will be independent of temperature. Only those
thermodynamically ideal solutions for which this is true will correspond to the "optically
ideal" solutions of earlier workers. "optical ideality" and a linear relation between refrac-
tive index and density should thus be infrequently encountered.

The dispersion, nF-nc, for blends of diiodomethane and d-monochloronaphthalene is
not linearly related to composition (regardless of the compositional units chosen). When
zr'-zg is plotted against n D, a non-linear relation is also demonstrated for this series. How-
ever, if specific dispersion, (nv-nd/p, is plotted against volume fraction, the result is al-
most linear as would be expected from the Gladstone-Dale equation.

InrnooucrroN

Refractive index liquids, as Iong recognized, may also be used in spe-
cif ic gravity determinations. Foster (1947) points out that a blended
series of such media serves as "a ready-made series of specific gravity
standards" and moreover, if properly selected, will permit "close calibra-
tion of specific gravity through measurement of the refractive index. . . .',
The blended series between a-monochloronaphthalene and diiodometh-
ane (although admittedly less accurate for measuring density than the
solutions of Clerici, Klein, Thoulet or Rohrbach) has the double advant-
age of being relatively innocuous and also readily available in most petro-
graphic laboratories. I lowever, to the writers'knowledge, no recent data
which relate density and refractive index for blends of this series are
readily available to petrographers and mineralogists. Foster's curve
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268 T. FUTII AND F. D, BLOSS

(1947, Fig.2), in the absence of experimental data, assumed the relation

to be linear for this series. Theoretical considerations, however, led the

writers to suspect nonJinearity and the following study was undertaken.
Blends of recently purchased stocks of a-monochloronaphthalene and

diiodomethane were made to the volumetric specifications of Kaiser and
Parrish (1939) in order to determine, as an incidental to this study, how

closely these blends might conform in refractive index to those of twenty
years ago. Density measurements on these blends indicated a closely
linear relation between volume fraction and density, but, as in previous

studies (N. W. Buerger, 1933; Kaiser and Parrish, 1939), a non-linear

relation between refractive index and volume fraction. Thus the relation
between refractive index and density for this series was expectably
non-linear.

ExpBnruoNrAL PRocEDURES

Density measurement Densities of a-monochloronaphthalene and di-

iodomethane were measured with a 10 cc. pycnometer whose volume had

been calibrated at 15.0", 20.Oo, 22.0",25.0o and 30.0o C., from the known
density of distilled water at these temperatures (Daniels et aI., 1956,
p. a7\. A thermometer built in the ground glass stopper of the pycnome-

ter (and projecting deep within the pycnomeLer's contents when the
stopper was inserted) permitted temperature measurement to +0'1o C.
The pycnometer and its contents were brought to the desired tempera-
ture by their insertion into a beaker which itself had been immersed
(almost up to its l ip) in a regulated constant temperature bath. Due

caution was maintained to keep the outside of the pycnometer clean
and dry during this operation. Anomalous density measurements were

obtained for diiodomethane, if during cooling, its temperature dropped

below 10" C. fn such an event, the solution was observed to become
turbid, perhaps because of the formation of one of the three unstable

forms of diiodomethane observed by Deffet (see Timmerman, 1950)'

Using the densities measured at 22" C. for pure a-monochloronaph-
thalene and diiodomethane (purchased in October 1959 from Distillation
Products Industries), the volume percentages in Table 1, which are those
cited for several of the blends studied by Kaiser and Parrish (1939,

p. 561, Table III), were converted to weight per cents. Samples 2 to 7
(Table 1) were then prepared gravimetrically to reproduce, as closely

as possible, the compositions studied by Kaiser and Parrish. The densities

o{ these blends were then measured at 15.0o, 20.0",22.0",25.0o, and 30.o C
using the precautions discussed in the preceding paragraph. Results are
summarized in Table 1.

ReJract'iae ind.er measurement Refractive indices of the pure end mem-
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T. FUJII AND F. D. BLOSS

bers and of the six blends were measured at 15.0o, 20.0",22.0",25.0",
and 30.0o C. by Fuji i using the same Abbe prism refractometer (1.45-
1.84) that had previously been calibrated by Fisher (1958). The wave-
lengths used for the measurements were Hg 4358 A, Hg 5461 A, Hg
5780+10 A and Nao 5893 A, respectively. During the measurements,
temperature was controlled to within +0.1' C. The precautions sug-
gested by Fisher were observed in detail. fndices measured with sodium
light (zp) are summarized in Table 1. It will be seen that the indices
measured at 22.0" C. are lower than those of Kaiser and Parrish.

