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Assrnacr

The conventional geometric classification of the siiicates is no longer sufficient to classify
the ever-increasing number of determined ionic tetrahedral structures. More detail is de-
sirable in the classification, and consequently, new classification criteria are necessary to
provide a larger number of subdivisions. The study of the relative energies oI isolated rings
of tetrahedra suggests that the size of the tetrahedral loops may be used as one additional
criterion. It is suggested that another criterion may be based on the different nature of the
corner sharing of tetrahedra. A numerical expression, called the sharing coefficient, is
derived to cover this criterion. In the proposed classification these two criteria are added
to the customary silicate classification, and, consequently, the classification proposed is
basically in accordance with the conventional scheme.

A large number of silicates can be classified differently depending on whether we con-
sider all tetrahedra of the structure, or only the silicon and aluminum tetrahedra. This
problem is not treated consistently in the literature. In some cases aluminum tetrahedra
are disregarded or other tetrahedra, like boron, are accepted. It is suggested that all tetra-
hedrally coordinated cationsshouldbe consideredas part of the tetrahedralframeofa silicate.
This suggestion is supported by the similarity of the observed ionic radii and electro-
negativity of other four-coordinated cations with that of silicon and aluminum, and by the
analytical data indicating the random distribution of silicon and other cations in difierent
tetrahedra of certain silicates.

INrnooucrroN

The classification of things of scientific interest is not merely a filing
system, but is also a basis for evaluation and comparison. As such, it
constitutes a step in the progress of science and may lead to the better
understanding of nature, and to the establishment of new directions of
research. The classification conceived by Machatschki (1928) and devel-
oped by Bragg (1930) was an excellent system for classifying a large
number of silicates. It also explained many of the important physical
properties of sil icates. Consequently, the ciassification was of consider-
able importance in the understanding of the sil icates and other crystals
with similar tetrahedral structures. Since 1928 the number of tetrahedral
structures determined has grown so tremendously that the Machatschki-
Bragg classification is no longer adequate, especially for structures with a
three-dimensional network of tetrahedra. There is a definite need for an
improved classification, f irst, to provide more subdivisions in the system
of classification and, second, to point out minor, but important, similar-
it ies between different tetrahedral structures.

x Present address: Department of Geology and Mineralogy, University of Minnesota,
Minneapolis 14. Minnesota.
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A{ter the structure of coesite was determined (Zoltai and Buerger

1959) and compared with structures of other forms of sil ica, the signifi-

cance of tetrahedral loops in the tetrahedral structures became apparent.

In the conventional classification the geometric forms of the tetrahedral

structures are related to the cleavage, hardness and the optical properties

of the crystals; similarly the size of the tetrahedral loops are related to

the energies of the tetrahedral structures (Zoltai and Buerger 1960). The

importance of the size of the tetrahedral loops in a structure and its pro-

spective application as a natural classification criterion stimulated an in-

vestigation of tetrahedral structures and the construction of an improved

classification.
Other geometric features of tetrahedral structures were observed dur-

ing the course of this study. Most of them are applied in the proposed

classification system. The classification criteria are discussed in detail in

their order of application.

Tne GBolrBTRrcAL Fonus

The conventional classification is based on geometrical forms created

by the l inkage of tetrahedra. These forms are referred to as "types" in

the Iiterature. They are: isolated tetrahedra, groups' chains, rings,

sheets and three-dimensional networks of tetrahedra. These features are

important, and are widely accepted. Consequently they are adopted in

this classification. Minor revisions, however, are made in order to group

these types systematically, and to cover all the possible ionic tetrahedral

structures. Some of the types have distinct directions in which the tetra-

hedral structures extend to infinity. In others the tetrahedral structures

are terminated in all directions. Consequently, if the tetrahedral struc-

tures are extended to infinity in zero-, one-, two- and three-dimensions,

four major types of tetrahedral structures are possible. These four types

are:

(1) Isolated groups of tetrahedra.
(2) One-dimensionally non-terminated structures of tetrahedra'

(3) Two-dimensionally non-terminated structures of tetrahedra.

