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ABSTRACT

The density and refractive index for various blends of diiodomethane (methylene iodide)
and a-monochloronaphthalene were measured at 15.0, 20.0, 22.0, 25.0, and 30.0° C. Little
deviation from ideality was detectable for the series if density was plotted against volume
fraction or if specific volume was plotted against weight fraction. However, a plot of the
thermal expansion coefficients versus volume fraction showed significant deviation from
linearity and therefore demonstrated the solutions to be non-ideal. Plots of refractive index
against composition, regardless of the compositional units used, resulted in non-linear
curves. The relation between refractive index, density, and composition in weight fractions
for the series most closely conforms to the Lorentz-Lorenz equation, almost as well to the
Lichtenecker equation, but increasingly less satisfactorily to the Gladstone-Dale, Newton-
Drude, and Allen equations. The relation between refractive index and density for this
series is non-linear in contrast to what is commonly thought.

For solutional series in general, refractive index and density are linearly related only if
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(refractive index being here considered as just a function of composition and temperature).
In the event of such linearity, this line will be independent of temperature. Only those
thermodynamically ideal solutions for which this is true will correspond to the “optically
ideal” solutions of earlier workers. “Optical ideality’” and a linear relation between refrac-
tive index and density should thus be infrequently encountered.

The dispersion, #r—#c, for blends of diiodomethane and a-monochloronaphthalene is
not linearly related to composition (regardless of the compositional units chosen). When
nr—nc is plotted against #p, a non-linear relation is also demonstrated for this series. How-
ever, if specific dispersion, (#r—nc)/p, is plotted against volume fraction, the result is al-
most linear as would be expected from the Gladstone-Dale equation.

INTRODUCTION

Refractive index liquids, as long recognized, may also be used in spe-
cific gravity determinations. Foster (1947) points out that a blended
series of such media serves as “a ready-made series of specific gravity
standards’ and moreover, if properly selected, will permit “close calibra-
tion of specific gravity through measurement of the refractive index. ...”
The blended series between a-monochloronaphthalene and diiodometh-
ane (although admittedly less accurate for measuring density than the
solutions of Clerici, Klein, Thoulet or Rohrbach) has the double advant-
age of being relatively innocuous and also readily available in most petro-
graphic laboratories. However, to the writers’ knowledge, no recent data
which relate density and refractive index for blends of this series are
readily available to petrographers and mineralogists. Foster’s curve
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268 T. FUJII AND F. D. BLOSS

(1947, Fig. 2), in the absence of experimental data, assumed the relation
to be linear for this series. Theoretical considerations, however, led the
writers to suspect non-linearity and the following study was undertaken.

Blends of recently purchased stocks of a-monochloronaphthalene and
diiodomethane were made to the volumetric specifications of Kaiser and
Parrish (1939) in order to determine, as an incidental to this study, how
closely these blends might conform in refractive index to those of twenty
years ago. Density measurements on these blends indicated a closely
linear relation between volume fraction and density, but, as in previous
studies (N. W. Buerger, 1933; Kaiser and Parrish, 1939), a non-linear
relation between refractive index and volume fraction. Thus the relation
between refractive index and density for this series was expectably
non-linear.

EXPERIMENTAL PROCEDURES

Density measurement Densities of a-monochloronaphthalene and di-
iodomethane were measured with a 10 cc. pycnometer whose volume had
been calibrated at 15.0°, 20.0°, 22.0°, 25.0° and 30.0° C., from the known
density of distilled water at these temperatures (Daniels et al., 1956,
p. 474). A thermometer built in the ground glass stopper of the pycnome-
ter (and projecting deep within the pycnometer’s contents when the
stopper was inserted) permitted temperature measurement to +0.1° C.
The pycnometer and its contents were brought to the desired tempera-
ture by their insertion into a beaker which itself had been immersed
(almost up to its lip) in a regulated constant temperature bath. Due
caution was maintained to keep the outside of the pycnometer clean
and dry during this operation. Anomalous density measurements were
obtained for diiodomethane, if during cooling, its temperature dropped
below 10° C. In such an event, the solution was observed to become
turbid, perhaps because of the formation of one of the three unstable
forms of diiodomethane observed by Deffet (see Timmerman, 1950).

Using the densities measured at 22° C. for pure e-monochloronaph-
thalene and diiodomethane (purchased in October 1959 from Distillation
Products Industries), the volume percentages in Table 1, which are those
cited for several of the blends studied by Kaiser and Parrish (1939,
p. 561, Table III), were converted to weight per cents. Samples 2 to 7
(Table 1) were then prepared gravimetrically to reproduce, as closely
as possible, the compositions studied by Kaiser and Parrish. The densities
of these blends were then measured at 15.0°, 20.0°, 22.0°, 25.0°, and 30.° C
using the precautions discussed in the preceding paragraph. Results are
summarized in Table 1.

