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ANALYTIC CLASSIFICATION AND QUADRIPLANAR CHART-
ING OF ANALYSES WITH NINE OR MORE COMPONENTS*

Joun B. MERTIE, Jr., U. S. Geological Survey, Belisville, Maryland

ABSTRACT

Analytic methods are used for the classification of analyses having nine or more com-
ponents, though under favorable conditions such analyses may also be charted. A square
matrix of the third order is formulated with three columns that represent 3-dimensional
Cartesian vectors extending outward from the origin. The end points of these vectors are
triads of coordinates defined by the percentages of a given analysis. By means of a col-
lineatory transformation, such a matrix is transformed to a new frame of reference wherein
these vectors appear as intercepts on new axes of X, Y, and Z. Thus 9 numbers are reduced
to 3 unique numerical indices.

The algebraic procedure required for a collineatory transformation consists in the
solution of a cubic equation derived from the determinant of a characteristic matrix. The
roots of this equation, known as characteristic roots, latent roots, or eigenvalues, are found
to be the elements in the principal diagonal of a diagonalized matrix, whose other elements
are zeros. The sum of these roots is called the trace or spectrum (T) of the transformed
matrix. If the roots are real numbers, their three values together with (100-T) may be
taken as quadriplanar coordinates for charting inside or outside a tetrahedron of reference.
Thus each analysis may be represented by a single point, which may then be projected
either apically or orthogonally onto one or more of the triangular faces of the tetrahedron,
for a 2-dimensional representation. Complex roots cannot be charted, but the analyses of
most igneous rocks yield real roots.

A refinement of this method by the use of symmetrical matrices eliminates complex
roots, and thus renders charting universally feasible. Symmetry with respect to the princi-
pal diagonal is produced before diagonalization by post-multiplying an unsymmetrical
matrix of the third order by its transpose. A generalization of this operation consists in
post-multiplying a rectangular array of the order 3X4, 3X S5, 3X6, or in general 3X (3-+k)
by its transpose. This constitutes a third method which provides for the classification and
charting of 12, 15, 18, or in general 9+3k variables; and if one or two zeros are introduced
into the rectangular arrays, any number of variables in excess of 9 may be analyzed. The
insertion of one to four zeros in a square matrix of the third order, before it is multiplied
by its transpose, makes it possible to handle 8, 7, 6, or 5 variables. These three methods are
not interchangeable; instead one is selected and used for the required purpose.

INTRODUCTION

The classification and charting of a number of variables, especially the
components of analyses that sum to 100, is a matter of perennial interest
to most scientific workers. In two earlier papers the writer (1948, p.
324-336 and 1949, p. 706-716) presented methods for charting 5, 6, and
7 variables on the triangular and tetrahedral boundaries of hyper-
tetrahedra of 4, 5, and 6 dimensions; but suitable coordinate nets could
not be devised for more than 7 variables. These, however, were essentially
multiple charts, in that the variables were charted as triads with reference

* Publication authorized by the Director, U. S. Geological Survey.
613



014 JOHN B. MERTIE, JR.

to bounding triangles, or at most as tetrads with reference to bounding
tetrahedra. Such graphs had the advantage that the variations of 3 or 4
components between consecutive analyses were shown; but the variations
of all the components of the analyses could not simultaneously be
charted. This is the dilemma in dealing with many variables.

An alternative solution of this problem is a group classification and
charting of analyses, whereby the initial variables are so combined as to
formulate a smaller number of composite variables. This condensation,
however, must be accomplished by algebraic processes such that the new
variables are unique, that is, they cannot assume identical values from
the components of different analyses. An example of the improper com-
bination of variables would be to add or multiply three components of an
analysis. This sum or product would not constitute a unique composite
variable, as the same numerical value could be obtained from different
analyses. An analogy of the contemplated process, if one were dealing
with an equation of 9 variables, would result if this equation was partially
differentiated for 3 variables, say

of  of af
—  — and — ;
dx Oy dz

and if the new equation was charted with regard to these three partial
derivatives after numerical values had been assigned to the other vari-
ables. But we are dealing with percentages, or numbers, not with func-
tions, and a process must be devised to combine these into a small
number of unique numbers that can be interpreted either as numerical
indices of the analyses or as numerical data for empirical charting. It
has seemed best to accomplish this objective by the formulation of 3 new
variables, each of which is a function of all the components of an analysis.
This, however, is group classification and group charting, which will show
distinct differences between total analyses, but will not ordinarily show
quantitatively the mode of variation of the individual components of
analyses. The thinking and perception of the operator must become
adjusted to this different objective.