(4) Three-dimensionaily non-terminated structures of tetrahedra.

It is theoretically possible for a crystal to be composed of two or more

different types of tetrahedral sLructures. To cover such possibil i t ies a

fifth type is established:

(5) Mixed-t1pes of tetrahedral structures.

AII these types can be divided into subtypes. In the first three types

the subtypes can be defined according to the complexity of the tetra-

heclral structure of the type. That is, in the first type the number of
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tetrahedra can serve as a basis for the subdivisions and in the others the
number of single chains, single rings and single sheets welded together. rn
the fourth type the subtypes can be defined according to an important
characteristic of these structures, that is, according to the sharing of
tetrahedral corners only, or the sharing of one or more tetrahedral edges
or faces also.

The types and subtypes are l isted in the first two columns of Table 1.

ConNon Snanrxc rN Tprneneonar, SrnucruRES

A brief study of the tetrahedral structures revealed that different
number of tetrahedral corners can be shared and sti l l  make up the same
type, and even the same subtype structure. For example, two single

'I'aer,e 
1. Sranrmc Corrlrcrnxrs luo ClrroN-ANroN Rauos oF fire Tvpss

aNo Susrvprs ol Tnrn,q.rroonnl Srnucrunns

Types Subtypes Sharing coefficients Cation-anion ratios

1. Isolated groups of
tetrahedra

2. One-dimensionally
non-terminated
structures of
tetrahedra

3. Two-dimensionally
non-terminated
structures of
tetrahedra

4. Three-dimensionally
non-terminated
structures of
tetrahedra

.5. Mixed types

a. single tetrahedron
b. pair of tetrahedra
c. Iarge groups
d. mixed groups
a. single chains
b. single rings
c. double chains
d. double rings
e. multiple chains
f. multiple rings
g. mixed chains and

rrngs
a. single sheets
b. double sheets
c. multiple sheets
d. mixed sheets
a. networks with

corners shared

b. networkswithone
or more edges
shared

c. networks with one
or more faces
sharecl

1 :25-1 . 50-(1 . 75) +

1 2s-1.s0-(1 7s)
1 . 5 0
1 .50

I . J ( F I  . / J

1 50-1.75
(1.50)-1 .7s-2.0o
(1.s0)-1.7s-2 00
(1 . s0)-1 . 75-2 .00

1 .50-1 .75
(1 . s0)-1 . 7s-2 .00
(1.s0)-1.7s-2 00
(1 . s0)-1 . 7s-2 .00

1.75-4.00

4.00 8.00

l i 4

l :3 i
r :3!-r :3-(1.2|)
l :3|-l:.3-(l:2i)

1 : 3
1 : 3

1 .3 - l i 2+
l:3-l:.2\

( l :3) - r :21- l :2
(r:3)-I:2!-1:2
(r i3)- l i2+-1 i2

l t 3 - l i 2+
(r:3)-1:2\-1:.2
(1:3)-1:2 i - r :2
(r :3)-1:2 i -1:2

t :2 | - r :1

1 : 1 - 1 : I

l : i -

* Sharing coefficients in parentheses indicate theoretically possible but practically
improbable ranges.
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chains can be welded into a double chain if each tetrahedron of the first
chain is connected to a tetrahedron of the second chain. Two single chains
can also be welded into a double chain if only every second tetrahedron of
the first chain is connected to every second tetrahedron of the second
chain. In the former case six tetrahedral corners are shared per two
tetrahedra and in the latter only five. The general geometric form, how-
ever, still remains a double chain. A similar situation exists in the sheet
structures. A sheet can be constructed if each tetrahedron shares three
corners with other tetrahedra. A sheet also can be constructed if certain
tetrahedra share only two corners. Once again, the number of tetrahedral
corners shared is the only difference between the two sheets. In the three-
dimensional network usually all four corners are shared. In some struc-
tures a few corners are left unshared, and consequently the average num-
ber of tetrahedral corners shared becomes less than four.

