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It has ways been taken for granted that Snell 's law is to be used in

crystal orientations measured with the universal stage'

when indi of refraction of crystal and hemispheres do not coincide. In
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t leads in many cases to large errors. Theoretical refractive-
ion curves, differing in part greatly from the Snell 's law

curve, are derived for uniaxial crystals and are verified experimentally.
Extension of the treatment to biaxial crystals is possible but is not car-

ried out h$re, although a few remarks bearing on this extension are given.
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Iine of sidht ("vertical") and perpendicular to the l ine of sight ("hori-
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zontal"); when the two such measurements for a given crystal are cor-
rected by Snell's law and the resulting orientations compared, they al-
ways disagree by about 10" and in such a way as to indicate that the
correction applied to one or both of the measurements is too large. I
noticed the same thing later in my ice petrofabric work using Rigsby's
equipment, but at first I put the discrepancy down to the inherent diffi-
culties and uncertainties in measuring high tilt angles with the relatively
crude technique involved. IIowever, Rigsby carried out in the labora-
tory a further investigation of the matter, and found that the Snell's
law correction for ice seems to be applicable to the "vertical" settings but
not to the "horizontal" onesl the resuits of this work were mentioned
by Langway (1958), but no detailed report was published. Although it
had been suggested (Rigsby, 1951, p. 598) that biaxial character or other
anomalous optical properties of the ice crystals studied might be re-
sponsible for the peculiar effects, it turns out, as shown in the present
paper, that a general phenomenon is involved, which wil l be encoun-
tered in all uniaxial and also in biaxial crystals.

That the tilt angles measured by setting the c-axis "vertical" require
a different correction-law from those measured by setting c "horizontal"
seems at first sight to have a ready explanation in the fact that the
"vertical" settings can be made, and therefore ordinarily are made, with
the help of only a slight tilt on the EW (,4a) universal stage axis, whereas
the "horizontal" settings require a relatively large ti l t on this axis.
Examination of this idea requires an analysis of the optical principles by
which crystal orientations are measured with the universal stage. This
analysis, given in the following sections, leads unexpectedly to a refuta-
tion of the foregoing explanation and shows that the effect is a general
one, defying ordinary intuition. The tilt on the EW axis plays only a
minor role.

PnrNctprns on Cnvsrar, Onrpnr,qrroN MEASUREMENT
wrrrr rHE UurvBnser- Srecn

AII methods of measuring optical orientation with the universal stage
depend on the phenomenon of extinction. In the orthoscopic methods
(Emmons, 1943, pp.23-39), manipulation of the stage axes is con-
trolled by setting the crystal under observation to extinction (minimum
transmitted l ight), which corresponds in the conoscopic methods (Hal-
l imond, 1950) to placing an isogyre at the center of the conoscopic field.
There is thus a close relationship between the conditions that relate uni-
versal stage manipulation to crystal orientation and the conditions that
determine the location of isogyres in interference figures. The latter have
been investigated by Kamb (1953), where it is shown that minimum
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transmitted l ight at a given point in the interference field is achieved
when, for the corresponding direction of l ight-propagation in the crys-
tal plate under observation, the vibration directions, stereographically
projected (as described below) onto the plane of the microscope stage,
coincide with the vibration directions transmitted by polarizer and ana-
lyzer. This condition for minimumJight is the correct one when the rota-
tion of the polarization plane of the incoming light due to refraction at
interfaces below the crystal plate is equal to the further rotation in the
same sense due to refraction above the crystal plate. The latter require-
ment is well fulf i l led under universal stage observation, because, if the
mounting oil is matched to the index of refraction of the glass platform of

the universal stage, and if the indices of refraction of cover glass and of

the glass slide on which the thin section is mounted are equal, then the
sequence of refractions below and above the crystal plate are just the
same, in reverse order. The argument here, which is not given in detail,
is a direct consequence of the discussion in the paper cited (Kamb, 1958,
pp. 1035-1043), where in equation (9) we have d1:62, because of (10),

and consequently {:Q.
The foregoing considerations lead to the conclusion that the condil ion

for extinction of a crystal plate under universal stage manipulation is
the following. We consider a l ight ray travell ing parallel to the micro-
scope axis, and we consider the corresponding refracted ray in the crys-
tal plate, this refracted ray being in general inclined to the microscope
axis if the crystal plate and hemispheres have different refractive indices'
For this inclined, refracted ray we imagine a small cross to be constructed
whose arms are parallel to the vibration directions for this ray in the
crystal plate. We imagine this cross to be placed on the surface of a

sphere at the endpoint of a radius vector in the direction of the refracted
wave normal, and we assume that the birefringence of the crystal plate

is small, so that ray and wave-normal directions essentially coincide'
We then stereographically project the cross from the surface of the
sphere onto the plane of the microscope stage. When the stereoscopically-
projected cross coincides in orientation with the l{S-EW cross formed
by the vibration directions of polarizer and analyzer, the crystal plate

is at extinction. At the same time, under conoscopic observation an
isogyre passes through the center of the interference field.