Matrices will be utilized to develop the proposed method. Most geol-
ogists are familiar with the elementary properties and uses of deter-
minants, as that topic is treated in courses of college algebra. Matrices,
however, are less well understood, for which reason a brief description of
the nature of a matrix seems desirable. Perhaps the best way to describe
a matrix is to show the differences between it and a determinant. A deter-
minant, as is well known, is a square array of numbers, symbols, or func-
tions in rows and columns, say 3 rows and 3 columns, or in general »
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rows and # columns, enclosed by 2 vertical bars. As the array is square its
order may be stated merely by the use of a single digit, calling it a deter-
minant of the nth order. A matrix is a similar array enclosed by double
instead of single vertical bars, but it may be either square or rectangular.
If rectangular, its order is stated by 2 digits specifying respectively the
number of rows and columns, say the order of 3X4, 8 X5, or in general
mXn.

A more fundamental difference between a matrix and a determinant
is that the matrix is merely an array of elements with assigned meanings,
according to the problem under investigation, but with no composite
value. A determinant, on the other hand, is a square array of elements,
which represents a complex function, that has a determinable numerical
or algebraic value. In fact, a determinant may be regarded as a function
of some square matrix, such that it may be written as IAI =f(HAH).
Both matrices and determinants may be subjected, not merely to the
elementary operations of addition, subtraction, multiplication, division,
involution, and evolution, but also to more highly involved algebraic
processes, though the manipulative rules are different. A special kind of
algebra, called matrix algebra, has been developed for the treatment of
matrices.

The operations of ordinary arithmetic and algebra are controlled by
five laws, which are as follows:

1. Commutative principle in addition (and subtraction)

. Commutative principle in multiplication (and division)

3. Associative principle in addition (and subtraction)

4. Associative principle in multiplication (and division)

5. Distributive principle in combined addition and multiplication.
1f one or more of these laws is voided, a new type of algebra results, that
operates only by the non-voided principles. Thus the commutative prin-
ciple is voided in the multiplication and division of matrices, wherefore
the so-called matrix algebra has been evolved. If both the second and
fourth laws are voided, the Cayley algebra results; and other algebras
may similarly be developed. In this paper, square and rectangular ma-
trices are multiplied, for which reason the operation of matrix multiplica-
tion should be understood; but no further applications of matrix algebra
are required.

Matrices originated as tabulations of coefficients in systems of linear
equations, providing a shorthand device for the solution of such equa-
tions. They are now utilized, however, for many other purposes, accord-
ing to prior agreement as to the meaning of their elements. They are ex-
tensively used in the study of vectors, tensors, and related entities; in
variate statistical analysis; in multiple factorial analysis; and in numer-

[\=]



616 JOHN B. MERTIE, JR.

ous other applications. In this paper, the utilization of matrices is rather
empirical, but is related to vectorial and factorial analysis.

FormuLATION OF MATRIX

Consider a system of three-dimensional Cartesian coordinates, with a
vector that starts at the origin and extends outward into the first octant
to a point defined by 3 coordinates. The values of these coordinates will be
taken as the percentages of SiO., AlO; and Fe,O; in a rock analysis re-
computed to total 100%. A second vector, likewise starting at the origin,
will be connected to a point determined by the percentages of FeO,
MgO, and CaO; and a third vector will similarly be constructed, using
the percentages of Na,O, K»0, and R, where R means the sum of the re-
maining components of the analysis. These triads are tabulated as three
columns to form a square matrix of the third order, though rows instead
of columns could equally well be utilized. This matrix may now be
operated upon algebraically in such a way that its three component vec-
tors will be transformed to a new system of Cartesian coordinates wherein
each vector will become an intercept on one of the new coordinate axes.
The terminal of a 3-dimensional intercept has three coordinates, of
which two are zeros; and hence for a specified axis it may be identified by
a single number. Therefore each of the three original vectors will simi-
larly be represented by a single number, thus reducing nine percentages
to three numerical indices.