RBlerroN BBrwnnN DnNsrry AND CoMposrrroN

For an ideal solutional series the relation between density and com-
position depends on the choice of compositional units, formulas for the
interconversion of these latter being summarized in Table 2. If composi-
tion is expressed in mole fractions, the relation is non-linear except for
the special case wherein the molar volumes of the components happen
to be equal or nearly equal (Bloss,1952). ff composition is expressed in
volume fractions, the relation is l inear (Fuji i, 1960); however, the use of
volume fractions is neither conventional nor practical, particularly for
liquid solutions in which volume fraction may change significantly with
temperature. The relation between the reciprocal of the density-that is,
the specific volume-and composition in weight fractions is also linear.
Thus

1 1 1 1
w e , * - w n * - w c t . . .

p p a p B p c

where p is the density of the solution; p$ gnt pc ' . are the densities of

Tenr,n 2. EquerroNs lon INrnncoNvERSroN oF CoNcrxrnlrroxnl
Expnrssroxs rr.r Ionar, Svsrnusl

Conversion to:

(1 )

Mole Fraction (N1) Weight Fraction (to6) Volume Fraction (a;)

Nn : ff,,0 (a)

wu :  
{ , ,  

( b )

M,,
a ; ; : , n N ;  ( c )

w t , - L a o  ( d )
p

V,
u r :  

U  
N r  ( e )

u ; : L w t  ( f )

I Equations (a) and (c) can also be used for non-ideal systems. M, V, and p represent
the molecular weight, molar volume, and density of a solution between two or more end
members and M;, V6, and pi represent the molecular weight, molar volume, and density
of an end member of this solutional series.
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Tesrn 3. Pnncrnrecr Voruun INcnnasB Pnooucno ry MrxrNc ol
a-MonocrronoNApgTrrAr,ENE .q.No Drrooouo:rue,Nn
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Mixing 'I'emperature

Sample

4

o

7

150

0 . 7 1
0 . 7 2
0 . 8 2
o . 7 l
0 . 6 0
0 .33

30'25"22"20"

0 .73
0 . 7 7
0 .85
0 . 7 6
0.63
0 .35

0 .74
0 . 7 8
0 .86
0 . 7 8
0 .63
0 .36

u .  / 5
0 . 8 0
0 . 8 7
0 . 7 7
0 . 6 5
0 . 3 6

0 . 7 5
0 .79
0 .79
0.80
o .67
0  .37

its components; and TeatleBt,wc, are the weight fractions of these com-
ponents in the solution.

Solutions of diiodomethane in a-monochloronaphthalene appeared to
be ideal at first glance since, for this series, an almost linear relation
existed between density and composition in volume fractions (or between
specific volume and composition in weight fractions). Ilowever, the
volume of each blend, as calculated from its weight and density, con-
sistently exceeded the sum of the volumes of its two components (Table
3). These slight deviations from additivity of volume thus indicated the
system a-monochloronaphthalene-diiodomethane to deviate somewhat
{rom ideality.

Emp'cr oI TEMpERATURE oN DuNsrrv

A definite relationship exists between the rate of change of density
with tempera"ture (i.e., dp/dt) for a substance and its coefficient of
thermal expansion (a). This relation can be derived from the definition
ol a,

": +(#)., (2)

V (t, p, and M represent
is constant with tempera-

by substitution of M /p for the volume term
temperature, pressure, and mass). Since mass
ture, eq. (2) becomes

. : - ( L 'Y ) .  ( 3 )
\  d t  /p

Eq. (3) indicates that if In p is plotted against temperature for a given
substance, the slope of the curve at any selected temperature point
equals -a in value for that temperature. If this is done for solutions
1,4, and 8 of Table 1, curves 1,4, and 8 in Fig. 1 result. (Similar graphs
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o.8r20

0.8090

o.r800
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o.1720

0. r700 0.t700
30

TEMPERATURE IN 'C

Frc. 1. Variation of Inp with temperature lor pure a-monochloronaphthalene (sample 1),

for pure diiodomethane (sample 8), and for a solution between them (sample 4).

were made for solutions 2, 3, 5, 6, and 7.) In all such graphs, l inearity
existed between 15 and 25o C. whereas between 25o and 30' C. the slope
changed. From the slope between 15 and 25" C., aD and ao, the co-
efficients of thermal expansion for pure diiodomethane and d-mono-
chloronaphthalene in this temperature range, were determined as
7.3X10-4 and 6.3X10-4, respectively. Results for all the l iquids studied
are summarized in Table 4. Beyond the 15-25o C. range the coefficients of
thermal expansion may not be, relatively speaking, so independent of
temperature.

