muth-ikunolite-bismuthinite-joseite A (Fig. 2). The rarity of ikunolite and the commonly reported association of bismuth with bismuthinite suggest that very special conditions are necessary for its formation. Ikunolite may, perhaps, be stable over a limited P-T range or form only in the presence of significant amounts of selenium and tellurium. A solution to this problem, however, must await a detailed study of the system  $Bi-Bi_2S_3-Bi_2Te_3$ .

### ACKNOWLEDGEMENTS

The writer is indebted to Mr. R. O. Chalmers of the Australian Museum and Dr. L. J. Lawrence of the University of New South Wales for the loan of Kingsgate specimens and to Mr. J. Pyle of the New South Wales Department of Mines for carrying out the chemical analysis.

#### References

- ANDREWS, E. C. (1916) The molybdenum industry of New South Wales. Geol. Surv. N.S.W., Min. Res. No. 24.
- BLANCHARD, R. (1947) Some pipe deposits of Eastern Australia. Econ. Geol. 42, 265-304.
- GARRETTY, M. D. (1953) Bismuth molybdenite pipes of New England. Proc. Fifth Empire Min. Met. Cong. Vol. 1, 962-967.
- HANSEN, M. (1958) Constitution of Binary Alloys. McGraw-Hill Book Co., New York, 1305.
- KATO, A. (1959) Ikunolite, a new bismuth mineral from the Ikuno mine, Japan. Min. Jour. Japan, 2, 397-407.
- LAWRENCE, L. J. AND N. L. MARKHAM (1962) A contribution to the study of the molybdenite pipes of Kingsgate, N.S.W. with special reference to ore mineralogy. *Proc. Aust. Inst. Min. Met.* (in press).

THE AMERICAN MINERALOGIST, VOL. 47, NOVEMBER-DECEMBER, 1962

## THE DISTRIBUTION OF Ni, Co, Cr, Cu, Ba AND Sr BETWEEN BIOTITE-GARNET PAIRS IN A METAMORPHIC SEQUENCE

# KARL K. TUREKIAN AND WILLIAM C. PHINNEY, Yale University and University of Minnesota.

## INTRODUCTION

One of us (Phinney, 1962) has made a systematic study of the mineralogy and major element chemistry of a sequence of rocks from a regional metamorphic terrane in Nova Scotia. The rocks, collected from St. Paul Island and Cape North, Nova Scotia, are represented by one from the garnet zone, 19 from the staurolite zone, two from the kyanite isograd, and one from the kyanite zone. The results of that study indicate that though the rock as a unit might represent an equilibrium facies characteristic of the temperature and pressure under which it was formed, there are distinct inhomogeneities in mineral composition on the hand specimen and thin section level.

The suite of coexisting biotites and garnets used in that study were analyzed for Ni, Co, Cr, Cu, Ba and Sr to determine what the effect of metamorphic grade is on the distribution of these elements between the two phases.

The emission spectrographic methods for Co, Cr and Sr have been described by Turekian and Carr (1961). The other elements were determined by the same methods, using iron lines for internal standards for Ni and Cu, and a calcium line for Ba. The precision is about 10% coefficient of variation, and each sample was run in duplicate.

#### RESULTS

Table 1 presents the analyses of the garnets and biotites with increasing metamorphic grade reading down. In all cases strontium was below the level of detection, 4 ppm Sr.