This principle will be used in the following sections, in which the re-
fractive index correction for universal-stage measurement of the optic-
axis orientation of uniaxial crystals is analyzed. We consider separately
the cases when (1) the optic axis is set ostensibly perpendicular to the
microscope axis, here called the H setting, and (2) the optic axis is set

ostensibly parallel to the microscope axis, here called the V sett'i.ng.
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UNraxrar, Cpysrer,s rN .F1 SETTTNG

In the standard universal stage procedure for measuring the c-axis
orientation of a uniaxial crystal (Emmons, 1943, p. 23), the situation
to be analyzed is the result of the following sequence of operations.
(1) Starting with all axes at their null settings the crystal is f irst rotated
about the IV stage axisl unti l the c axis l ies in the "vertical" east-west
plane (east-west plane parallel to the microscope axis) . (2) This plane
in which the c axis l ies is t i l ted through some angle, here designated 7,
by rotating on the EW axis. (3) The /y'S axis (which no longer is parallel
to the microscope stage) is now ti lted through some angle f, unti l the
crysta l  reaches ex l inct ion.

The situation at the completion of this sequence of operations is
shown in Fig. 1, which is a stereographic projection whose pole i is the
pole of the microscope stage, i.e., the direction of the microscope axis.
P is the pole of the inner stage platform of the universal stage. Init ially,
before the above sequence of operations, P l ies at i, and in the first opera-
tion it remains at i while the c-axis, whose orientation is designated by
c in Fig. 1, is brought to l ie in theWPE plane. This plane is then ti l ted
through the angle 7 by rotating on the EW axis. Finally, by rotation on
the 1[S axis (which remains perpendicular to the ti l tedWPE plane), P
is moved along circle WPE throttgh the angie f away from the 1/zS
plane. In this last motion c and P move synchronously along great circle
EPW, and the position that c reaches upon completion of the operation
is indicated by the angle z in Fig. 1.

Now if the final setting upon completion of the above operations is 11
and if the effects of refraction are ignored, then we expect the c axis to
end up at W in Fig. 1, so that z:0. In this case the inclination of c to
the plane of the thin section or inner stage platform is just the measured
tilt f on 1y'S. Because of refraction, however, z wil l not in general be zero,
and inspection of Fig. 1 shows that z as there defined is the angular cor-
rection that must be swbtracled from the measured ti l t f to get the true
inclination l-u ol the c-axis to the plane of the thin section.

The point where c actually ends up, taking refraction into account, is
determined in the following way. The incident l ight ray at i, travell ing
up the microscope axis, is refracted in the crystal plate through an angle
0 to r, which is the direction of the refracted ray (or, strictly speaking,
the refracted wave normal, which under the assumption of small crys-

l The Emmons notation for the universal stage axes is used here, the "O.E.W." axis
(u'-hich is the only EW axis of the four-axis stage) being here referred to simply as EW. The
corresponding Berek notation (tV: A1,1[S:-42, EW: A), while it has some advantages,
is more of a burden on the memorv.
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Frc. 1. Stereographic projection showing the geometrical relationships during universal-
stage measurement of a uniaxial crystal in f1 setting. Plane of projection is the microscope
stage' rncident light ray from polarizer, vibrating parallel to 1[s, travels along the micro-
scope axis i and is refracted on entering the crystal plate to r. The pole of the crystal plate
(pole of inner stage platlorm of the universal stage) is at P. "1 is the angle through which
the stage has been tilted on its EW axis, and f the tilt angle on its iy's axis. c is the orienta-
tion of the optic axis of the crystal, and y is the correction that must be subtracted, from the
measured tilt f to get the true inclination f-z of the optic axis to the plane of the thin sec-
tion. The symbol 0 designates the angle represented by arc iz in the projection, and @ is the
angle representedby arc irP. rn the lower diagram the spherical triangle crp is reproduced
with its sides and vertex angles labelled.

tal birefringence essentially coincides with the ray). r lies in the ip plane
a distance d from i, and the angle @ denotes the total angular tilt of p
away from i, which is determined by the combined tilts 7 on EW and
f on 1/S. The vibration directions for the refracted ray are determined
by the great circle cr. When the tangent to this great circle at /, as seen
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in stereographic projection, is parallel to the EW axis, then, from the

argument of the previous section, the crystal is at extinction;for a given

ti lt f this condition determines where c must l ie and hence what value

the angle z must have.
We now proceed to write down the above conditions analytically.