For a series of ideal solutions, the coefficients of thermal expansion are
linearly related to composition in volume fractions (Fuji i, 1960, p. 380).
For the system a-monochloronaphthalene-diiodomethane this is obvi-
ously untrue (Fig.2). In contrast with plots of density against weight
fraction, it appears that non-ideality can be detected with considerable
sensitivity by plotting the coefficients of thermal expansion against
volume fractions for a series of solutions.

fn an ideal system, the value of dp/dt is linearly related to composition
in volume fractions only if a has the same value for all solutions of the

F
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'l'asr,n 4. ConrlrcrnNrs or Tnrnuu. Exr.lNsrox a.Nl or dp/dl FoR a-MoNocIrLoRo-

NApITTHAT,ENE-DIroDoMETrrANB Sorurrons wrrr{rN THE R,q.NcB I 5-25' C.

Sample - dp /dt

273

1
a

3
i

5
o
7
8

6.3X10-4+0.00003
6.9X 10-4 + 0.00004
7 .4x 1(r4l 0 .00004
7 3X10-4+0.00003
7.7x10-4+0.00006
7.6x10-4+0 00006
7 .6x 10-4 + 0 .00006
7.3x10 4+0.00005

7 .5x 10-4
10.8X 10-4
14.2X10 4

16.4X 10-4
19.3X 10-4
2l .2Xt0-4
22.9X'lO-4
24.4X10 4

series. To derive this relationship, differentiate Fuji i 's equation (1960'

p. 380)
_  \ '  ^ . , .

with respect to temperature (pressure remaining constant) to obtain

1ao \  :  y . , . / j 4 j \  +5 -  ^ . / a l i \
\  a r , / ,  '  - ' \  

a r  /  
'  -  o ' (  

"  
/ , '  

( s )

As eq. (5) indicates, a l inear relationship between @p/at)o and volume

fraction u; is possible for a solutional series only if (0v6/0t)n equals zero.

This occurs only for the very specialized case wherein a, the thermal

coefficient of the solution, is equal to a;, that of its ith component.

To prove this, Iet ?; and Z; respectively represent the volume fraction

and total volume of the ith component in a solution whose volumeis V.

By definition of volume fraction
v .

. V

VOLUME FRACTION (di iodomelhone)

Frc. 2. Variation of the coefficient of thermal expansion (o) with respect to volume

fractions of diiodomethane for solutions of the a-monochloionaphthalene-diiodomethane

series within the 15-25' C. tenlperature range.

(4)

(6a)

n q
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o
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Differentiating eq. (6a) with respect to

,(#)
temperature we obtain

- u'(#).(#),
From eq. (2) it is apparent that

(avt \  ,  /  av\
\ - /  

:  l ' ' 'n  and 
\  *  ) , :  

r * .

Substituting these into eq. (6b) there results

1 0vt\ V; ,
( ; / , : - ( a t - a ) '  Q )

It is now obvious that (0a;/6t), can equal zero only when a; equals a.
For the system studied dD and co differ significantly in value and, as
observed, dp/dt is thus not l inearly related to volume fractions of di-
iodomethane (Table 4).

RBrn.q,crrvn INoox lNo ColrposrrroN

Non-linearity of the refractive indices with volume per cent composi-
tion in the a-monochloronaphthalene-diiodomethane system was re-
ported by N. W. Buerger (1935) and later corroborated by Kaiser and
Parrish (1939). The present results indicate the refractive index to be
non-linear with composition represented by volume fraction, mole frac-
tion, or weight fraction.

The nature of the variation of refractive index with composition in
solutions, glasses, and solid solutions has been studied extensively
(Til ley, 1922;Porter,1925; Barth, 1930; Sun et a1.,1940). According to
Barth (1930), Mallard in 1885 developed the following equations

n: ntNr f  zzNz (8)

and

1:*** (e)
nz h2 n22

where n1 and n2 represent the refractive indices of two transparent,
miscible materials, a the index of their mutual solution, and Nr and Nz
the mole fractions of each in this solution. Eq. 8, which is frequently used
by mineralogists and petrographers, was developed by analogy to the
superposition of two isotropic plates of differing indices.

This same approach may be used to develop an equation of which eq.
(8) is a special case. If, for example, the m components of a solution
were to become stratified (Fig. 3) then il, the optical path for normally
incident light passing through this solution, would be the sum of the
optical paths for the individual strata, i.e.

(6b)
r/2
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A: qreo of plole

Frc. 3. Hypothetical stratification of a solution into pure layers of its components. For

these individual layers, I and z represent thickness and refractive index, respectively.

a : i nJ ;

where n; and Ir represent refractive index and thickness of each individual
layer. If z represents the time necessary to pass through the strata, then
the velocity of the light in a vacuum is ln;ta/z whereas its average
velocity through the plates is lt,;/2. Thus, the index of refraction of the
superposed strata is

n:z: t ' .
L to

As Fig. 3 indicates, however, since the interfaces between the strata are
of equal area (A), the ratio of the thickness of an individual plate to the
sum of all thicknesses equals u;, i ls volume fraction in the solution i.e.,

and, consequently,
, x : l n a u .  ( 1 0 )

Eq. (10), previously derived by Til lotson (1918), has been used by
several workers (M. J. Buerger, 1933; Gibb, t942; Kerr, 1960). Binary
solutions for which eq. (10) holds were called "ideal solutions" by M. J.
Buerger (1933) and "optically ideal solutions" by several following
workers (Butler, 1933;Kaiser and Parrish 1939; Darneal, 1948). To the
extent that the molar volumes of the components are equal, u; eeuals N;
and therefore eq. (10) becomes

n :  l n t N t

It

\-  r .