Refractive index measurement Refractive indices of the pure end mem-
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270 T. FUJII AND F. D. BLOSS

bers and of the six blends were measured at 15.0°, 20.0°, 22.0°, 25.0°,
and 30.0° C. by Fujii using the same Abbe prism refractometer (1.45-
1.84) that had previously been calibrated by Fisher (1958). The wave-
lengths used for the measurements were Hg 4358 A, Hg 5461 A, Hg
5780410 A and Nap 5893 A, respectively. During the measurements,
temperature was controlled to within +0.1° C. The precautions sug-
gested by Fisher were observed in detail. Indices measured with sodium
light (#np) are summarized in Table 1. It will be seen that the indices
measured at 22.0° C. are lower than those of Kaiser and Parrish.

RELATION BETWEEN DENSITY AND COMPOSITION

For an ideal solutional series the relation between density and com-
position depends on the choice of compositional units, formulas for the
interconversion of these latter being summarized in Table 2. If composi-
tion is expressed in mole fractions, the relation is non-linear except for
the special case wherein the molar volumes of the components happen
to be equal or nearly equal (Bloss, 1952). If composition is expressed in
volume fractions, the relation is linear (Fujii, 1960); however, the use of
volume fractions is neither conventional nor practical, particularly for
liquid solutions in which volume fraction may change significantly with
temperature. The relation between the reciprocal of the density—that is,
the specific volume—and composition in weight fractions is also linear.
Thus

1 1 1 1
—=—wa+—wp+—wc+ - 1)
0 PA B pc

where p is the density of the solution; pa, pp, pc - - - are the densities of

TABLE 2. EQUATIONS FOR INTERCONVERSION OF CONCENTRATIONAL
EXPRESSIONS IN IDEAL SysTEMS!

Conversion to:

Mole Fraction (N;) Weight Fraction (w;) Volume Fraction (v;)
M M; Vi

N; = M, w; (a) w; = M N; (e) vy = v N; (e)
\ pi o

N; = v (b) w; = Ui (d) Vi = ws ()
Vi P pi

! Equations (@) and (¢) can also be used for non-ideal systems. M, V, and p represent
the molecular weight, molar volume, and density of a solution between two or more end
members and M;, V;, and p; represent the molecular weight, molar volume, and density
of an end member of this solutional series.
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TABLE 3. PERCENTAGE VOLUME INCREASE PRODUCED BY MIXING OF
- MONOCHLORONAPHTHALENE AND DIIODOMETHANE

Mixing Temperature
Sample — — ——

15° 20° 22° 257 30°
2 0.71 0.73 0.74 0.75 0.75
3 0.72 0.77 0.78 0.80 0.79
4 0.82 0.85 0.86 0.87 0.79
5 0.7 0.76 0.78 0.77 0.80
6 0.60 0.63 0.63 0.65 0.67
7 | 0.33 0.35 0.36 0.36 0.37

its components; and wa, ws, wc, are the weight fractions of these com-
ponents in the solution.

Solutions of diiodomethane in a-monochloronaphthalene appeared to
be ideal at first glance since, for this series, an almost linear relation
existed between density and composition in volume fractions (or between
specific volume and composition in weight fractions). However, the
volume of each blend, as calculated from its weight and density, con-
sistently exceeded the sum of the volumes of its two components (Table
3). These slight deviations from additivity of volume thus indicated the
system a-monochloronaphthalene-diiodomethane to deviate somewhat
from ideality.

EFFECT OF TEMPERATURE ON DENSITY

A definite relationship exists between the rate of change of density
with temperature (i.e., dp/d#) for a substance and its coefficient of
thermal expansion (). This relation can be derived from the definition

of a,
=5 (%), 2

by substitution of M/p for the volume term V (¢, p, and M represent
temperature, pressure, and mass). Since mass is constant with tempera-
ture, eq. (2) becomes

a=—(2R2). @)

ot
Eq. (3) indicates that if In p is plotted against temperature for a given
substance, the slope of the curve at any selected temperature point
equals —ea in value for that temperature. If this is done for solutions
1, 4, and 8 of Table 1, curves 1, 4, and 8 in Fig. 1 result. (Similar graphs
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Fic. 1. Variation of Inp with temperature for pure a-monochloronaphthalene (sample 1),
for pure diiodomethane (sample 8), and for a solution between them (sample 4).

were made for solutions 2, 3, 5, 6, and 7.) In all such graphs, linearity
existed between 15 and 25° C. whereas between 25° and 30° C. the slope
changed. From the slope between 15 and 25° C., ap and ., the co-
efficients of thermal expansion for pure dilodomethane and a-mono-
chloronaphthalene in this temperature range, were determined as
7.3%X107* and 6.3X 104, respectively. Results for all the liquids studied
are summarized in Table 4. Beyond the 15-25° C. range the coefficients of
thermal expansion may not be, relatively speaking, so independent of
temperature.