There are two physical conditions to be applied-the refraction of the

ray and the condition for extinction-and a number of geometrical ones.

The analytical form of these conditions will consist of a group of equa-

tions that can be solved for the correction algle v as a function of the

tilt angles 7 @n EW) and f (on //S) and of the indices of refraction of

crystal and hemispheres.
The refraction of the wave normal (which under the assumption

stated is essentially coincident with the ray) is governed by Snell 's law:

z r s i n ( @ - 0 ) : s i n @

wnere

m:  
! ! !  

Q )

zu being the refractive index of the hemispherical segments and n,1 the

mean refractive index of the crystal, the birefringence being assumed

small.
The condition for extinction, as given above, is simply

a : 6  ( 3 )

where these two angles are defined in Fig. 1.
The geometrical conditions are required to relate the various angles

involved. From the right spherical triangle involving the sides of lengths

7, f, and @ we have

c o s @ : c o s T c o s f

and

: tan I cot (D

(1 )

(4)

and also
c o s B : t a n f c o t @

where the vertex angle B is as defined in Fig. 1.
triangle crP, which is reproduced separately in

stn s

(s)

(6)

From the large spherical

Fig. 1, we have

- . ( ;  -  r )

c o s  E :  - . ( i * ,  -  
" ) c o s ( @ - e )  * s i n  ( i * ,  - , ) . n ( @ - e ) c o s n  A )

. ' "  ( ;  * ,  -  , )
and

sin P sin (r - a)
(8)
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where the side length E is as defined in the figure.
The above equations suffice to determine the desired solution. We

combine them in the following way. Into the relation

s i n 2 E * c o s z E : l  ( 9 )

we introduce the values of sin E and cos E from (7) and (8), and then with
the help of the remaining equations eliminate the quantities a, B, S, 0,
and @ in terms ol (, ^y, and m. After some reduction we arrive at the
result

t - l  /  1  1  - 1 2

L , , . o r ( l - u ) s i n f c o s T - s i n ( g -  
r )  l /  I -  

* r +  * r c o s 2 r c o s 2 l J

* . " . .  ( r  .2  :  r  
(10)

Letting r: sin'(f-z) and expanding the bracket, (10) can be written in the
form

- { A { x ( r - r ) : B r * C

2 B C + A + \ / A ( A + 4 C B - 4 C ' )
2(B' + A)

We now must choose the correct root from among the

(  1 1 )

where

4 / 1 1 \
A :  . s i n 2 f  c o s 2 7  ( 1 - : . s i n ,  I  - : . s i n r 7  c o s 2 f  )m 2 \ r n - m r /

B  :  tan2(*  {s in r r ( l  f  cos27)  * {s in r .1 ,  cos2f  (12)

C:  tan2f  * {s in ,gcoszT

The solut ion to (11), found upon squaring, is

(13)

four given by

s i n ( 3 - r ) : ! J i (r4)

where o is given by (13). The extra roots were introduced by squaring
(11) and by squaring cos E and sin E in (9). We cannot choose the sign
in (13) by substituting (13) back into (11), because the extra roots
added by squaring (11) correspond to the two possible signs in (14)
rather than to the two signs in (13). It would doubtless be possible to
resolve the four roots by returning to the original equations (1) to (8),
but a more straightforward procedure is available. We know that if
m:l there is no refraction of the l ight on entering the crystal plate and
therefore no correction to the measured orientation f is required, so that
z:0.  I f  we put  m: l  in  equat ions (12)  and subst i tu te in to (13) ,  we ar-
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rive, aftbr considerable reduction, at

I  f  cosa rcosa l  *  2  cos2Ts in2 f  cos2g  +  2  cos2Tcosa l
sin' (f - v) : sin2 (

I * cosa y cosa f * 2 cos2 7 sin2 f cos2 f - 2 cos 27 cosa f

In order that (15) yield identically z:0 it is seen that we must take the
- sign in (13) and the * sign in (14).

There are now two ways of evaluating the rather cumbersome result
in!1tS). One is straightforward calculation of correction curves (f -z)

as. f for particular values ol m and 7; the other is to try, by making suit-
able approximations, to reduce (13) to an approximate formula that is
simpler and more comprehensible.