LIGHT
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which, expressed for just two components, is identical with eq. (8).
The derivation of eq. (10) assumes: (1) No interaction between the

components of the solution occurs; (2) The volume of the solution is
equal to the sum of the volumes of its components prior to mixing;
(3) Normal incidence of l ight. The system being studied, since (for it)
volume is not quite additive, is therefore not expected to conform to a
linear relationship such as eq. (10).

In addition to the Mallard equations (Eqs. 8 and 9), the following
equations relating refractive index (and density) to composition were
tested with respect to the system studied. The Gladstone-Dale equation:

! _ _  t  _ t r ,  
-  t ) r , ,  ( n t _  t ) w u ,

P P a p b

The Lorentz -Lorenz equation :

n2 - | (n"2 - 7)u" (n* - l)wt

w, +-zn: 67+ 2)p"* T^,+-rn+
The Lichtenecker equalion:

t:9" _ 9oE"Qy: ,
P P a

The Newton-Drude equation:

n 2 - 7 (n"2 - 7)w" (nf - l)zat:__:_ +:__i_ +
Pa Pb

And the equation int roduced by Al len (1956):

n3 no\p" nuswb- : - i +  + . . .
P P o p b

Thus, assuming that p, the density of a solution is known, then n, the
solution's refractive index can be calculated from the refractive indices,
densities, and weight fractions of its components (e.g. Not po,Teoi Nb, pb,?s6;
etc.) on the basis of the foregoing equations. If this is done for solutions
2-7 , the calculated indices (Table 5) are closest to those measured if the
Lorentz-Lorenz relationship is used, slightly more variant {or the
Lichtenecker equation, and increasingiy variant for the Gladstone-Dale,
Newton-Drude, and Allen equations. Both Mallard equations proved
Ieast satisfactory of all, yielding such erroneous results that they were
not tabulated.

If ideal solutions are being dealt with, equation (d) in Table 2 applies.
Thus this value for weight fraction may be substituted into eqs. (11)-(15)
to eliminate the density terms. The resultant equations, now composi-
tionarrv expressed 

1:1T ";"":';:'.t';,1il 
f :: 

!." ab' etc')' are:

(1  1 )

(r2)

(13)

(14)

(1s)
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r .6432
r.6572
t .6728
1 .6864
1 .7018
r .7166

.6418

.6558

.6705

.6839

.6998

.7140

1 .6458
1 .6630
1 . 6 7 8 9
1.6923
1.7061
1 . 7 r 9 7

277

(16)

(r7)

(18)

1 .5668
1 . 9 3 7 7
2.2522
2.5235
2 . 7 8 7 7
3 .0401

1.5614
r.9304
2.2240
2 . 5 1 3 6
2 . 7 7 7 3
3.0287

1 .5560
| .9234
2.2358
2.5044
2.7666
3.0r72

1.5502
| .9162
2 . 2 2 6 1
2.4939
2.7549
3.0048

1 .5593
t .9277
2.2408
2.5097
z - t l 5 J

3.0240

IMMERSION MEDIA

n : n a t a + n b r b + . , ' ;

n, - | :9!_- ry! +9,1_1,'+ . . . .
n ' l  2  n o z  l 2  n f  l 2

logn : v"Iog n"f z6 log m I .  .  .  ;
n2  -  l :  (n "2  -  l ) t " l  (na ,  -  l )uo  *  '  .  .

Teer.n 5. Cer,cur,e:rrox oF RElRAcrrvE INorx lnou DBxsr:rv

Refractive index calculated from the

No.