For a series of ideal solutions, the coefficients of thermal expansion are
linearly related to composition in volume fractions (Fujii, 1960, p. 380).
For the system a-monochloronaphthalene—diiodomethane this is obvi-
ously untrue (Fig. 2). In contrast with plots of density against weight
fraction, it appears that non-ideality can be detected with considerable
sensitivity by plotting the coefficients of thermal expansion against
volume fractions for a series of solutions.

In an ideal system, the value of dp/d¢ is linearly related to composition
in volume fractions only if & has the same value for all solutions of the
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TaBLE 4. COEFFICIENTS 0F THERMAL EXPANSION AND OF dp/df FOR a-MONOCHLORO-
NAPHTHALENE-DIIODOMETHANE SOLUTIONS WITHIN THE RANGE 15-25° C.

Sample o —dp/dt
ik 6. 3X10_4+0 00003 7.5X10
2 6.9% 10+ 0.00004 10.8X 10
3 7.4X1071£0.00004 14.2X10¢
4 7.3%X107t+0.00003 16.4X 10+
5 7.7%X107440.00006 19.3X10~
6 7.6X 1074+ 0.00006 21.2X10¢
7 7.6X1074+0.00006 22.9%X10+
8 7.3X107%+£0.00005 24.4X10™*

series. To derive this relationship, differentiate Fujii’s equation (1960,
p. 380)
p =2 pivi @

with respect to temperature (pressure remaining constant) to obtain

(2),-55(2) +En(Z),

As eq. (3) indicates, a linear relationship between (38p/0), and volume
fraction v, is possible for a solutional series only if (d2,/¢), equals zero.
This occurs only for the very specialized case wherein a, the thermal
coefficient of the solution, is equal to «;, that of its ith component.
To prove this, let v; and V; respectively represent the volume fraction
and total volume of the ith component in a solution whose volume is V.
By definition of volume fraction

Vi
i = T . 6a
u= (6a)

0.5 1.0
VOLUME FRACTION (diiodomethane)

THERM. EXR COEF. (xI0™)

Fic. 2. Variation of the coefficient of thermal expansion (a) with respect to volume
fractions of diiodomethane for solutions of the a- monochloronaphthalene—duodomethane
series within the 15-25° C. temperature range.
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Differentiating eq. (6a) with respect to temperature we obtain

v, av
V(&) - (E)
at /p
- 2

dv; ot
== N

From eq. (2) it is apparent that

av; av
( ) = Viai and (—) = Va.
ot ot /p

Substituting these into eq. (6b) there results

dv;
ot

). - i =), ™

It is now obvious that (dv;/dt), can equal zero only when a; equals a.
For the system studied ap and «, differ significantly in value and, as
observed, dp/d¢ is thus not linearly related to volume fractions of di-
iodomethane (Table 4).

REFRACTIVE INDEX AND COMPOSITION

Non-linearity of the refractive indices with volume per cent composi-
tion in the a-monochloronaphthalene-diiodomethane system was re-
ported by N. W. Buerger (1935) and later corroborated by Kaiser and
Parrish (1939). The present results indicate the refractive index to be
non-linear with composition represented by volume fraction, mole frac-
tion, or weight fraction.

The nature of the variation of refractive index with composition in
solutions, glasses, and solid solutions has been studied extensively
(Tilley, 1922; Porter, 1925; Barth, 1930; Sun et al., 1940). According to
Barth (1930), Mallard in 1885 developed the following equations

n = mNi + n:N, (8)
and
1 N1 N:
PR &
where #, and #, represent the refractive indices of two transparent,
miscible materials, # the index of their mutual solution, and Ny and N,
the mole fractions of each in this solution. Eq. 8, which is frequently used
by mineralogists and petrographers, was developed by analogy to the
superposition of two isotropic plates of differing indices.