A change in origin is accomplished in ordinary analytical geometry by
stating the coordinates and rotation of the new frame of reference in
terms of the old one, and in making the transformation by means of
enabling equations. In the present transformation, however, no such
data are given but two limiting geometric conditions serve to localize the
new frame of reference. One of these is that the coordinates of the three
intercepts shall lie on the extension of the three original vectors; the other
Is that a triangle formed by connecting the ends of the three intercepts
shall be parallel to and therefore similar to the triangle formed by joining
the terminals of the three original vectors. Owing to these limitations,
such a change in the frame of reference is called a collineatory or simi-
larity transformation.

DERrivaTioN AND SorutioN oF Cusic EQuaTioN

A square matrix of the third order, formulated in the manner outlined
above, is used to obtain a cubic equation, from which the required nu-
merical indices are derived. Such a matrix, called A, is shown below in
generalized form, using the double subscript type of notation for its nine
elements. The required transformation is obtained by subtracting from
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A the quantity A1, where T is the unit or identity matrix, and X is a general
variable.

ann a4y A ‘ 1 00 l { 11— A adye ary
HA = )\IH = 21 Qa2 Q23 —AjO 1 0 asgy @20 — A a3
a3 G2 Q33 [ 0 0 1 H ase az; — A

As every square matrix defines a determinant, the matrix HA )\IH may
now be interpreted as the determinant ‘A )\I‘ which is expanded to
obtain its algebraic value. This is accomplished, not by the ordinary
method of clearing a determinant of the third order, but by means of
one of Laplace’s expansions, which permits the writing of the coefficients
of X\ as minor determinants, thus:

]

air a2 Az G23 an a3

!A—)\T| =—)\3+(du+d22+033)>\2_[

a2 A2 dza @33 az s
an a1z 13
+ | @ am axy

| @31 Q32 ds

This reduces to
N = = N+ (au + a2 4 asg)A?
= [(011022 + asass + anags) — (12001 + a93a30 + (1131131)])\

+ [(011022033 + a19aa3a51 + a13001050) — (013022(131 + axasen + 033012021)]

Written in generalized form and equated to zero, this equation becomes
N+ 4+aa4+d=0

where b and d are negative coefficients, though their numerical values
may prove to be either positive or negative. A critical examination of the
make-up of coefficients b, ¢, and d will convince the most skeptical person
that the cubic equation in lambda obtained from the percentages of one
analysis cannot be duplicated by similar data from any other analysis.
The matrix [|[A—\I|| is known as the characteristic matrix of A; the
cubic equation in lambda is called the characteristic equation of A;
and the roots of this equation are designated as characteristic roots,
latent roots, or eigenvalues.

The nature of the roots of a general cubic equation may be predicted
from its discriminant, that is,

A = 18bcd — 4b%d + bc? — 4¢® — 274*

If the sign of this discriminant is positive, there are three real roots; if
the sign is negative, there are one real and two conjugate complex roots.
A third alternative, where A=0, will not materialize in dealing with
decimal fractions. A trigonometric solution is used if the roots are real;
otherwise Cardan’s solution is employed. These standard methods of
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solving cubic equations will be found in any textbook on the theory of
equations, such as that written by Dickson (1939, p. 42-51).

Special mention should be made of a small book by Salzer, Richards,
and Arsham (1958), entitled a “Table for the solution of cubic equa-
tions.” Only 6 of the 161 pages of this book refer to real roots so that
these, with the permission of the authors, could be photographed and
made available to anyone interested in these methods. For the general
cubic, the argument of these tables is a quantity

e b? be  20°
0=E, where ]b=c—?: and q=d—?+?7—;

but for the cubics solved in this paper, it must be remembered that the
coefficients b and d are negative. The tables yield the values of f1(6),
fs (#), and f; (8); and the three roots are

M.
)‘"__pfn<0) 3

It should be noted that the value of Ay, as used in this manuscript, is de-
rived from f; (8), A2 from f5 (6}, and A3 from f; (6). On the other hand, the
real root of a Cardan solution, which is derived from f1 (6) of the tables,
is designated by the writer as A1. Even with the preliminary computa-
tions required, these tables obviate a large part of the labor of solving
cubic equations by standard methods.