2 1.6467
3 | .6617

1 5 "  C .  4  1 . 6 7 7 6
5 1 .6912
6  r . 7 0 7 4
7  1 . 7 2 3 2

Lichte-  Gladstone- Newton- Al lpn
necker Dale Drude

1 . 6 4 7 7  1 . 6 4 9 4  1 . 6 5 0 8  1 . 6 5 1 1
1.6649 1.6672 | 6691 1.6698
1.6810 1 .6834 1 .6853 1 .6861
r .6952 1 .6974 | .7027 1 .6999
1 . 7 0 9 4  r . 7 l r 2  | . 7 1 2 7  1 . 7 1 3 3
1.7240 r .7251 1  .7261 1 .7262

1.6450 1.6468 | .6482 1.648s
r.6619 | 6642 r.666r r 6667
1.6789 1.6803 1.6821 r .6829
r.6917 1 6939 r.6957 r.6964
r .7069  1 .7077  1 .7093  1 .7098
r.7203 r  .7215 r .7225 r  .7228

.6472 1.6487

.6648 1.6655

.6808 1 .6815
6942 1.69+8

. 7 0 7 6  1 . 7 0 8 1

.7206 | 7210

Lorentz-
Lotenz

z

20" c. 4
5
6
I

1.6444
1 .6589
r .67M
r .6874
r.7034
1 7188

|  .647 5
1.6647
1 .6808
1.6949
r .709r
| .7238

.6M9

.6616

. o /  / o

.6914

.7056

.720r

r .6439 1 .6M0
1.6603 1 .6606
| 6763 1.6766
1.6898 1 .6901
1 . 7 0 4 0  r . 7 0 M
1 . 7 1 8 3  1 . 7 1 7 4

z

J

A

5
6
7

2
3

2 5 ' C .  4

6
7

1.6423
1 .6586
t . 6 7 M
r .6879
r .7017
1 . 7 1 6 0

.6424 1.6M2

.6588 1.6612

.6746 r .6770
6881 1.6904

.7020 1.7039

. 7 1 6 2  | . 7 1 7 4

| 6456 1.6460
1 6637 1.6638
r .6789 r .6797
1.6922 1 .6928
1 7054 1.7061
r .7184 r .7189

2 r .6392
3 1 .6529
4 1.6668
5 1 .6806
6 1 .6962
7 r .7098

1.6400 1 .6400 1 .6+18
1.6560 1 .6560 1 .6585
1.6710 r .6710 1  6736
1.6844 | 6844 1.6869
1.6980 1 .8989 1 .7001
r . 7 1 2 2  1 . 7 r 2 0  1 . 7 1 3 5

r .6432
t.6604
1 .6755
1 .6887
r .7016
| . 7 r 4 4

.6435
6609

.676r

.6893

.7020

.7149

30" c.
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n 2 : n o \ t o + n b 2 n b + . . . ;

n 3 : n a a u o * n t s t l I . . . -

(1e)
(20)

These equations, applied to solutions 2-7 in the same manner as were
eqs. (11)-(15), yield even less accurate results, possibly because of the
non-ideality of these solutions.

Equations (11)-(20) could well be applied to solid solutions, equations
(16)-(20) applying to the extent that the solid solutional series ap-
proaches ideality. On the basis of the present results for diiodomethane-
a-monochloronaphthalene solutions, the refractive indices of solid solu-
tions should be calculable to within 4/6 oI the index idifierence between
the "end members" if the Lorentz-Lorenz equation is used.

Ellpcr or TeupBneruRE oN Ronnecrrvn INnnx

For a given material, according to the theoretical discussion of Mott
and Gurney (1950), the value oI (n2-l)/(n,-12) varies l inearly with
temperature. The data for solutions 1-8 appear to corroborate this, dif-
fering but l i tt le from the l inear regression l ines obtained by a least
squares analysis of the data (Fig. 4).1 The Mott-Gurney relation may
be restated as

t n ' -  I t
. - :  Pr
(n ' I  2 )

where P, a constant, here indicates the slope of the l ine obtained if
(n'z-l)/(n'12) is piotted against temperature t ior a given substance.
Taking the derivative with respect to I of both sides of Eq. (21a) we
obtain

6n dn- : P
(n2 a 212 67

dn (n ' *  2 ) '  ^
d,t 6n

(2ra)

(2rb)

(2rc)

from which we see that

Since the slope P is always negative, so is dn/dt.
For each solution, (1) to (8), the slope P for the line relating

(n'-I)/(n'*2) to temperature I was obtained by a least squares
analysis of the observed data. Substitution of P into eq. (2lc) then per-
mitted dn/dt to be calculated for each temperature of measurement.
For each solution, dnf dt decreased slightly in value as temperature in-

1 Butler's (1933) data on indices of refraction of kerosene and a-monochloronaotha-
lene solutions further substantiate the Mott-Gurnev discussion.
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'IesrE 6. Verurs on -P, -(dn/dt), AND ? loR run Sor,urroNs Srunrro

- P

15'-30' C.

- (dn/d,t)Xr0a 7x104  I

15'C. 20" C. 22' C. 25" C. 30. C. av.

4 . 1 7  4 . 1 6  4 . 2
5 . 1 0  5 . 0 9  5 . 1
5 . 9 1  5 . 8 9  5 . 9
7 . 2 4  7 . 2 1  7 . 3
6 . 9 4  6 . 9 2  6 . 9
8 . 2 0  8 . 1 8  8  2
8 . 3 9  8 . 3 6  8 . 4
8 . 1 0  8 . 0 7  8 . 1

15'-
30 'c .