In these examples it was tacitly assumed that only two tetrahedra can
share a tetrahedral corner. This is not a necessary restriction. Several
three-dimensional networks of tetrahedra are actually known in which
three or even more tetrahedra share a tetrahedral corner. In order to dis-
tinguish between such structures, the number of tetrahedral corners
shared is no longer sufficient. It has to be supplemented with the number
of tetrahedra participating in the sharing of a corner.

It is possible to derive a single numerical value which can express both
the number of tetrahedral corners shared and the number of tetrahedra
participating in the sharing, if we make two assumptions:

,4. 'Ihe difierence between the smallest and the largest number of tetrahedra partici
pating in the sharing of a tetrahedral corner in a structure can not be more than one.

B. No edges of tetrahedra can be shared unless the corners are shared betr,r'een more

than four tetrahedra, and no faces can be shared unless the corners are shared be-

tween more than eight tetrahedra.

Assumption ,4 means, for example, that as long as there are free cor-
ners present in a structure, no corners can be shared between more than
two tetrahedra; or if some corners are shared between two tetrahedra
only, no corners can be shared between more than three tetrahedra. As-
sumption B means that edges and faces can be shared only in very dense
tetrahedral structures. In certain structures the density of the tetrahedra
may require geometrically the sharing of edges, and inteven denser struc-
tures the sharing of faces.

Under these conditions the average number of tetrahedra participating
in the sharing of a tetrahedral corner in a structure also defines the num-
ber of corners shared. The average number of tetrahedra participating in
the sharing of a corner in a structure is called the sharinq coefficient of the
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structure. It can be eilher an integer or a fraction. An integral number de-
fines a state in which each corner of each tetrahedron is shared between z
tetrahedra, where a is the integer in question A fractional number, on
the other hand, defines a state in which some corners are shared between
z tetrahedra and others between nll tetrahedra, where a is the integral
part of the sharing coefficient. The fractional part, further, defines the
ratio of the number of corners shared between n and n*l tetrahedra. A
sharing coeffi.cient of nll means, for example, that all the corners are
shared between at least n tetrahedra and in addition every fourth corner
is shared between nll tetrahedra; or a sharing coefficient oI n-l(I/20)
means that all the corners are shared between at least a tetrahedra and
in addition every twentieth corner is shared between n!l tetrahedra.

There is a simple relationship between the sharing coefficient and the
cation-anion ratio in the tetrahedral radical of the chemical formula. The
relationship is obvious when a tetrahedral corner is shared between two
or more tetrahedra. Then the same anion simultaneously belongs to two
or more cations. The cation-anion ratio in a single tetrahedron is 1:4 and
in a pair of tetrahedra it is 1:3], and the corresponding sharing coeffr-
cients are 1:00 and 1.25 respectively. Consequently the sharing coeffi-
cient not only describes a geometric feature, but also defines part of the
chemical formula. A list of possible sharing coefficient ranges for the
types and subtypes of the tetrahedral structures, and the corresponding
cation-anion ratios, are tabulated in the third and fourth columns of
Table 1.

Assumptions ,4 and B were found, empirically, to hold for dominantly
ionic crystals. These assumptions are generalizations of Pauling's third
rule which states, briefly, that the sharing of edges and particularly of
faces of ionic polyhedra decreases the stabil ity of the structure. This is
because such sharing necessitates the close approach of two cations and
thus increases the potential energy of the system. Assumptions A and B
can be supported by similar arguments. When more tetrahedra share a
tetrahedral corner, more tetrahedra come in contact, and the high
valence cations approach each other, thereby increasing the potential
energy of the system. Since a system tends toward the lowest energy
state possible, the corners should be shared by the least possible number
of tetrahedra. Thus no corner is shared by three tetrahedra unless there
is no lower energy state available. Similarly no tetrahedral corners will
be shared between three tetrahedra in a double chain when a multiple
chain or other geometric form represents lower energy with the corners
shared between two tetrahedra only. The same argument restricts the
sharing of edges and of faces to structures where it is necessitated by
geometry, in extremely dense three-dimensional networks.
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Rspner UNrrs r\ND LooPS on Tntnaurpn,q