APPLICATION OF EIGENVALUES

An important theorem of matrix algebra states that any nonsingular
(| A #0) matrix with distinct latent roots may be reduced by a col-
lineatory transformation to a diagonal matrix, wherein the elements of
the principal diagonal are the latent roots or eigenvalues of the given
matrix. All other elements of the diagonal matrix are zeros. This process,
called the diagonalization of a matrix, is shown below, first in generalized
form where A1, A2, and A; are the latent roots of the characteristic cubic;
and second in specific numerical form, where the 9 elements of the orig-
inal matrix are the percentages in a mean analysis of 90 biotite granites,
and the 3 elements in the diagonal matrix are the derived eigenvalues.

an a1z dis N 000
@a1 @y s | — |0 A O
@31 a3z Q33 0 0 XN
| 71.66 1.10 3.06 I| 71.967 0 0 '
14.49 0.87 4.13 |- 0 —1.709 0
1.46 1.97 1.26 | 0 0 3.532 |
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This diagonal matrix is unique except for the order in which the latent
roots are enumerated, as the transformation does not assign the inter-
cepts represented by these numbers to particular axes of the new frame
of reference. Obviously, therefore, the elements of the principal diagonal,
which constitute the numerical indices of this method, could be written
in the order 11022033, A11033029, A22Q11A33, A22033311, A33Q11Q22, O A33d22a11.
In reality a geometric study will show that at least 6 frames of reference
will satisfy this transformation. This indeterminacy has been overcome
in the following way. A cubic equation with real roots is solved by means
of several algebraic substitutions, of which the last makes use of the trig-
onometric function cos X. After the first root is obtained from cos X,
the other roots are obtained respectively from cos (120°+X) and cos
(240°+X). The roots A1, Ay, and A; in the principal diagonal are enu-
merated in this order.

Twenty groups of analyses of igneous rocks and 4 of mafic minerals
taken from granitic rocks were selected to show the application of this
method. These are presented in Table 1.

The eigenvalues derived from these 24 groups of analyses are shown in
the first three columns of Table 2. It will be noted that 22 of the derived
cubics yield real roots, and that the exceptions are the rock ijolite and
the mineral biotite. In general it appears that most igneous rocks can be
represented by 3 real numerical indices, though exceptions other than
the two cited have also been found.

Certain relationships appear in these eigenvalues. The values of A1 are
near yet invariably greater than the percentages of SiO, in the original
analyses, but no linear relationship exists, as most of the differences
range from 0.2 unit to 2.8 units, though larger differences result from
the two Cardan solutions. Negative values of A, are characteristic of the
granites, adamellite, tonalite, syenite, monzonite, nepheline syenite,
shonkinite, and muscovite. The lamprophyres and monzonite have larger
values of \s than the more felsic granitic rocks; hornblende and augite
show still larger values; and pyroxenite and peridotite are characterized
by the highest values of A\;. Somewhat different relationships exist for
eigenvalues derived from symmetrical matrices.

The sum of each set of three real eigenvalues, which in Table 2 ranges
from 50 to 82, is known as the trace or spectrum of the diagonal matrix
and is designated as T. The eigenvalues corresponding to each trace could
empirically be charted as trilinear coordinates referred to an equilateral
triangle having one side equal to the specified trace, and T unit divisions
along each side of the triangle. This plotting, however, would not be
convenient, as many triangles of different sizes would have to be shown.
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Such unequal triangles, however, will fit at different altitudes within a
tetrahedron with a base of 100 unit divisions of the same magnitude;
and it is clear that such parallel triangles will lie at distances of (100—T)
above the basal triangle of the tetrahedron. Therefore the 3 eigenvalues,
Ar=a, \;=f, and A\;=1y, and the corresponding altitude (100—T) =4, as
shown in the first four columns of Table 2, will constitute 4 quadriplanar
coordinates suitable for charting each analysis as a single point within,
or for one or more negative eigenvalues, outside a tetrahedron of ref-

TABLE 2
Quadiplanaricooriiates Trilinear coordir}ates Trilinear coordina%es
No. (Apical projection) (Orthogonal projection)
| M Az Ay 100-T e 8 ¥ o i "