I
z

3
A

o

7
8

1 .88x 10-4
2.28x10 4
2.6txr0-4
3.61X 10-4
3 .00x10  4
3 .50x 10-4
3 .54X 10-4
3 .36x 10-4

4 . 1 8  4 . 1 8
5 . 1 1  5 . 1 1
5 . 9 2  5 . 9 1
7  . 2 6  7  . 2 5
6 96  6 .96
8 . 2 3  8 . 2 2
8.43  8  4 r
8  . 1 2  8 .  1 1

4 . 1 9
s . t 2
(  0 1

l  - 2 6

6 9 8
8  . 2 5
8 . 4 6
8 . 1 5

2 . 5 6
3 . t l
. 1 . . ' ) /

4 . 3 4
4 . 1 3
4 . 8 3
4.90
4 . 6 7

1 Taken to be the slope of the plot of ln z vs. temperature for each solution. This
assumes that "y is relatively independent of temperature in the range between 15'and 30".

creased, particularly for the diiodomethane-rich solutions (Table 6).
Thus, strictly speaking, dn/dtis not independent of temperature.

The writers also calculated what will be called the "thermal coefficient
of refraction" (.y) for each solution, this being defined as

(22)

.3@ .370

n2-  |

r? +z

Frc. 4. Variation oI (n2-l)/(nrf 2) with respect to temperature for solutions
(1) to (8) of the a-monochloronaphthalene-diiodomethane series.

t d n
'  

n d t

u
o

z
UJ
E
l

?
E.
LrJ
o
lrJ
F

_u-
.390

1
I
\

i

.380
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Ilowever, for a given temperature, neither 7, dnf dt, or P varied linearly

with composition for the a-monochloronaphthalene-diiodomethane series

studied.
Buerger (1933) considered dn/dt and n to be linearly related for "op-

tically ideal, binary solutions," i.e.

: h n

where ft is a constant, i.e., is possessed of the same value for all end

members of the series. From eq. (22) it is obvious that k: - 'v; hence

dn/dt is linearly related to n only if the end members possess equal

thermal coefficients of refraction. In this latter case the slope of the

straight line relating dn/dt and z yields the thermal coeffi.cient of refrac-

tion for either member.

dn

dt

l d n

n rlt

dn - dze
- - :  L - : a i .
d, cL,

In such a solutional series it is also unlikely that dn/dt

linearly with volume ftaction, i.e.
will vary

(2s)

For this to hold, it is necessary that eq. (10) also hold for the series
(which is in itself doubtful). Differentiation of eq. (10) with respect to

temperature yields

!:z*,,*L",*
The second term on the right side of ecl. QD must equal zero, it eqs. (23)

and (24) are to become identical. Such is the case only if volume per cent

is unchanged by temperature, i.e. dao/dt:O. This, of course' only pertains

if the thermal coefficients of expansion of all members of the system are

equal (c/. eq. (6b)). Thus eq. (23) is expected to hold only under very

limiting circumstances.

DnNsrrv aNp RnlnecrrvB INnBx RnrerroNsurps

Ritland (1955) observed a l inear relationship between density and

refractive index for a borosilicate glass treated at various temperatures,

and concluded that its refractive index was a simple function of its

density as temperature was varied. A similar relationship exists for indi-

vidual solutions in the system a-monochloronaphthalene-diiodomethane
studied here. Thus density appears to be a simple function of refractive

(24)
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index for these materials. i.e.

fg ) :€  (2s)
\dn/ .

where { equals a constant and c refers to composition.
In contrast, the relation between density and refractive indexr for

a series of solutions of differing compositions (but at a constant tempera-
ture) is likely to be non-linear in the ultimate analysis. In other words,
(6n/0p)1 is not l ikely to equal a constant for such a solutional series. To
determine the conditions necessary Ior (0n/0p)t to equal a constant,
assume that density and refractive index of solutions in the series are
both functions of temperature and composition, thus

281

p : p(c, t)

n :  n\c, t) ,

/  aP\

rr\ : )g)"
\6n/ " (X).

(#),:

(26)
(27)

and

Consequently

(*q),

(v*),
If p and nhave a l inear relation to each other, the Jacobian determinant
of eqs. (28) and (29) should vanish (c/. Bronwell,1955), i.e.

(*q),

(x),
Combining eqs. (28), (29), and (30)

/ 94\
\ on /  t

rq\
\6n/ .

as the condition which must be fulfilled if the
for a solutional series is to be truly linear.

Il n is plotted on the abscissa and p on the

r For a given wavelength of monochromatic light.