With the exception of the isolated groups of tetrahedra, the single

chains, and the three-dimensional networks with one or more faces

shared, all the tetrahedral structures contain loops of tetrahedra. These

loops are outstanding features. They are also important in the considera-

tion of the energies of structures. Consequently the tetrahedral loops are

simple and non-artificial criteria. Modern investigators of the tetra-

hedral and other polyhedral structures noticed the significance of these

Ioops, and, in one form or other, they applied the loop concept to the sub-

classification of certain types of tetrahedral and polyhedral structures.
Wells subdivided the polyhedral networks according to the size of the

Ioops formed by polyhedra. Tetrahedral networks are also included in

his classification (Wells 1954, Part 2). However, he considered only the

highly regular tetrahedral netrvorks with a sharing coefficient of 1.75 and

2.00.
Liebau (1956) classified the tetrahedral sil icate structures on the basis

of the number of tetrahedra in the periodic unit of the tetrahedral struc-

ture. Liebau's classifi.cation subclassifies the simpler tetrahedral struc-

tures very conveniently, but fails to give a sufficient number of sub-

divisions for the three-dimensional networks.
The combination and extension of Wells' and Liebau's principles could

conveniently be applied to the subclassification of all types of tetrahedral
structures. The structures containing no loops of tetrahedra can be sub-

divided according to the number of tetrahedra in the periodic unit of the

tetrahedral structure, and structures containing loops of tetrahedra can

be subclassified according to the number of tetrahedra in the loops. The

former term is called the repeat unit of tetrahedra, and the latter the loop

of tetrahedra.
The repeat unit of tetrahedra in the isolated groups of tetrahedra

would be simply the number of tetrahedra in the groups. If there are

different kinds of groups in the structure, several units wil l be l isted and

one number wil l represent each kind of group.
In an endless single chain the repeat unit of tetrahedra is the number of

tetrahedra in the motif of the chain which is repeated by translation to

form the chain. If, for example, all the tetrahedra of the chain are

similarly oriented and are translation equivalents, the repeat unit is one

tetrahedron. But if every second tetrahedron is oriented differently from

the first one, then only every third tetrahedra are translation equivalents,
and the repeat unit of the chain is two tetrahedra (Liebau 1956, p. 75).

In most of the other types of tetrahedral structures there are loops of

tetrahedra, and every tetrahedron of the structure is part of one or more

loops. These structures can be subclassified either (1) by the size of the
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'Ialr,B 2 Cr,essrrrcarroN on Trrnanoonl.r, Srnucrunos

I Isoiatedgroups
of tetrahedra

One-dimension-
ally non-termi-
nated struc-
tures of tetra-
hedra

Two-dimen-
sionally non-
terminated
structures of
tetrahedra

Three-dimen-
sionally non-
terminated
structures of
tetrahedra

Subtypes

a. Single tetrahedron

b. Pair of tetrahedra

c. Large groups
d. Mixed groups

a. Single chains

b. Single rings

c. Double chains

d. Double rings
e. Multiple chains
f. Multiple rings
g. Mixed chains and

rrngs

a. Single sheets

b. Double sheets
c Multiple sheets
d. Mixed sheets

a Networks with
cotners shared

t 2 5

Sharing
coeffi-
cients

Rep€at-units
and loops oI
tetrahedra

Structure
families

Epidote

Pyroxenes

Wollastonite
Rhodonite
Benitoite
Axinite
Tourmaline
Xonotlite
Amphiboles

Sillimanite

1 5 0
1  . 5 0
1  . 5 0
1 5 0
I  . 5 0
I  . 5 8 3
t . 6 2 5

I  / . )