1 | 75.194 —1.393 1.970 24.23 | 99.24 —1.84 2.60 | 83.27 6.68 10.05
2 72.748 —2.251 2.913 26.59 | 99.10 —3.07 3.97 | 81.61 6.61 11.78
3 71.967 —1.709 3.532 26.21 | 97,53 —2.32 4.79 | 80.70 7.03 12,27
4 68.361 —1.752 4.191 29.20 | 96.55 —2.47 5.92 | 78.10 7.98 13.92
15 67.192 —0.047 2.616 30.24 | 96.32 —0.07 3rellS' i 7727 10.03 12.70
6 51.870 2.545 4.265 41.32 | 88.39 4.34 7.27 | 65.64 16.32 18.04
7 51.595 1.572 5.554 41.28 | 87.86 2.68 9.46 | 65.36 15.33 19.31
8 51.771 3.4353 26.576 18.20 | 63.29 4.22 32.49 | 57.84 9.52 32.064
9 44.428 5.830 24.751 24.99 | 59.23 Tl T 33.00 | 52.76 14.16 33.08
10 52.827 0.525 10.538 36.11 | 82.69 0.82 16.49 | 64.86 12.56 22.58
11 54,809 0.911 7.570 36.71 | 86.60 1.44 11.96 | 67.04 13.15 19.81
12 52.520 1.433 8.317 37.73 | 84.34 2.30 13.36 | 65.10 14.01 20.89
13 55.048 0.770 6.882 37.30 | 87.80 1.23 10.98 | 67.48 13.20 19.32
14 61.219 —2.160 6.230 34.71 | 93.77 —3.31 9.54 | 72,79 9.41 17.80
15 55.538 —2.093 7.195 39.36 | 91.59 —3.45 11.86 | 68.66 11.03 20.31
16 57.289 0.122 3.589 39,00 | 93.92 0.20 5.88 | 70.29 13.12 16.59
17 56.105 —1.492 3.697 41.69 | 96.22 —2.56 6.34 | 70.00 12.41 17.59
18 51.463 0.266 5.161 43.11 | 90.46 0.47 9.07 | 65.83 14.64 19.53
19 49.234 —0.88! 8.837 42.81 | 86.09 ~—1.54 15.45 | 63.50 13.39 23.11
20 48.018 1.946 £ 4.2701 48.09

21 46.426 —0.716 5.741 48.55 | 90.23 —1.39 11.16 | 62.61 15.47 21.92
22 44.525 2,998 + 3.712 49.48

23 49,697 0.986 13.356 35.96 | 77.60 1.54 20.86 | 61.69 12.97 25.34
24 51.694 0.0125 11.883 36.41 | 81.29 0.02 18.69 | 63.83 12,15 24,02

crence. The charting of negative trilinear and quadriplanar coordinates
has been described in an earlier paper by the writer (Mertie, 1949, p.
707-710).

Perspective drawings would be required to show the positions of many
points located by quadriplanar coordinates. Obviously one could not
take the time and trouble to do this, and it therefore seems best to pro-
ject these points onto one or more of the triangular faces of the tetra-
hedron of reference. A perspective drawing of the inside of a lined tetra-
hedron is shown in Fig. 1 to illustrate two ways of making the required
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Fic. 1. Perspective drawing of inside of lined tetrahedron, showing apical and
orthogonal projections of quadriplanar coordinates.

projection. The point P may be projected apically by the line DP to Py,
in which case the trilinear coordinates of P on the triangle ABC will be
the quadriplanar coordinates a, 8, and v, recomputed to 100%. A second
method is to project P orthogonally onto ABC, in which case the trilinear
coordinates of Py will be

(e+3) (s+3): s (+3)
at3), (8+5) and (v+7)-

This formula may be generalized for the boundaries of hypertetrahedra.
By either method, however, a single projection is inadequate, as two
points with different quadriplanar coordinates could by either of the two
cited methods occupy identical positions in the projection. Moreover,
one point that was projected apically might coincide with another
point projected orthogonally; but if the projections were reversed, these
two points would no longer be superposed. Therefore a projection into
one plane of all points by both methods of projection will assure that at
least two of the four projected positions of two original points will be
unique.
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« ABPICA| PROJECTION

ORTHOGONAL PROJECTION

F1e. 2. Projection of quadriplanar coordinates on base of tetrahedron.

The relative positions of the quadriplanar coordinates derived from 19
igneous rocks and 3 granitic minerals are shown in Fig. 2, projected both
apically and orthogonally, in order to avoid projections on two triangular
faces. The numerical data for these two projections are given respec-
tively in columns 5-7 and 8-10 of table. 2. It happens that these values
cause no identical superpositions produced from any of the suggested
causes, though points 4 and 17, when apically projected, are close to-
gether. By orthogonal projection, however, they are far apart. For this
particular assemblage of analyses, a somewhat greater dispersion of
points is attained by orthogonal projection. In both projections, the
granitic rocks lie at one end of the sequence, the ultrabasic rocks at the
other end, and the other 15 rocks and minerals at various intermediate
positions.