(28)

(2e)

30)! ! '") :
d(c,  t )

(31)

relation between n and p

ordinate, the isothermal
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t750

)<
lrJ
o
z

t.700
lrJ

F
L)

E.

h L6so
E.

t.600
r.000 t.500 2.000 2.s00 3.000

DENSITY

Frc. 5. Relation between refractive inder and density for solutions of the a-mono-
chloronaphthalene-diiodomethane series at temperatures 15",22", and 30o. These same
curves, on a graph paper background, are also presented by Bloss (1961, p. 64).

curve reiating refractive index and density for a solutional series will
be convex upward, truly l inear, or concave upward according to the ex-
tent that the ratio in eq. (31) exceeds, equals, or is less than 1.0, respec-
tively. For the solutions studied the ratio exceeds 1.0 and a convex up-
ward curve results (Fig. 5).

The a-monochloronaphthalene-diiodomethane media of other labora-
tories can easily be adapted for use as a graded series of density standards
for sink-float tests of small grains. Assuming zp is known to within 0.001,
density can be determined to within 0.03 for the less dense and to within
0.01 for the more dense liquids of these sets of immersion media. To do
this use either Fig. 5 or, better yet, similar graphs of the data of Table 1
made to a much larger scale.

Extrapolation of these data to media in other laboratories should oc-
casion no serious errors since samples of diiodomethane and of a;mono-
chloronaphthalene from other laboratories agreed in refractive index and
density (within the l imits of experimental error) with those reported
here. Although a purchase date span of five years was involved, agree-
ment was exceedingly good between diiodomethane samples. A five year
old sample of a-monochloronaphthalene possessed a density which was
.0021 lower than our sample, this being the only result which was beyond
the limits of experimental error. Blends from older stocks such as those
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used by Kaiser and Parrish (1939) might occasion greater inaccuracies
if Fig. 5 is applied to them.

A truly linear relation between refractive index and density for a
series of solutions requires such special conditions that it is likely to be
the exception rather than the rule. The data for Clerici solution (Jahns,
1939) at fi.rst sight indicate a linear relation for 21" C. However, if
this l inear isotherm is extended, it does not pass through the point indi-
cating the refractive index and density of water at 21" C. Thus a slightly
non-linear relation between refractive index and density is suspected for
Clerici solution.

In the search for a miscible series for which the relation between p and
ra is linear, (0p/0n)" should be equal in value for both end members.
From eq. (28), the value (0p/6n)" tlr'ay be calculated if the right
hand terms are known. Commonly, however, only dn/ dt,butnot dpf dt,
is cited for immersion media. The latter value must thus be measured.

The "ideal solutions" discussed by M. J. Buerger (1933) and "optically
ideal solutions" discussed by others (Butler, 1933; Kaiser and Parrish,
1939; DarneaI, 1948) were defined as binary solutions for which refractive
index was linearly related to volume fraction, i.e., for which

n :  l n r t ,

or, stated alternatively, for which

( * ) , :  u ,

where frr is a constant. Continuing our assumption that n and p are
functions of composition. c.

(10)

(32)

(x),
(x),: (#), (33)

For "optically ideal solutions" therefore,

/q \
\ d c  / ,

(yi: 
u' (34)

\0n, /  t

For an ideal system (6p/ 0c) l equals a constant if c is expressed in volume
fractions (Fujii, 1960). Thus, for a thermodynamically ideal solution to
be "optically ideal" as well,

(#): (3s)
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where kz is also a constant. Consequently, solution series for which
density and refractive index are l inearly related may be concluded to be

"optically ideal" and vice versa.

DrsppnsroN

The refractive indices of the liquids studied were measured at wave-
Iengths,  (Hg) 4358,5461,  and 5730 A (+10 A) (Table 7) ,  and at(Na)
5893 A. For each liquid these data were plotted on Hartman dispersion
nets to yield straight l ines for each temperature studied (15.0,20.0,22.0,
25.0, and 30.0" C.). From these iines, indices ttp and n,c wEtE determined
(Table 8) and the common measurements of dispersion (ns-nc) and

/11"-- I \
\ n t '  -  n r t  /

could be determined for each liquid (and temperature). For each Iiquid
the average value of (nr-n.) and of

(:1"---1-)
\ n r  -  nc /

for the five temperatures investigated was computed. For the solutions
studied neither (np-ns) nor

/ "'-t-\
\ n e  -  n a , l

was linearly related to volume fraction (Fig. 6).
Considering solutional series in general, (nr-n.) can be expected to be

linearly related to volume fraction only if refractive index is so related.
Differentiating the Cauchy equation (y'. Jenkins and White, 1957,
p. a68)

n:n"+! ;

with respect to composition we obtain

(X),: (#),**(#),
From this we can see that i l  (6n/0c)1 equals a constant, so must
(}no/0c)t. Consequently (0A/0c)l must also equal a constant. From the
Cauchy equation, however, we obtain