This same approach may be used to develop an equation of which eq.
(8) is a special case. If, for example, the m components of a solution
were to become stratified (Fig. 3) then d, the optical path for normally
incident light passing through this solution, would be the sum of the
optical paths for the individual strata, i.e.
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LIGHT

A: area of plate

F16. 3. Hypothetical stratification of a solution into pure layers of its components. For
these individual layers, / and # represent thickness and refractive index, respectively.

d=73 nil

where n; and |, represent refractive index and thickness of each individual
layer. If z represents the time necessary to pass through the strata, then
the velocity of the light in a vacuum is »_nJ,/z whereas its average
velocity through the plates is » [,/z. Thus, the index of refraction of the
superposed strata is
_ 2 nils
e A
As Fig. 3 indicates, however, since the interfaces between the strata are
of equal area (A), the ratio of the thickness of an individual plate to the
sum of all thicknesses equals v;, its volume fraction in the solution i.e.,

.

2k
n= Z Nili. 10)
Eq. (10), previously derived by Tillotson (1918), has been used by
several workers (M. J. Buerger, 1933; Gibb, 1942; Kerr, 1960). Binary
solutions for which eq. (10) holds were called “ideal solutions” by M. J.
Buerger (1933) and “optically ideal solutions” by several following
workers (Butler, 1933; Kaiser and Parrish 1939; Darneal, 1948). To the

extent that the molar volumes of the components are equal, v; equals N;
and therefore eq. (10) becomes

n= 2 mN;

Ui

and, consequently,
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which, expressed for just two components, is identical with eq. (8).

The derivation of eq. (10) assumes: (1) No interaction between the
components of the solution occurs; (2) The volume of the solution is
equal to the sum of the volumes of its components prior to mixing;
(3) Normal incidence of light. The system being studied, since (for it)
volume is not quite additive, is therefore not expected to conform to a
linear relationship such as eq. (10).

In addition to the Mallard equations (Egs. 8 and 9), the following
equations relating refractive index (and density) to composition were
tested with respect to the system studied. The Gladstone-Dale equation:

n—1 _ (1a — 1)wu+ (mp — Dy

SRR (1

P Pa Pb
The Lorentz-Lorenz equation:

n? — 1 a2 — Vwa  (ns® — Dy
= i 8 12
n?+2)p  (ne*+ 2)pe o (m® + 2)pe % 12)

The Lichtenecker equation:

logn  (log na)we (log a1y
= = Lereiteng .

(13)
P Pa A
The Newton-Drude equation:
w1 (nd = l)w.z+ (m? — Dwy ose » (149
p P — o
And the equation introduced by Allen (1956):
B R, m (15)

p Pa Pb

Thus, assuming that p, the density of a solution is known, then #, the
solution’s refractive index can be calculated from the refractive indices,
densities, and weight fractions of its components (e.g. Na, pa,%a; Nb, ps, Ws;
etc.) on the basis of the foregoing equations. If this is done for solutions
2-7, the calculated indices (Table 5) are closest to those measured if the
Lorentz-Lorenz relationship is used, slightly more variant for the
Lichtenecker equation, and increasingly variant for the Gladstone-Dale,
Newton-Drude, and Allen equations. Both Mallard equations proved
least satisfactory of all, yielding such erroneous results that they were
not tabulated.

If ideal solutions are being dealt with, equation (d) in Table 2 applies.
Thus this value for weight fraction may be substituted into egs. (11)—(15)
to eliminate the density terms. The resultant equations, now composi-
tionally expressed in terms of volume fractions (i.e. v, v, etc.), are:

n—1=(m— Da+ (mp — Doy + - - -
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or
W= Nals + Mels + v ¢ (16)
2 —1 2 — 1)va 2—1
" _(= Yo | (e )vb+ o an
n? 4 2 e+ 2 mp? - 2
log n = v, log #a + v log e + -+ ; (18)
n?—1= (2 — Vg + (2 — Doy + -« +
TABLE 5. CALCULATION OF REFRACTIVE INDEX FROM DENSITY
Refractive index calculated from the
following equations:
No. mexp. [————— — == —|  pexp.
Lorentz- Lichte- Gladstone- Newton- Allen
Lorenz necker Dale Drude
2 1.6467 | 1.6475 1.6477 1.6494 1.6508 1.6511 | 1.5668
3 1.6617 | 1.6647 1.6649 1.6672 1.6691 1.6698 | 1.9377
15° C. 4 1.6776 | 1.6808 1.6810 1.6834 1.6853 1.6861 | 2.2522
5 1.6912 | 1.6949 1.6952 1.6974 1.7027 1.6999 | 2.5235
6 1.7074 | 1.7091 1.7094 1.7112 1.7127 1.7133 | 2.7877
i 1.7232 | 1.7238 1.7240 1.7251 1.7261 1.7262 | 3.0401
2 1.6444 | 1.6449 1.6450 1.6468 1.6482 1.6485 | 1.5614
3 1.6589 | 1.6616 1.6619 1.6642 1.6661 1.6667 | 1.9304
20° C. 4 1.6744 | 1.6776 1.6789 1.6803 1.6821 1.6829 | 2.2240
5 1.6874 | 1.6914 1.6917 1.6939 1.6957 1.6964 | 2.5136
6 1.7034 | 1.7056 1.7069 1.7077 1.7093 1.7098 | 2.7773
it 1.7188 | 1.7201 1.7203 1.7215 1.7225 1.7228 | 3.0287
) 1.6432 | 1.6439 1.6440 1.6458 1.6472 1.6487 | 1.5593
3 1.6572 | 1.6603 1.6606 1.6630 1.6648 1.6655 | 1.9277
22° G 4 1.6728 | 1.6763 1.6766 1.6789 1.6808 1.6815 | 2.2408
5 1.6864 | 1.6898 1.6901 1.6923 1.6942 1.6948 | 2.5097
[} 1.7018 | 1.7040 1.7044 1.7061 1.7076 1.7081 | 2.7733
7 1.7166 | 1.7183 1.7174 1.7197 1.7206 1.7210 | 3.0240
2 1.6418 | 1.6423 1.6424 1.6442 1.6456 1.6460 | 1.5560
3 1.6558 | 1.6586 1.6588 1.6612 1.6637 1.6638 | 1.9234
25° C. 4 1.6705 | 1.6744 1.6746 1.6770 1.6789 1.6797 | 2.2358
5 1.6839 | 1.6879 1.6881 1.6904 1.6922 1.6928 | 2.5044
6 1.6998 | 1.7017 1.7020 1.7039 1.7054 1.7061 | 2.7666
7 1.7140 | 1.7160 1.7162 1.7174 1.7184 1.7189 | 3.0172
2 1.6392 | 1.6400 1.6400 1.6418 1.6432 1.6435 | 1.5502
3 1.6529 | 1.6560 1.6560 1.6585 1.6604 1.6609 | 1.9162
30° C. 4 1.6668 | 1.6710 1.6710 1.6736 1.6755 1.6761 | 2.2261
5 1.6806 | 1.6844 1.6844 1.6869 1.6887 1.6893 | 2.4939
6 1.6962 | 1.6980 1.8989 1.7001 1.7016 1.7020 | 2.7549
7 1.7098 | 1.7122 1.7120 1.7135 1.7144 1.7149 | 3.0048
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=]
-1
oo

n? = ng’e + mpPvp + - - - ; (19)
n® = na’va + me’ve + - - - . (20)

These equations, applied to solutions 2—7 in the same manner as were
eqs. (11)—(15), yield even less accurate results, possibly because of the
non-ideality of these solutions.

Equations (11)—(20) could well be applied to solid solutions, equations
(16)-(20) applying to the extent that the solid solutional series ap-
proaches ideality. On the basis of the present results for diiodomethane-
a-monochloronaphthalene solutions, the refractive indices of solid solu-
tions should be calculable to within 49 of the index idifference between
the “end members” if the Lorentz-Lorenz equation is used.

EFrFEcT OF TEMPERATURE ON REFRACTIVE INDEX

For a given material, according to the theoretical discussion of Mott
and Gurney (1950), the value of (#?—1)/(n?42) varies linearly with
temperature. The data for solutions 1-8 appear to corroborate this, dif-
fering but little from the linear regression lines obtained by a least
squares analysis of the data (Fig. 4).! The Mott-Gurney relation may
be restated as

=1

= 21
(n*42) (21a)

where P, a constant, here indicates the slope of the line obtained if
(n*—1)/(n*+2) is plotted against temperature ¢ for a given substance.
Taking the derivative with respect to ¢ of both sides of Eq. (21a) we
obtain

on dn
o (21b)
from which we see that
2 2
e Sl P (21¢)

dt on

Since the slope P is always negative, so is dn/dt.

For each solution, (1) to (8), the slope P for the line relating
(n*—1)/(n*+2) to temperature { was obtained by a least squares
analysis of the observed data. Substitution of P into eq. (21¢) then per-
mitted d#z/d¢ to be calculated for each temperature of measurement.
For each solution, dun/d¢ decreased slightly in value as temperature in-

! Butler’s (1933) data on indices of refraction of kerosene and a-monochloronaptha-
lene solutions further substantiate the Mott-Gurney discussion.
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TABLE 6. VALUES oF —P, —(dn/df), AND v FOR THE SOLUTIONS STUDIED

v [ — (dn/d8) X 10¢ X104 1
Sample |——— 15°—
15°-30° C. 15°C. 20°C. 22°C. 25°C. 30°C. av. o

30° C.