Variations in the charted positions of analyses resulting from dii-
ferences in the percentages of specified components are not ordinarily
apparent. However, some idea of the magnitude and direction of dis-
placement of a particular point could be obtained in the following way.
Suppose that an analysis showing 5% KO is so changed that it be-
comes 2% This decrement might be added to the percentage of Na,0,
or proportionately to Na,O and CaO, or it might be distributed through-
out the analysis. After the disposition is made, however, a new cubic
equation and a new set of eigenvalues may be computed; and for some
specific distribution of the 3% K.0, the displacement of the projected
point will be apparent.
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SYMMETRIC MATRICES

The method of classification and charting so far outlined has the de-
fect that complex numbers may emerge as the latent roots of matrices
derived from some analyses; and in applying this method to many kinds
of analyses, complex roots might become very prevalent. A refinement
of the first method permits the elimination of all complex roots, though
the process adds two arithmetical steps. A matrix of real elements that is
symmetrical to its principal diagonal is known to have a characteristic
equation that yields only real roots. The matrices heretofore used can
be rendered symmetrical in the following way. If the rows and columns
of a matrix are interchanged, a second matrix is produced that is called
the transpose of the first. Either addition or multiplication of a matrix
A and its transpose A’ will yield a new matrix that is symmetrical with
regard to its principal diagonal. Addition, however, does not insure
uniqueness, sothat multiplication, which isa combination of multiplication
and addition, is used. But owing to this process, the elements of AA’
become large and unwieldy; and they are therefore reduced to total 100
by dividing each element by S/100, were S is their sum. This method of
producing a symmetrical matrix, and of obtaining its eigenvalues, is
illustrated below for the rock ijolite.

Tjolite, 9 components, from 3X 3 matrix

44.32 4.71 9.35 44.32 18.41 3.78
AA" = 18.41 4.34 1.98 4.71 4.43 9.86 H
3.78 9.86 3.25 9.35 1.98 3.25
2073.87 854.89 244.36
854.80 361.68 118.82
255.36 118.82 240.89

Divided by 51.1256, we get

40.56 16.72 4.78 48.13 0 0
16.72  7.07 2.33.—» 0 0.13 0 H

4.78 2.33 4.71 0 0 4.09 |

X

This process leads to an important generalization. Given an analysis of
12 components which are written as a 3X4 matrix, whose transpose is
therefore a 4X3 matrix. These two matrices are conformable for multi-
plication, as expressed in the language of matrix algebra, and their
product AA’ becomes a symmetrical matrix of the third order, which is
diagonalized as in the original method. An example is given below where
ijolite is taken with 12 instead of 9 components, by the separate enumera-
tion of MnO, H,0, TiO,, and P205. The matrix AA’ is nonsingular, and
the latent roots are shown to be real numbers.
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Tjolite, 12 components, from 3X4 matrix
44.32 4.711 9.86 0.68 | 44.32 18.41 3.78 |
AA’ = || 18.41 0.13 9.35 1.36 || X ) 4,71 0.13 4.34 |
3.78 4.34 1.98 1.08 |l ‘ 9.86 9.35 1.98 |
0.68 1.36 1.08

| 2084.13 909.66 208.23 ||
= 909.66 428.22 90.14
Il 208.23 90.14 38.21
Divided by 49.6660, we get
41.96 18.32 4.19 50.48 0 0
18.32 8.62 1.81 0 0.34 0
4.19 1.81 0.77 0 0 0.53

This method may be extended to 3 X35, 3)X6, and in general 3X(3+k)
rectangular arrays, where k is positive. This generalization and its ex-
tension thus constitute a third method for the classification and charting
of analyses having 12, 15, 18, or in general 943k components that total
100. But the number of variables need not necessarily be divisible by 3,
as one or two zeros may be substituted for absent components in any
rectangular array, before post-multiplication by its transpose.