For purposes of calculation it is useful to bring (13) into a somewhat
more convenient form, although without approximation it cannot be
reduced to anything realiy simple. If we define three quantities

(1s)

1
@ : -. sin2 f cos2 7

1
o :  - " s i n 2 T

and

t r : t a n 2 f  ( 1 8 )

and also define two functions J+(r, o, tr) and/-(<,r, o, tr) by

. + ,  t r ' ? * I ( 3o * " )  - |  u (2  -  o )  +  2 \ /@( l  -  o  -  o ) ( t r o  f I o  *o )
i'=\., a. r) : - ----^;fi,to 

f-r.1-1 "z 
qTxe, +;,- 

- (19)

then the result in (13) can be written

sin (3 - ,) : + 1/f-(a, o, \) (20)

Curves of f -z as a function of f, calculated from (16)-(20) for
m:t .548 and for  r :0o,  40o,  and 60o,  are shown in F ig.  2,  under the
designation 11. Also shown is the Snell 's law correction curve

m s i n ( g - z ) : s i n f

for the same index-ratio m. It is seen that the theoretical curves given by
(16)-(20) differ greatly from the Snell 's law curve. In fact the measured

tilt f is small,er than the actual inclination (-v ol the optic axis to the
plane of the thin section, so that the correction v is negotitta, in the oppo-

site direction to the correction given by Snell 's law. From the curves it is

seen that the effect ol the EW axis setting y is relatively slight, appreci-
able only at angles 7 about 30o and greater. The largest departure of

the curve fory:20o from that for ?:0" is only 0.4o. Thus the violation

of the Snell's law correction remains prominent as 7--+Q.

(16)

(r7)
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t -v

{

Frc. 2. Theoretical refraction-correction curves for universal stage measurement of
crystal orientation, calculated lor m:7.548. The true (refraction-corected) angle f-z is
plotted against the measured angle f. The curves for the Il setting (equation (20), upper
curves), which are given for three values of the tilt angle 7 on the EW axis, Iie conspicu-
ously above the curve of no correction (f -r:f). Also shown for comparison (dashed line)
is the linear approximation (22). Fot the 7 setting (lower curves) the ordinate should read

f-p; the curves for this case are calculated from (31) or, for 7:g,1to- 1rrr.

A useful approximate relation between l-v andf can be obtained by
expanding (19) in powers of f. In doing this we must distinguish the two
cases ?:0 and "y*0, because the reduction of (19) in the two cases is
very different: in the first, c,r dominates in the numerator and denomi-
nator, since o:0, whereas in the second, o dominates if we assume f(7.
For 7:g the numerator and denominator in (19) are

23s

For

700

60

50

40

30

20

772 = /.548
g-v =!(+$)! ->.

H

T=f9:
O"-

to

, /x-g-v = !



236 W. BARCLAV KAMB

/  1 \ 2
N u m . :  r r ( 1 + " l + o ( f )

\  m " , l

Denonr.: i r, + o(ft

so that for small f and f -z we therefore have

m /  1 \( - , : r - 2 " \ r+  . )  ( 22 )

For 710, the lowest-order terms in the expansion of numerator and de-
nominator of (19) in powers of f are, letting l:sin "y,

N u m . : t ' \ r -  
/  1 \  1 4  /  /  f 2 \ )

m 2  t  
- r ' ? ( l  +  

, * ) +  , , - 2  
' l /  1 1  -  1 2 )  

\ t  
-  

; ) f  t z s l

I4
Denom.  : ;

If the square-root in (23) is expanded in powers of I we find that the
12 terms drop out and

N u m . : l l ! (  
1 \ 2  1 /  1 \ /  1 \  - r

r z , L 4  \ 1  +  * ) ' '  
+  * ( t  

-  
- , ) \ t -  r , ^ ) "  

+  " ' l  ( 2 4 )

To the lowest order in f and f -2, (19) thus reduces for yl0 to

t  -  v  :  r \ : ( t  *  1 , , )  *#  ( '  - ' , ) '  
" tn '7  *  o (s in ' , , ) f  Qs)

whose first term is, remarkably, of the same form as (22) even though
the reduction leading to (25) is entireiy different. (25) provides in addi-
tion an estimate of the effect of ? on the correction curve. The term in
sin 7 is found to be small. Thus for m:1.548 we have

| - v : f(1.097 + 0.066sin2y t . . . )

For  7:Jgo and g:3go the ef fect  of  the second term on f -z  is  0.5" ,  in
agreement with the value 0.5o found by actual calculation from the exact
formula (20).

The approximate linear formula (22) turns out to fit the exact rela-
tion (20) rather well over the entire useful measurement range of stand-
ard universal stages, from 3:6o to g:69o. This is shown in Fig. 2,
where the l inear relation is plotted as a dashed line. Even for an index
radio m:1.548, which is much larger than that normally encountered in
universal stage work (except in ice petrofabrics), the linear curve departs
from the exact curve for ?:30o by more than 1o only above f :60o, and
belowg:55o the curves do not depart by more than 0.5o. For values of
rn r'earet to 1, the discrepancy between the linear and exact curves will
be corresponding smaller, all curves converging for m:1 to the relation
(-r:1, the curve of no correction. To a fairly good practical approxi-

(21)
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mation it is thus possible to use (22) as the correction curve for the Il
setting over the entire useful measurement range of the universal stage
and for any EW inclination 7 likely to arise in practice. Only in the most
exacting case, where an accuracy better than 0.5o is required, would cor-
rection have to be made by the exact relation (equations (16) to (20)).