|             | Garnets                          |      |      |     |     |     |    |                          | Biotites |     |     |    |      |                          |
|-------------|----------------------------------|------|------|-----|-----|-----|----|--------------------------|----------|-----|-----|----|------|--------------------------|
|             | Numbers<br>(Phinney, Ni<br>1962) |      |      | Co  | Cr  | Cu  | Ba | moles Fe+Mg<br>100 grams | Ni       | Co  | Cr  | Cu | Ba - | moles Fe+Mg<br>100 grams |
| Garnet zone | CN                               | 13   | 10   | 25  | 168 | 46  | 38 | ,400                     | 189      | 118 | 237 |    | 590  | .534                     |
|             | CN                               | 27   | 18   | 18  | 198 | 20  | 38 | .531                     | 105      | 47  | 215 | 32 | 800  | . 531                    |
|             | SP                               | 87   | 8    | 29  | 156 | 11  | 34 | .497                     | 117      | 52  | 296 | 76 | 960  | . 557                    |
|             | SP                               | 90   | 26   | 62  | 174 | 28  | 30 | .538                     | 157      | 76  | 170 | 25 | 990  | .530                     |
|             | SP                               | 92   | 18   | 26  | 167 | 15  | 30 | .536                     | 130      | 52  | 276 | 20 | 940  | -538                     |
|             | SP                               | 84   | 9    | 29  | 145 | 9   | 34 | .468                     | 174      | 73  | 218 | 34 | 1050 | . 535                    |
|             | SP                               | 66   | 11   | 27  | 145 | 190 | 34 | .511                     | 124      | 81  | 145 | 56 | 910  | - 534                    |
| Staurolite  | SP                               | 51   | 7    | 31  | 124 | 3   | 13 | .513                     | 116      | 65  | 197 | 10 | 760  | .538                     |
| zone        | SP                               | 42   | 7    | 28  | 123 | 11  | 13 | .493                     | 150      | 91  | 125 | 11 | 700  | .541                     |
|             | SP                               | 38   | 7    | 30  | 97  | 9   | 11 | .530                     | 122      | 90  | 106 | 15 | 580  | .547                     |
|             | SP                               | 35   | 6    | 24  | 111 | 8   | 13 | .460                     | 152      | 91  | 166 | 9  | 930  | .558                     |
|             | SP                               | 34   | 7    | 31  | 177 | 10  | 16 | .510                     | 149      | 93  | 156 | 25 | 1230 | .553                     |
|             | SP                               | 33   | 9    | 31  | 157 | 33  | 14 | -528                     | 87       | 76  | 192 | 24 | 1410 | -549                     |
|             | SP                               | 28   | 10   | 24  | 103 | 16  | 14 | .535                     | 94       | 64  | 105 | 16 | 785  | .540                     |
|             | SP                               | 14   | 7    | 21  | 165 | 10  | 12 | .491                     | 109      | 61  | 185 | 12 | 910  | .533                     |
|             | SP                               | 13   | 18   | 2.3 | 130 | 9   | 12 | .497                     | 84       | 61  | 199 | 18 | 680  | .533                     |
|             | SP                               | 12   | 9    | 21  | 134 | 48  | 12 | .510                     | 80       | 69  | 201 | 10 | 690  | .537                     |
|             | SP                               | 9    | 8    | 42  | 132 | 19  | 22 | .510                     | 101      | 44  | 179 | 24 | 780  | .530                     |
|             | SP                               | 1091 | 3 12 | 16  | 154 | 10  | 30 | .516                     | 38       | 17  | 271 | 20 | 820  | . 537                    |
| Kyanite     | SP                               | 106  | 9    | 18  | 129 | 12  | 33 | -514                     | 63       | 40  |     | 14 | 42   | . 529                    |
| isograd     | SP                               | 109. | A 7  | 26  | 288 | 4   | 26 | .556                     | 162      | 85  | 178 |    | 1040 | .517                     |
| Kyanite zon | e SP                             | 110  | 7    | 38  | 168 | 7   | 25 | .514                     | 198      | 99  | 253 | 8  | 550  | . 513                    |

TABLE 1. Ni, Co, Cr, Cu, Ba, AND Sr IN COEXISTING GARNETS AND BIOTITES1

<sup>1</sup> Results are listed with increasing metamorphic grade. All results are in parts per million. In all determinations strontium was below the level of detection, 4 ppm.

#### MINERALOGICAL NOTES

## DISCUSSION

The array of data in Table 1 may be asked several questions: (1) for a particular metamorphic facies are there equilibrium distributions between the two phases for the trace elements, (2) what are the variations in trace-element distribution as a function of metamorphic grade, and (3) what is the gross structure of trace-element distribution between the coexisting minerals under study?

The 19 coexisting biotite-garnet pairs from the staurolite zone provide an opportunity to check if the several trace elements studied are in equilibrium distribution. Kretz (1959) has made a similar study for some gneisses from the Grenville province and finds that manganese obeys the Nernst distribution law whereas chromium does not. For the discussion of Ni and Co, we have used the fraction of the trace element to the molar sum of iron plus magnesium as an index, as the sites occupied by these elements are the likely ones for the incorporation of cobalt and nickel. From Figs. 1 and 2 it is evident that no clearly defined curve (either a straight line if the sites were chosen correctly and ideal solution laws were obeyed, or a curved line, otherwise, going through the origin) can be drawn, and the scatter is fairly large, especially for nickel. The large spread is outside the limits of analytical errors, and we must conclude that for the trace elements we have studied equilibrium does not seem to be observed from hand specimen to hand specimen.

There are also no obvious trends for any of the trace elements as one proceeds from the low-grade assemblages to the higher grade assemblages. The ratio,  $(Co/Mg)_{biotite}/(Co/Mg)_{gatnet}$ , however, of the one sample of the garnet zone is .094 while for the other zones it is in the range of 0.5. This is in the same direction as that reported by Carr and Turekian (1961) comparing pairs from the amphibolite and the epidote-amphibolite facies, but the ratios are about 2 and 0.6 respectively.