1 1.88X10~¢ 4.19 4.18 4.18 4.17 4.16 4.2 2.56
2 2.28X107* 5.12 5.11 5.11 5.10 5.09 5.1 3.11
3 2.61X10 5.93 5.92 5.91 5.91 5.89 5.9 3.57
4 3.61X10~ 7.28 7.26 7.25 7.24 7.21 7.3 4.34
5 3.00X10 6.98 6.96 6.96 6.94 6.92 6.9 4.13
6 3.50X 10~ 8.25 8.23 8.22 8.20 8.18 8.2 4.83
7 3.54X10 8.46 8.43 8.41 8.39 8.36 8.4 4.90
8 3.36X10 8.15 8.12 8.11 8.10 8.07 8.1 4.67

! Taken to be the slope of the plot of In # vs. temperature for each solution. This
assumes that v is relatively independent of temperature in the range between 15° and 30°.

creased, particularly for the dilodomethane-rich solutions (Table 6).
Thus, strictly speaking, dr/d¢ is not independent of temperature.

The writers also calculated what will be called the “thermal coefficient
of refraction” (y) for each solution, this being defined as

y=———. (22)

| B T o T

Q
= 25k ¢ o
L)
¢ ||| K \
o Q
2 { T |
g L0 | | \
Lo il o o Q Q o
[a
z \
LJ
e
sl ), L) .
354 360 370 .380 .390 400
n?—|
n+2

Fr6. 4. Variation of (n®—1)/(n?+42) with respect to temperature for solutions
(1) to (8) of the a-monochloronaphthalene-diiodomethane series.
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However, for a given temperature, neither v, du/d¢t, or P varied linearly
with composition for the a-monochloronaphthalene—diiodomethane series
studied.

Buerger (1933) considered du/d¢ and # to be linearly related for “op-
tically ideal, binary solutions,” ¢.e.

dn_

—=kn
ds
or
1 dn_k
n dt

where £ is a constant, i.e., is possessed of the same value for all end
members of the series. From eq. (22) it is obvious that k= —v; hence
dn/dt is linearly related to # only if the end members possess equal
thermal coefficients of refraction. In this latter case the slope of the
straight line relating du/d¢ and » yields the thermal coefficient of refrac-
tion for either member.

In such a solutional series it is also unlikely that dn/d¢ will vary
linearly with volume fraction, .e.

dn dns

E = Et— Vie (23)
For this to hold, it is necessary that eq. (10) also hold for the series
(which is in itself doubtful). Differentiation of eq. (10) with respect to

temperature yields

dns
dt

dy;
de’

i+ D m

4

dn
>

The second term on the right side of eq. (24) must equal zero, if egs. (23)
and (24) are to become identical. Such is the case only if volume per cent
is unchanged by temperature, i.e. dv;/d¢=0. This, of course, only pertains
if the thermal coefficients of expansion of all members of the system are
equal (¢f. eq. (6b)). Thus eq. (23) is expected to hold only under very
limiting circumstances.

DENSITY AND REFRACTIVE INDEX RELATIONSHIPS

Ritland (1955) observed a linear relationship between density and
refractive index for a borosilicate glass treated at various temperatures,
and concluded that its refractive index was a simple function of its
density as temperature was varied. A similar relationship exists for indi-
vidual solutions in the system a-monochloronaphthalene—diiodomethane
studied here. Thus density appears to be a simple function of refractive
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index for these materials, i.e.

(£) -+ (25)

where £ equals a constant and ¢ refers to composition.

In contrast, the relation between density and refractive index' for
a series of solutions of differing compositions (but at a constant tempera-
ture) is likely to be non-linear in the ultimate analysis. In other words,
(8n/dp). is not likely to equal a constant for such a solutional series. To
determine the conditions necessary for (9#/9p), to equal a constant,
assume that density and refractive index of solutions in the series are
both functions of temperature and composition, thus

e = plc, t) (26)
n = nlc, t). 27)
Consequently
dp
(dp) _ ( )c 28)
).
and

) -
) &) -

If p and # have a linear relation to each other, the Jacobian determinant
of eqs. (28) and (29) should vanish (¢f. Bronwell, 1935), i.e.

wn_ |G, G,

o) /o oy | 50
¢, 1 it
| <:9;): ( r}l)
Combining eqgs. (28), (29), and (30) we obtain
dp
S%L -1 @31)

Gr)

on/.

as the condition which must be fulfilled if the relation between # and p
for a solutional series is to be truly linear.