1 . 7 5
1 . 7 5
1 833

2 . O 0

1 . 8 2 1
2 . O O
2 . O O
2 . O O

2 0 0
2 . O O
2 0 0
2 0 0

2 . 0 0
2 . O O
2 . O O
2 0 0
2 . O O
2 . 0 0
2 0 0
2 . O O
2 . O 0
2 0 0

3
5
3
4
o
8
6

4-8
4-8
6
o
5

4-6

1 0
8-10
3-6
4 5 8
4 6

4 {-8
4-6 8
4-6-8-9
4-6-8-10

4-6-8-12
4-6-8 12
4-6 9
4-6-9
4-6-'12
44-12
4-8
5-6
5-6 8

Apophyllite
Gillepsite
Mica
Sepiolite
Melilite

Hex. Celsian

PzOr
12CaO TAlzOa
GeSr
Scapolites
Sodalite

Paracelsian
Analcite
Coesite
Feldspars

Chabazite
Gmelinite
Beryl
Milarite
Faujasite
Cancrinite
Natrolite
Petalite
Heulandite
Keatite

Members

Olivine, garnet, sphene,
apatite, gypsum etc

Ilvaite, tilleyite, ZrPOr
lawsonite

Zwyite
Idocrase
Clinozoisite, allanite

Enstatite, diopside, au-
gLte etc

Catapleite, wadeite

Dioptase, caledonite

Tremolite, hornblende
etc.

Datolite

Clay, chlorite etc
Beryllonite, VzOr
Hardystonite, gehlenite,

ikermanite
a Celsian

Marialite etc-
Ultramarine, helvite,

danalite, hauynite
Danburite, hurlbutite
Leucite, pollucite

Sanidine, orthoclase,
plagioclase etc

Cordierite
Osmilite

Edingtonite, thomsonite

Philippsite (?.1
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frslr 2 (cont'inued)

Sharing
coefi-
cients

Repeat-units
and loops of
tetrahedra

Structure
families

Cristobalite

Tridymite

Quartz

Bertrandite
Hemimorphite
BrOr
.4.g2[IgIr
Phenacite
Sphalerite
Wurtzite
Cubanite
Cooperite
ZntPz
Fluorite

Members

Camegieite, cuprite,
NazCaSiOr, KrAbOr

NazAbrO,RPOr,
BAsOr etc.

Nepheline, BaAbor,
BaFer0, KAlSiOr,
KzMgSirOs etc.

Berlinite, hi-eucryptite,
AlPOr, AlAsOr etc

Willemite
BeO, MgTe etc
BeS, BeTe etc

BirOa
ZrOz, ThOr etc , also an-

tifluorite structures:
NarO, K:O, LizO etc

2 0 0

2 .00

2 . 7 5
2  7 5
2 7 5
3 0 0
3 0 0
4 0 0
4.  00
4 0 0
4 0 0
6 . 0 0
8 . 0 0

6-8

3 4-6
3 4 6 8

3 4
3  4 - 5
3
3
3
4
3

Octahedron

b. Networks with one

or more efues

shared

c. Networks with one

or morefacesshared

5 Mixed types

smallest loop of the structure, or (2) by the l ist of the different sizes of

Ioops occurring in the structure, or (3) by the l ist of all the symmetrically

non-equivalent loops, in order of the increasing size of the loops. The

first alternative has only five or six subdivisions, which is not sufficient to

distinguish between a large number of possible structures, especially in

the three-dimensional networks. The second alternative increases the

number of subdivisions considerably. The third alternative, however' in-

creases it to such an extent that almost every known structure has a

different l ist of loop sizes.
Although the third alternative offers a greater number of subdivisions