Despite the fact that precise equilibrium distributions of the trace elements are not evident, there are nevertheless marked distribution effects controlled by the mineral structures. In the garnets there are 8, 6 and 4 coordination sites whereas in the biotite there are 12, 6 and 4 coordination sites. The trace elements are presumed as a first approximation to fit into sites which most closely resemble their ionic radius requirements. In the garnets studied all the Mg and Fe is in the 8 coordination site, and it is to be expected that Mn, Ni, Co, Cu, Ca, Cr, Sr and Ba should be found in this site. The Cr may be in the 6 coordination site as well. In the biotites the 6 coordination site is the locus of the Mg and Fe and presumably also of the Mn, Cr, Ni, Co and Cu. The Ti may either be in this site or in the tetrahedral site.

In this general context the observed distributions are as follows: Nickel



FIG. 1. Distribution of cobalt between coexisting garnets and biotites.



FIG. 2. Distribution of nickel between coexisting garnets and biotites.



Fig. 3a

## MINERALOGICAL NOTES



FIG. 3b

is heavily discriminated against by the garnet site (Fig. 3a). The data in DeVore (1955) show a similar discrimination. *Cobalt* is also favored by the biotite octahedral site, but the disparity is less than nickel for the two lattices (Fig. 3b). *Chromium* is only slightly favored by the biotite (Fig. 3c) and *copper* appears to be randomly distributed between the two phases.

Strontium is almost completely excluded from both lattices (<4 ppm Sr), while barium is found in great abundance in the 12 coordination site in the biotite and is present to about 20 ppm in the garnet structure. This implies that there is a very much more important sink in the system for strontium than either of the mafic minerals, while the barium is more generally distributed. This sink for strontium is undoubtedly the plagio-clase.

## CONCLUSIONS

Our study reinforces the conclusions implicit in the work of DeVore (1955) and Kretz (1959) on other suites of metamorphic rocks, *viz.* (1) rarely in samples of hand specimen size are equilibrium distributions of



FIG. 3. Nickel, cobalt and chromium concentrations as a function of iron and magnesium concentrations for garnets (open circles) and biotites (black circles).

trace elements between coexisting phases observed in metamorphic sequences, and (2) the laws governing the inclusion of a trace element in different coexisting crystal lattices are more than those based on any single parameter such as ionic radius.

#### References

- CARR, M. H. AND K. K. TUREKIAN (1961) The geochemistry of cobalt. Geochim. Cosmochim. Acta, 23, 9-60.
- DEVORE, G. W. (1955) Crystal growth and the distribution of elements. Jour. Geol. 63, 471-494.
- KRETZ, R. (1959) Chemical study of garnet, biotite, and hornblende from gneisses of southewstern Quebec, with emphasis on distribution of elements in coexisting minerals. Jour. Geol. 67, 371-402.
- PHINNEY, W. C. (1962) Phase equilibria in the metamorphic rocks of St. Paul Island and Cape North, Nova Scotia. *Jour. Petrology*, in press.
- TUREKIAN, K. K. AND M. H. CARR (1961) Chromium, cobalt and strontium in some Bureau of Standards rock reference samples. *Geochim. Cosmochim. Acta*, 24, 1-9.

THE AMERICAN MINERALOGIST, VOL. 47, NOVEMBER-DECEMBER, 1962

## INTERCRYSTALLIZED APATITE AND ANKERITE FROM THE NEW ALBANY SHALE OF INDIANA<sup>1</sup>

SEYMOUR S. GREENBERG<sup>2</sup> AND JACK L. HARRISON, Indiana Geological Survey, Bloomington, Indiana.

A core that penetrated the New Albany Shale (upper Devonian and lower Mississippian) was obtained from Clark County in southeastern Indiana. An unusual specimen of intercrystallized apatite and ankerite was found within the black shale. This sample, which is 0.1 foot thick, was obtained approximately 1 foot stratigraphically below the top of the New Albany Shale. Similar material has been seen in approximately the same stratigraphic position at five other localities in Indiana; the sample from Clark County best illustrates the relationships described in this note.

More than 90 per cent of a thin section cut from this sample is composed of intercrystallized apatite and ankerite. Pyrite, quartz and gypsum(?) as well as separately crystallized ankerite and apatite, also are present. The intercrystallized apatite and ankerite has wavy extinction, a birefringence between apatite and ankerite, and refractive indices ranging from 1.648 to 1.576 (Na light). Discrete areas of intercrystallized

<sup>1</sup> Published with permission of the State Geologist, Geological Survey, Indiana Department of Conservation, Bloomington, Ind.

<sup>2</sup> Present address: Virginia Division of Mineral Resources, Box 3667, University Station, Charlottesville, Virginia.