The striking near-linearity of the correction curves given by (20) is
not obvious in the formulas themselves, and therefore deserves a some-
what closer look. For the case 7:0, (20) reduces to the simpler form

2 ! m2 tan2 {* sin2f - ro" f 4/ t - \"in' I
sin 'z(5 -  z)  :

4 l  m2 tanz l

in which, however, the nearlinearity of the (-v us. f curve is sti l l  not
apparent. The degree of non-linearity can be evaluated by first writing

( - v : s i n - 1  / s i n ' ( f - z ) (27)

where sin2(f -u) is given by (26), and then expanding (27) in powers of
f. After considerable calculation this expansion leads to

m /  l \  ( m 2 - 1 1 2 ( 2 - n a 2 \
(  -  v  : r t ( t  +  * , )  +r ' - - -zz * , - - r  +o( f9 Q8)

The coefficient of the term in f3 proves to be quite small, which accounts
for the nearlinearity of the correction curve. For m: \/2 the third-order
term vanishes exact ly ,  and for  m:1.548 i t  is  -0.0088 f3.  At  l :40 ' the
value of this term is -0.2o, which agrees approximately with the differ-
ence -0.3" between the exact curve calculated from (20) and the l inear
curve from (22). At higher f values the deviation of the exact curve from
the linear curve is rather larger than given by the third-order term in
(28), which doubtless indicates the influence of the higher-order terms.
Nevertheless (28) gives a good idea of the order of magnitude of the
non-linearity of the f/-setting correction curve ; Ior m:1.548 the curvature
of the Snell 's law curve is about 12 times greater.

The above considerations justify using (22) as the basis for discuss-
ing the general features of correction curves given by (16)-(20). Solved
tor v, (22) becomes

v :  - t ( m - l ) '  e 2 o )- 2 m

From (22a) it is seen that v is always negative. For m) 1 this means
that the trire correction y is in the opposite direction to that given by
Snell 's law. For m1.l (rehactive index of crystal plate less than that of
hemispheres) the Snell's law and true corrections are in the same direc-
tion, but the shapes of the two correction curves are quite different. The

(26)
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magnitude of the true correction is always much less than that given by
Snell 's law. In fact, for most practical purposes where hemispheres are
used, the correction given by (22a) is negligibly small. Thus if hemi-
spheres of refractive index 1.51 and 1.65 are available, as normally, then
for crystals of refractive index in the range 1.45 to l. l4theindexratio m
need not  I ie  outs ide the range 0.95 to 1.05.  For  m:0.95 and m:1.05 we
find for l:60'a true correction z of only -0.08o, fuom (22a), whereas
the Snell 's law correction for the same ti lt I and index ratios m is *5.0".

Frc. 3 Frc. 4

Frc. 3. Stereographic projection as in Fig. 1, showing the situation when z:0. In this

diagram g is shown larger than in Fig. 1, for greater clarity in illustrating the situtation at r.

Frc. 4. Stereographic projection for analysis of refraction-correction of universal stage

orientation measurement of a uniaxial crystal in 7 setting. Notation is in Fig. 1' p is the cor-

rection that must be subtracted from the measured tilt f to get the true inclination f-p of

the r-axis to the normal to the thin section.

The fact that Snell 's law fails for the 11 setting, and the fact that for

m) | the true crystal orientation differs from the measured orienta-

tion in the direction opposite to that toward which the light is refracted

in the crystal, are phenomena that defy ordinary intuition in crystal

optics. They can, however, be understood qualitatively by reference to
Figs. 1 and 3. If in Fig. 1 we seek to imagine the position that c must

take, for a given fixed P and r, to satisfy the required condition that the
tangent to the grea.t circle u at r be parallel to WiE, then evidently c

must move toward trZ so that z decreases from the size shown in the fig-

ure. When c reaches W,sothat z:0, the situation is as shown in Fig' 3'

It is clear in Fig. 3 that c must continue to move even further in the same

direction, beyond W, belore the required condition at r becomes satis-
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fied, so that z must become negative. By the same type of argument, the
fact that Ior m11, z is again negative can also be understood. In this
case r lies on the opposite side of i fuom P.