than the second, the second has been chosen for this classification for the

following reasons: because the determination of the symmetrically non-

cquivalent loops is diff icult and, in complicated structures, might become

confusing; secondly because the number of subdivisions offered by the

much simpler second alternative seems to be sufficient since only very

similar structures have the same loop sizes.
The loop sizes can be determined either by simple observation or by a

more systematic approach offered by the symmetry of the structure: all

the possible loops of the structure must include the tetrahedra of the
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tetrahedral motif of the structure. The number of tetrahedra in the
motif is usually less than five. unfortunately in complicated structures
there might be a very long list of loop sizes, especially for the larger
loops. In order to avoid an unnecessarily long l ist, the loop sizes can be
limited arbitrarily. At the present time it seems to be satisfactory to
Iimit the number of loop sizes of a structure to four, and the size of the
largest loop to twelve.

As the sharing coefficient increases above 4.00, tetrahedral edges are
shared, and, in addition to the loops, incomplete polyhedral openings are
present. When the sharing coefficient approaches 8.00 certain openings
become complete polyhedra, but when the sharing coefficient reaches
8.00, all the edges are shared and all the openings are polyhedral. For
example, the openings in the fluorite structure are octahedral, rn struc-
tures with a sharing coefficient higher than 8.00, the polyhedral openings
start to disappear, making room for solid bodies of tetrahedra. With a
sharing coefficient at and above 8.00 there are no more loops of tetra-
hedra. rnstead of units and Ioops these structures can be subdivided ac-
cording to the shape of their polyhedral openings.

Srnuctunn F,q.lrrr,rps

After the tetrahedral structures are classified according to types, sub-
types, sharing coefficients, and repeat units or loops of tetrahedra, there
remain only very similar structures in each category of the classification.
They are in most cases isomorphic, isotypic, or derivative structures. It is
theoretically possible, however, that two structures can be so similar that
they have the same tetrahedral loops, yet their tetrahedral l inkages are
different; these should not be left in the same final group. Two such struc-
tures are apophyllite and gillepsite. They are similar in every respect, ex-
cept in the linkage of tetrahedra. rn both structures the tetrahedra are
oriented so that they form triangular pyramids with their bases in the
plane of the sheet of the layered structure. rn apophyll ite the three basal
corners of the pyramids are shared, but in gil lepsite the two basal corners
and the apices of the pyramids are shared. Such structures should be
separated as two different structure families, so that in the final column
of the classification there are only closely related structures.

CrassrrrceuoN or. SrrrcarBs

There is a complication in the structures of the sil icates which makes
their classification difficult. This is the presence of tetrahedrally coordi-
nated AI, B, Be and other cations. This complication is usually neglected
by most authors and gives rise to an inconsistency in the treatment of
various sil icates. The problem can be i l lustrated briefly by three points:
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(1) It is generally accepted that Al can replace Si, and when it does, the Al tetrahedra

still remain part of the tetrahedral framework of the silicates. In some cases, however, the

AI tetrahedra are not so regarded. For example, cordierite is usually classified as a six-

membered single-ring structure, where the tetrahedra of the ring are Si tetrahedra. But

AI tetrahedra connect these rings into a continuous three-dimensional network.
(2) In other cases other cations occur in tetrahedra and they are sometimes accepted as

part of the frame and sometimes not. For example, B in danburite is accepted as part of the

frame, and danburite is ciassified as a silicate with the three-dimensional network of tetra-

hedra. Ca occurs in tetrahedral coordination in Na:CaSiOa and is accepted as part of the

framework, so that the crystai is a derivative of the cristobalite structure. But tetrahedraily

coordinated Be is not accepted in beryl, phenacite or bertrandite, nor Zn in willemite,

hemimorphite or hardystonite.
(3) Almost every author treats this problem difierently (Bragg 1930, 1937, Berman

1937, Gruner 1931, Strunz 1937, Swartz 1937). Most authors exclude cations other than

Si and Al from the tetrahedral frame of the silicates. In some instances even Si atoms are

excludedfromtheframeasinNa-melilite (Swartz 1937). On the other hand some authors

(Strunz 1937, 1957, Eitel 1941) accept two alternate classifications for the silicates con-

taining several cations in tetrahedral coordination.