If » is plotted on the abscissa and p on the ordinate, the isothermal

* For a given wavelength of monochromatic light.
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1750 | /|~ I15°C

INDEX

1700 | %

REFRACTIVE

1650 + J %

1.600 ; . ' ;
1.000 1.500 2,000 2.500 3.000

DENSITY

Fic. 5. Relation between refractive index and density for solutions of the a-mono-
chloronaphthalene-diiodomethane series at temperatures 15°, 22°, and 30°. These same
curves, on a graph paper background, are also presented by Blogs (1961, p. 64).

curve relating refractive index and density for a solutional series will
be convex upward, truly linear, or concave upward according to the ex-
tent that the ratio in eq. (31) exceeds, equals, or is less than 1.0, respec-
tively. For the solutions studied the ratio exceeds 1.0 and a convex up-
ward curve results (Fig. 5).

The a-monochloronaphthalene-diiodomethane media of other labora-
tories can easily be adapted for use as a graded series of density standards
for sink-float tests of small grains. Assuming #p is known to within 0.001,
density can be determined to within 0.03 for the less dense and to within
0.01 for the more dense liquids of these sets of immersion media. To do
this use either Fig. 5 or, better yet, similar graphs of the data of Table 1
made to a much larger scale.

Extrapolation of these data to media in other laboratories should oc-
casion no serious errors since samples of diiodomethane and of a-mono-
chloronaphthalene from other laboratories agreed in refractive index and
density (within the limits of experimental error) with those reported
here. Although a purchase date span of five years was involved, agree-
ment was exceedingly good between diiodomethane samples. A five year
old sample of a-monochloronaphthalene possessed a density which was
.0021 lower than our sample, this being the only result which was beyond
the limits of experimental error. Blends from older stocks such as those
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used by Kaiser and Parrish (1939) might occasion greater inaccuracies
if Fig. 5 is applied to them.

A truly linear relation between refractive index and density for a
series of solutions requires such special conditions that it is likely to be
the exception rather than the rule. The data for Clerici solution (Jahns,
1939) at first sight indicate a linear relation for 21° C. However, if
this linear isotherm is extended, it does not pass through the point indi-
cating the refractive index and density of water at 21° C. Thus a slightly
non-linear relation between refractive index and density is suspected for
Clerici solution.

In the search for a miscible series for which the relation between p and
n is linear, (dp/9n), should be equal in value for both end members.
From eq. (28), the value (3p/0m). may be calculated if the right
hand terms are known. Commonly, however, only dr/df, but not dp/d¢,
is cited for immersion media. The latter value must thus be measured.

The “‘ideal solutions” discussed by M. J. Buerger (1933) and “‘optically
ideal solutions” discussed by others (Butler, 1933; Kaiser and Parrish,
1939; Darneal, 1948) were defined as binary solutions for which refractive
index was linearly related to volume fraction, i.e., for which

n= 2 n (10)

or, stated alternatively, for which

( ) Y (32)

where k; is a constant. Continuing our assumption that # and p are
functions of composition, ¢,

) »
©) - Go):

For “optically ideal solutions” therefore,

(&)

oc t

Tt 34

(@) k1 (34)
m t

For an ideal system (8p/d¢), equals a constant if ¢ is expressed in volume

fractions (Fujii, 1960). Thus, for a thermodynamically ideal solution to
be “optically ideal” as well,
((‘ip)

(o)~

— = fyg, (35)
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where k; is also a constant. Consequently, solution series for which
density and refractive index are linearly related may be concluded to be
“optically ideal” and vice versa.

DISPERSION

The refractive indices of the liquids studied were measured at wave-
lengths, (Hg) 4358, 5461, and 5780 A (£10 A) (Table 7), and at (Na)
5893 A. For each liquid these data were plotted on Hartman dispersion
nets to yield straight lines for each temperature studied (15.0, 20.0, 22.0,
25.0, and 30.0° C.). From these lines, indices #r and #c were determined
(Table 8) and the common measurements of dispersion (np—nc) and

(lD_:i

ny — nC

could be determined for each liquid (and temperature). For each liquid
the average value of (np—#nc) and of

np — 1
=
for the five temperatures investigated was computed. For the solutions
studied neither (#r—#c) nor
np — 1
Gr=o)

was linearly related to volume fraction (Fig. 6).