UNraxrar Cnvsrnrs rN Y SETTTNG

In the Z setting, at minimum transmitted l ight c l ies somewhere in
the neighborhood of the lfaS plane, as shown in Fig. 4. A correction p

is to be applied to the measured ti l t f on .l/S in order to get the true in-
clination l-p of the c-axis to the normal to the crystal plate. The anal-
ysis of this case follows similar l ines to that of the fl setting. If we recog-
nize that

* : ,  -  
|  

Q s )

then equations (1) to (8) can be applied directly, except that the extinc-
tion condition in (3) must be replaced by

- :o++ (30)

Combining equations (l), (2), (4)-(8), (29), and (30) by the same pro-
cedure as before, and eliminating the extraneous roots by the same
method, we obtain the result

cos (3 - p) : f 1/J+@, o, L) (31)

where/+(r.r, o, X) is given in (19). o and o are given by (16) and (17),
as before, but for the tr/ setting tr is replaced by

, t : 1 1 ' l - r  G 2 )
sin 'zf

The first step in evaluating (31) is to examine the case "y:0. It might
be expected that any value of pr shouid satisfy (31) in this case, because
when the stage is not tilted on EW the crystal remains at extinction for
any ti l t f on 1[S. However, aithough this expectation is substantiated in
the form of the original equations, it has been eliminated in the reduction
leading to (31), and thus (31) evaluated for 7:g gives the l imiting cor-
rection curve f-trr us. f as 7-+0, i.e. for very small t i l t angleS on EW.
With 7:9, (31) reduces exactlY to

s i n ( f - p ) : ! r i . ' r  ( 3 3 )

which is the ordinary Snell's lurt .o...Jion formula.
To investigate the effect of 7 on the correction curve, we could make a

detailed study along the lines given for the H setting, but because in
practice only small tilt angles on EW are necessary, it will suffice here to
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examine only the numerical evaluation of the particular case m:1.548.
In Fig.2 is plotted the Z-setting correction curve for y:0'(labelled
Snell 's laut), from (33), and also the curve fory:40", calculated from
(31). The effect of tilting on EW becomes appreciable only at high f.
For 7:20o the theoretical correction curve (31) departs less than 0.1o
from the Snell 's law curve (33) over the range 0o<f <40", and at f :60o

the departure is only 0.4o. In practice it is never necessary to use as high
an EW tilt as 20o, so that evidently the curve (33) is quite adequate for
any Z-setting measurement of the accuracy normally required.

In the same way that we can understand why the Snell's law correc-
tion curve fails for the 11 setting, we can also see why it should hold ap-
proximately in the 7 setting. Perhaps the best way to express this is to
say that the uniaxial optic axis interference figure is very nearly a perfect
cross, and the extinction condition is satisfied when in Fig. 4, thought
of as an interference figure, the 1/S arm of the cross from c passes through
r. It is also clear by the same argument that as 7--+Q the Snell's law cor-
rection must become exactly correct over the entire range of f. The main
contribution of the detailed analysis, leading to (31), is thus that it
allows the effect of non-zero 7 to be precisely allowed for in the unusual
case in which this happens to be necessary.

ExponruBNrAL TEST wrrn QuARrz

The most sensitive test of the above theory is obtained by choosing
a value of. rn that difiers as much as possible from unity. I have therefore
made measurements on a universal stage without hemispheres, which is
the same as using hemispheres of index unity, so that m:na (see equa-
tion (2)). The thin sections used were qvartz, cut at various angles to
the optic axis. The sections were mounted on the inner-stage platform
by means of an oil nearly matched to the refractive index of the plat-
form, so that the sequence of light refractions below and above the quartz
would be essentially the same. The apparent inclination (tilt angle f on
the 1/S axis) for the c-axis of each section, in 11 or 7 setting as appropri-
ate, was measured first without hemispheres and second with hemi-
spheres of index n":I.516, which differs from the mean quartz index
1.548 by relatively l i tt le, so that from the latter measurements the true
inclination f-z or f-p could be obtained with only slight refraction-
correction (as mentionec! above, for the .E setting the correction in this
case is negligible and for the I/ setting the Snell's law correction is to be
used). The resulting measured f and f -z or f -p values can then be com-
pared directly with the theoretical curves lor m:1.548 given above.

Each inclination (both with and without hemrspheres) was measured
twenty times for a given fixed setting ol the IV axis, ten times with the
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stage tilted on the EW axis by a given amount "y toward the observer

and ten times ti l ted on EW by the.same amount "v away from the ob-

server. The reason for this procedure is that the two values ls (for tilt

on EW toward observer) and f,n' (tilt away) when determined precisely

by repeated measurement in general differ significantly, often by more

than one degree. The discrepancy is due to a slight error in the initial

extinction-setting on IV, made before tilting on EW and 1[S.1 Because

the measured value f is rather sensitive to ttre IV setting, and because

the effect on f1,, of a small change in 17 is equal and opposite to the effect

on fs, a slight error in the IV setting can produce a pronounced dis-

crepancy between fr,' and f,s, and it is difficult to set ,I7 so accurately

that the discrepancy altogether disappears. As an example, it is found

experimentally that for a quartz section with c-axis inclined 32.7" to the

plane of the thin section, the dependence of the measured angles fr
and ls on IV setting @, under measurement without hemispheres, is

d(u/d6:*1.7 and d(s/d6: -1.7, so that an error of only 0.5o in the

1Il setting produces a 1.7o discrepancy between the f,v and fs values.