The classification and charting of fewer than 9 variables constitutes
another topic. It might be thought that a 3X2 matrix, involving 6
variables, could be multiplied by its transpose, thus producing a sym-
metrical matrix of the third order analogous to those obtained from
3X35, 3X6, and 3X(34+k) matrices. But the symmetrical matrix thus
obtained will be found to be singular, and therefore unusable.! A 2X3
matrix also involves 6 variables, but when multiplied by its transpose
yields a square matrix of the second order which will have a quadratic
characteristic equation. The eigenvalues derived from such an equation
are not unique,

Fewer than 9 variables, however, can be handled by another method.
Given a nonsingular square matrix of the third order, such as heretofore
shown in generalized form. For the production of 8, 7, 6, or 5 variables,
zeros may be substituted as follows:

For 8 variables, let a;s=0; for 7 variables, let aj;=as;=0; for 6 vari-
ables, let ajp=as;=a,3=0; and for 5 variables, let ajp=as =as;
=a32=0.

Any of these four alternatives will yield a usable cubic characteristic
equation. An example is given below of a weighted mean analysis of all

—

! Theorem. If any real matrix of the order m X (m+-%) and rank »=m be post-multiplied
by its transpose, two alternatives exist: if 4 is nonnegative, the resulting symmetrical
matrix AA’ of the mth order is nonsingular; but if % is negative, the matrix AA’ is singular.
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the platinum metals produced by the Goodnews Bay Mining Co., of
Alaska, from 1934 to 1959, inclusive. The mean analysis and its matrix
are given below:

Platinum 84.38 per cent || 84.38 0 1.35 |
Tridium 11.49 | |
Osmium 2.21 0 2.21 0
Ruthenium 0.18 ‘
Rhodium 1535 | 11.49 0.18 0.39
Palladium 0.39 | |

The characteristic equation of this matrix is
A8 — 86.982% + 204.7384N — 38.4467 = 0,

whose discriminant is positive, so that the latent roots are real. It there-
fore is unnecessary to render the matrix symmetrical before diagonaliza-
tion. The derived eigenvalues are 84.564, 0.206, and 2.210; and 100—T
=13.02. This may readily be charted either by the apical or orthogonal
projection.

Square matrices of the fourth order contain 16 elements; and therefore
4X4,4X5,4X06, and in general 4 X (44 k) matrices could be used for 16,
20, 24, or in general 16-4% variables, where % is nonnegative. The de-
rived characteristic equations, however, are quartics, which are more
laborious to solve than cubics; and the five resulting coordinates must
be charted on the boundaries of hypertetrahedra of four dimensions. For
these reasons, and because matrices of the third order suffice for 9 or
any larger number of variables, the utilization of matrices of the fourth
order is not recommended.

SUMMARY STATEMENT

Three general methods have been presented for the classification and
charting of analyses that are recomputed to total 100 per cent. The first
method employs unsymmetrical matrices of the third order, from each of
which three eigenvalues and a trace are derived. These are utilized in
quadriplanar charting unless the eigenvalues include complex numbers.
A second method uses the same original matrices, but they are rendered
symmetrical before diagonalization, thus eliminating complex eigen-
values. A third method uses rectangular arrays of the order 3X(3+£)
that are transformed into symmetrical matrices of the third order, after
which they are treated as in the first and second methods. This permits
the classification and charting of 12, 13, 18, or in general 94 3% variables.
By substituting one or two zeros in the rectangular matrices, the third
method allows all analyses with more than 9 components to be utilized.
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And by substituting from one to four zeros in square matrices of the third
order, before multiplication by their transposes, either the first or the
second method permits the use of analyses with 8, 7, 6, or 5 components.

Tt must be understood that numerical indices and graphs which result
from these three methods are not comparable. Even analyses of 12 com-
ponents, classified and charted by the third method, cannot be tabu-
lated or graphed with similar data obtained by the same method from 15
or more components. A choice of methods that suits the problem in hand
is first made; thereafter only one method is used for each group of re-
lated analyses.

BIBLIOGRAPHY

Mathematics is like geology and mineralogy in that no single exposi-
tion includes a complete discussion of all phases of a subject; and there-
fore for particular topics numerous books are needed. The appended
bibliography of books on matrices and related topics is not intended to
be an enumeration of all the principal treatises on these subjects. The
dozen cited books on matrices include only treatises of comparatively
recent origin that have been consulted by the writer in the preparation
of this paper. They range from elementary treatments to others that are
too advanced to be readily assimilated by a non-mathematician, such as
the writer; but even the more abstruse of these discussions contain items
that may not elsewhere be available. An example is the volume by Fra-
zer, Duncan, and Collar (1957), which is an advanced treatise; yet it
includes four introductory chapters on matrix algebra that are readily
understandable and contain many numerical examples of great value.
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