. trc2 - trr2
n F - n a : A - - - -

trc2trr2

trc2 - trr2

Ic2trn2

(36)

(37)

and, since

(38)
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.0400
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VOLUME FRACTION (diiodomerhone)

6. Variation of the dispersion, (w-nc), with respect to volume fractions of diiodo-
methane for solutions of the a-monochloronaphthalene-diiodomethane system.
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Frc. 7. Variation of the specific dispersion (nt-nc)/0, with respect to weight fractjons of
diiodomethane for solutions of the e-monochloronaphthalene-diiodomethane system.
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This relationship, obtained empirically by them, is
corollary of the Gladstone-Dale equation. Applying
to the two wavelengths involved,

n s - l  n e - l-  _ :  K p  a n d  _ - _ _ :  K c
p p

(3e)

actually a necessary
this latter equation

" AzsBzs 1,

REFRACTIVE INDEX --

Frc. 8. Illustration of a precisely linear relation between density and composition for a
solutional series between A and B. Note that the line expressing this relation is inde-
pendent of temperature. For example, regardless of whether a solution is measured at
tb tz, or some other temperature, the plot of its density against refractive index falls on
this same line. (This illustration is thus a graphic statement of the equality

H) ": (#),)
rs a constant,

/dtut - nc)\
\--t--l,

must also equal a constant.
Grosse and Wachner (1939) Iinearly correlated dispersion with com-

position in weight fraction for a binary system by using specific dis-
persion (6), which they defined for a particular temperature, as

n F - n C
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Tenr,r 9. Spocrrrc DrspnnsroN.6. r'oR THE Sor-urroNs Srunron

15' 20" 220 25" 30'

1 0.0247 0.0248 0.0246 0 0242 0.0243
2 0.or93 0 0195 0.0194 0.0190 0.0194
3 0.0162 0.0164 0.0165 0.0160 0.0169
4 0.0143 0.0143 0.0145 0.0144 0.0146
5 0.0132 0.0134 0.0135 0.0132 0.0136
6 0.0122 0.0125 0.0123 0.0121 0.0123
7 0.0113 0.0112 0.0112 0 0rr2 0.0112
8  0 .0112  0 .0110  0 .0109  0 .0110  0 .0110

whereupon it is obvious that

6 : Kr - Kc. (40)

To the extent that the Gladstone-Dale equation is applicable to a system,
then specific dispersion may also be linearly correlated with the composi-
tion of the system (in weight fractions) . This is approximately true for
the system studied (Fig. 7 and Table 9).

CoNcr-usroNs

A. For a-monochloronaphthalene-diiodomethane immersion media:

1. Volume is not an additive property of the system. Thus the system is thermody-

namically non-ideal.
2. Non-ideality is further substantiated by the observed nonJinear relationship be-

tween volume fractions and the coefficients of thermal expansion for the series.

3. Density and refractive index are not linearly related (c/. Fig. 5).

4. If of recent American manufacture, these media may be used to measure the densi-

ties of small grains by the sink-float method with an accuracy of 0.01 to 0.03, the

greater accuracy being applicable to the denser members of the series.

5. Dispersion (nr-nc) is not Iinearly related to volume fractions whereas specific dis-

persion (25.-zs)/p is approximately linearly related to weight fractions.
6. The observed relations between density, refractive index, and composition in weight

fractions is closest to the Lorentz-Lorenz relation (eq. 12), almost as close for the

Lichtenecker relation (eq. 13), but increasingly variant for the Gladstone-Dale,

Newton-Drude, and Allen equations.

B. For solutional series in general:

7. The isothermal curves relating density and refractive index are not likely to be

straight lines, thatis, (6p/ 0n) I is not likely to equal a constant.
8. For such a linear relationship to exist, (ap/an)" must be equal for all end members,

thatis (6p/0n)" must equal a constant for the series.
9 In the event of such linearity, the equation

#)t:ff) (33)
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must hold for the series. Illustrated graphically this equality mtans, for example,

that the points in Fig. 8 will be collinear even though these four solutions were

measured at two different temperatures, tr and tz. Thus a truly linear relation be-

tween density and refractive index will be independent of temperature'

10. A nonlinear relation between refractive index and density will not be independent

of temperature. Fig. 5, for example, shows.that the 15o, 22", arrd 30o C. isotherms

relating density and refractive index do not coincide lor the system studied (as they

would have if the relation was truly linear).

1 1. "Optically ideal" solutional series, by definition those in which refractive index and

composition in volume fractions are linearly related, represent a rather specialized

class of (thermodynamically) ideal solutions to which the conditions stated in con-

clusion (9) must also apply.
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