Since for the present purpose there is no reason to try to determine the

tru,e IV setting very accurately, and since for small errors in ,Itr/ the

sum f1,.ffs remains constant, the true value f was determined by meas-

uring f1,' and fs separately and taking

f: *(lr * fs)

The above procedure, in addition to being time-saving, improves the

measurements statistics over what would be obtained if 1Z were inde-

pendently reset before each 5 measurement. The standard deviations of

the fN and ls measurements can be determined separately and the esti-

mated standard deviation of the average value calculated in the usual

way. The estimated standard deviations of the final mean f and f-z
values, as so determined, range from 0.10o to 0.20o.

For the measurements in /1 setting a fixed 7 value of 30o was used, and

for  the /  se l t ings 15".
The results of these measurements are plotted in Fig. 5, where they

can be compared with the theoretical fI setting correction curve for

?:30" and with the Z setting correction curve for y:0' (Snell 's law),

the latter differing only insignificantly from the curve for 7:15" over

the range for which measured points are available. The agreement be-

tween measurements and the theoretical curves is satisfactory, although

the scatter of the points is rather larger than can be expected from the

1 A similar discrepancy is also produced by slight misalignment of the 1[.s and DW

stage axes with respect to the 1[S and Etr4l directions defined by polarizer and analyzer; the

resulting error is also eliminated by the averaging procedure described.
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precision of measurement alone. The standard deviation of the f values,
estimated from the scatter of the measured values about the theoretical
curves, is 0.5o, whereas from the statistics of the actual measurements
the estimated standard deviation is about 0.15". The measuremenrs
appear to be affected by small, unpredicable systematic errors-possibly
due to systematic personal error in judging the minimumJight setting
or to slight differences in the sequence of refracting surfaces above and
below the quartz plates. For the most exacting measurements of crystal
orientation, with accuracy of 0.1o, the source of these errors would have
to be found. Nevertheless, the correctness of the foregoing theory is con-
firmed by the measurements.

ExpBnrlrBurer TBsr wrrH IcE

Because the index-of-refraction corrections in ice petrofabric work are
doubtless the largest that ever arise in practice, it is desirable to have a

! L /

Fic. 5 Frc. 6

Frc. 5. Comparison of theoretical refraction-correction curves for quartz (n:1.548)
v'ith measurements on quartz thin-sections. The fl crlive and measurements are for 7: Jg".
The 7 curve is for 7:Q', although the points were measured using 7:15o. For each meas-
ured point, f-z (or i-p) is the true inclination, measured using hemispheres of index
n:7.516, and 5 is the apparent inclination as measured with hemispheres absent.

Frc. 6. Measurements on ice crystals that can be oriented both in 11 and I/ setting. The
tilt angle (on the 1r'.9 universal stage axis) measurecl in the I/ setting is plotted for each
crystal against the tilt angle measured in the 11 setting. The upper solid curve is the ex-
pected relationship of these angles based on the Snell's law correction, while the lower solid
curve is calculated from the present theory. The dashed curve is based on the empirical
correction curve given by Langway (1958).

{,
I

\
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direct demonstration of the applicability of the above theory to ice,

even though, because of the greater difficulty of handling the material

and the greater inaccuracies of measurement, the test of the theory in

this case cannot be as rigorous as with quatt'z.

A first test can be made against Rigsby's measurements, reported

briefly by Langway (1958, p. 7). Langway gives an empirical correction

curve for the 11 setting that is a straight l ine with slope (f-z)/f : l '12'

The corresponding slope given by equation (22) (Iot m:1.3I, the mean

refractive index of ice) is 1.039. This slope is significantly smaller than

that of Langway's curve. The discrepancy is not the result of the effect of

tilting on the EW axis of the universal stage, because from (25) the slope

is increased only to I.044fot 7:30o, about as large a value as is l ikely

to be used in practice. Curvature of the correction curve is also not re-

sponsible, because according to (28) the curvature is less than one third

ai great as for quartz, although for ice the curvature is positive rather

than, as for quartz, negative. Without having Rigsby's actual measured

points available it is impossible to comment further on this discrepancy.