Considering solutional series in general, (ng—nc) can be expected to be
linearly related to volume fraction only if refractive index is so related.
Differentiating the Cauchy equation (¢f. Jenkins and White, 1957,
p. 468)

A
n =, + 3 (36)

with respect to composition we obtain

mn M, 1 70A
(E)g - ( dc )t+ ﬁ (_(96‘):. @7
From this we can see that if (dn/dc), equals a constant, so must
(0n0/9¢),. Consequently (8A/dc), must also equal a constant. From the
Cauchy equation, however, we obtain
A — Ap?

Aot

(38)

HF — W =

and, since
Aol — AF?
AcIAF?
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6. Variation of the dispersion, (#r—nc), with respect to volume fractions of diiodo-
methane for solutions of the a-monochloronaphthalene-diiodomethane system.
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F16. 7. Variation of the specific dispersion (np—1c)/p, with respect to weight fractions of
diiodomethane for solutions of the a-monochloronaphthalene-diiodomethane system.
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Fi6. 8. Illustration of a precisely linear relation between density and composition for a
solutional series between A and B. Note that the line expressing this relation is inde-
pendent of temperature. For example, regardless of whether a solution is measured at
by, 12, or some other temperature, the plot of its density against refractive index falls on
this same line. (This illustration is thus a graphic statement of the equality

()= G

(6(npv — ne)

is a constant,

9 ¢
must also equal a constant.

Grosse and Wachner (1939) linearly correlated dispersion with com-
position in weight fraction for a binary system by using specific dis-
persion (8), which they defined for a particular temperature, as

§ e (39)
P
This relationship, obtained empirically by them, is actually a necessary
corollary of the Gladstone-Dale equation. Applying this latter equation
to the two wavelengths involved,
L T I
p P
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TABLE 9. SPECIFIC DISPERSION, 8, FOR THE SOLUTIONS STUDIED

15° 20° 2% 25° 30°
1 0.0247 0.0248 0.0246 0.0242 0.0243
2 0.0193 0.0195 0.0194 0.0190 0.0194
3 0.0162 0.0164 0.0165 0.0160 0.0169
4 0.0143 0.0143 0.0145 0.0144 0.0146
5 0.0132 0.0134 0.0135 0.0132 0.0136
6 0.0122 0.0125 0.0123 0.0121 0.0123
7 0.0113 0.0112 0.0112 0.0112 0.0112
8 0.0112 0.0110 0.0109 0.0110 0.0110

whereupon it is obvious that

§ = Kr — K¢. (40)

To the extent that the Gladstone-Dale equation is applicable to a system,
then specific dispersion may also be linearly correlated with the composi-
tion of the system (in weight fractions). This is approximately true for
the system studied (Fig. 7 and Table 9).

CONCLUSIONS

A. For a-monochloronaphthalene-diiodomethane immersion media:

1

Volume is not an additive property of the system. Thus the system is thermody-
namically non-ideal.

. Non-ideality is further substantiated by the observed non-linear relationship be-

tween volume fractions and the coefficients of thermal expansion for the series.

. Density and refractive index are not linearly related (¢f. Fig. 5).
. If of recent American manufacture, these media may be used to measure the densi-

ties of small grains by the sink-float method with an accuracy of 0.01 to 0.03, the
greater accuracy being applicable to the denser members of the series.

. Dispersion (nr—nc) is not linearly related to volume fractions whereas specific dis-

persion (ny—nc)/p is approximately linearly related to weight fractions.

. The observed relations between density, refractive index, and composition in weight

fractions is closest to the Lorentz-Lorenz relation (eq. 12), almost as close for the
Lichtenecker relation (eq. 13), but increasingly variant for the Gladstone-Dale,
Newton-Drude, and Allen equations.

B. For solutional series in general:

7.

8.

The isothermal curves relating density and refractive index are not likely to be
straight lines, thatis, (dp/dn).is not likely to equal a constant.

For such a linear relationship to exist, (9p/dn). must be equal for all end members,
that is (9p/8n). must equal a constant for the series.

. In the event of such linearity, the equation

(o= Go) @)
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must hold for the series. Illustrated graphically this equality mcans, for example,
that the points in Fig. 8 will be collinear even though these four solutions were
measured at two different temperatures, t, and ts. Thus a truly linear relation be-
tween density and refractive index will be independent of temperature.

10. A non-linear relation between refractive index and density will not be independent
of temperature. Fig. 5, for example, shows that the 15°, 22°, and 30° C. isotherms
relating density and refractive index do not coincide for the system studied (as they
would have if the relation was truly linear).

11. “Optically ideal” solutional series, by definition those in which refractive index and
composition in volume fractions are linearly related, represent a rather specialized
class of (thermodynamically) ideal solutions to which the conditions stated in con-
clusion (9) must also apply.
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