Qualitatively, however, the present theory and Rigsby's measurements

are in agreement in indicating a linear or nearly linear correction curve

of slope greater than unity.
A second approach is to make use of ice crystals whose c-axes are tilted

about 45o tolhe plane of the thin section, and for which, as mentioned

above, it is often possible to measure the c-axis orientation both in Il

setting and in 7 setting. over a period of four years I have collected 95

such pairs of measurements in the course of ice petrofabric work, made

with two different universal stages. In Fig. 6 the actual measured values

are shown by plotting, for each pair of measurements, the tilt on I/S in

the Il setting (fs) against the tiit in the I/ setting (fy) for the same crys-

tal. According to the present theory, assuming for simplicity the H-

setting correction curve of (22),these measurements should be related by

,,: lr(ro' -'*-"i:ii)
whereas according to the SneII's law correction for both H and 7 settings

the relation should be

ra : sin , fr..rr, i,., (m' - .t- '#)] (3s)

These two curves are plotted in Fig.6 (solid curves)' Also shown is the

corresponding curve (dashed) based on the empirical correction curve

for the l l setting given by Langway. It is the same as (34) with the factor

1.04 replaced by 1.12.
The scatter of the measured values in Fig. 6 is very large, which reflects

(34)
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the large errors in such measurements under field conditions. Neverthe-
less, the Snell 's law curve is obviously ruled out, and it is seen that the
curve based on the present theory fits the measurements definitely bet-
ter than that based on Langway's empirical curve. within the rather
wider errors, these measurements confirm the present theory.l

rt is thus justif ied in ice petrofabric work (without hemispheres) to
correct the measured inclinations in rl setting by the following simple
re lat ion:

Trueinclination oJ c-axis to plane oJ thi,n section:1.}4Xmeasuretl tilt on NS axi.s.

Because of the many other sources of inaccuracy in such measurements
it does not seeem worthwhile to apply the more accurate correction based
on equations (16)-(20), which differs only very slightly from the above
Iinear relation. Measurements in 7 setting are to be corrected by snell 's
law in the usual way.

Braxr.cr Cnysrars

rt is evident that the theoretical approach used here can be extended
to biaxial crystals. Although r have not done this, the above experience
with uniaxial crystals makes it possible to comment to some extent on
the expected results for biaxial crystals.

For biaxial crystals the type of refractive-index correction wil depend
on the optical element whose orientation is measured. A primary distinc-
tion wil l have to be made between (1) measurements in which an optic
axis is set "vertical" and (2) measurements in which an indicatrix sym-
metry plane is set "vertical" or in which a principal axis is set ,,hori-

zontal" or "vertical." For measurements of type (1) the Snell,s law cor-
rection will doubtless be valid to a good approximation, whereas for
type (2) it wil l doubtless fail to a greater or lesser extent. rf the measure-
ment places the acute bisectrix in the 11 setting (ostensibly parallel to

1 Since this was written r have made the same type oi measurements on ice in thin sec-
tion under the microscope, in connection with experimental work on ice recrystallization at
the Eidgendssisches rnstitut fiir schnee- und Lawinenforschung, weissfluhjoch, Davos,
Switzerland. The microscopically measured (lr, fr) values cluster closely about the theo_
retical curve (34), verifying it to a degree of accuracy (+0.5') considerably greater than is
possible with the field measurements shown in Fig. 5. rn the laboratory ice petrofabric work,
where hemispheres could have been used, r found it much more convenient in handling and
interchanging thin sections to work without hemispheres and to use the refraction correc-
tion curves from the present paper. This experience suggests that in ordinary routine petro-
fabric work, as with quartz, it may also be convenient to dispense with hemispheres, es-
pecially when many thin sections must be measured. The refraction corrections can be com-
bined with the radial scale-function of the Schmidt net to construct a plotting scale with
which the measured inclinations can be plotted directly on the net or projection, avoiding
the need to apply the corrections numerically.
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EW),then the situation is much like that of a uniaxial crystal rn Il set-

ting, and a nearly iinear correction curve similar to (22) will doubtless

be valid. Although the slope of the correction line cannot be predicted

without detailed analysis, it seems likely that the correction z will vary

as (m- 1)2, as in (22a), and that as in the uniaxial case the correction

will be very small in most practical situations with standard hemispheres.

Without an exact theory the best thing to do in this case is to assume

that the measured and true inclinations are the same; a Snell's law cor-

rection would be much further from the truth' The same situation may

apply to measurements in which the orientation of the obtuse bisectrix

is measured in the fl setting, although it seems likely that the correction

will be significantly difierent depending on whether the optic plane is

more nearly parallel to the plane of the crystal plate or perpendicular

thereto. Finally, measurements of the optic normal in I/ setting appear

to pose greater complications, and it even appears possible that a refrac-

tion-correction significantly greater than that given by Snell's law may

be requrred under certain conditions. Theoretical and experimental study

of these various cases is clearly desirable.
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