Without a consistent treatment of the various four-coordinated cat-
ions, a classification of silicates based on their tetrahedral structures is

somewhat artificial. In order to save the otherwise satisfactory Ma-

chatschki-Bragg classification, the problem of the cations must be treated
consistently. The acceptance of all the tetrahedrally coordinated cations
in the tetrahedral frames of the silicates would not only be the simplest

solution, but probably the only satisfactory solution. This is the only

way, for example, for the consistent classification of the melil i tes. The

Iinkage of the tetrahedra in the various melil i tes is identical although the

tetrahedra are occupied by different cations. In Na-melilite there are

only Si cations in the tetrahedra, in gehlenite only Si and Al cations' but

in hardystonite, there are also Zn and in meli l i te Mg and Fe cations.
Geometrically there are several cations which can substitute for sil icon

in a tetrahedron without changing significantly the size of the tetrahe-
dron. Table 3 is a l ist of some cations which can be found tetrahedrally co-

ordinated in sil icate structures, and some which might conceivably be
present in tetrahedral coordination. They are l isted in order of increasing

cation-oxygen radius ratio. The minimum radius ratio geometrically re-
quired for a tetrahedron is .225, so that any of the cations from B to Ca,
Iisted in Table 3, can fit into an oxygen tetrahedron. Due to its large size,
however, Ca distorts the tetrahedron considerably. Most of these cations
also have similar electronegativity, so that their substitution for Si would
not be expected to change significantly the nature of the chemical bond
(Pauline 1939, p.58). The list of the observed cation-oxygen distances in-
dicates that the variation in the size of the tetrahedron is even less than
indicated by the theoretical radius ratios. Except in the case of B and Ca
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'I'asLE 3. Solrn ImponrlNr TornA.Eroner,r,v Coonornarrn Carroxs rN Srrrcatns

Cation
Radius ratio 

observed M-o 
Electro-

(calculatecl) 
T.fff negarivity

B3+

Be2+

As5+

P5+

si4+
t-l '

Al3+
Gea+
Ga3+
Mgz+
Fe2-3+
Znz+

Ti4+

Ca2+

. 2 5

. 2 8
30

. 3 4
38

. 3 9

. 4 1

. a J

.46

.47

.48-. 50

. 5 U

. 5 5

. o /

1  . 5 0

1 . 6 0

1 . 6 0

t . 7 8
1  . 8 0

1 .80
1  . 8 0
t . 8 2

1 . 8 2

1 . 9 0

2.0 Danburite, datolite,
homolite

1 5 Beryl, phenacite
2 . 0
2.1 Stillwellite
1 .8 Silicas, silicates
1 . 0
1 .5 Aluminosiiicates
1.8 Many s i l icates
1 .5 Many silicates
1.2 Melilite, ikermanite
1 . 5-2 .0 Staurolite, cordierite
1.8 Hemimorphite, hardy-

stonite
t .6 Schlor lomite,

astrophyllite
I 0 NazCaSiOa

Data from Pauling (1940), Hori (1954), Smith (1954).

tetrahedra, the different cation-oxygen distances are almost equal to the
cation-oxygen distances observed in the Si and Al tetrahedra.

In many sil icate structures containing several tetrahedrally coordi-
nated cations the difierent cations appear to occupy symmetrically differ-
ent tetrahedra. In beryl the Si cations appear to occupy the tetrahedra of
the hexagonal rings, and the Be cations the tetrahedra which connect
these rings into continuous networks of tetrahedra. This separation of
the two cations is probably not complete except in a state of high order.
The milarite structure is similar to the beryl structure, except that
milarite has double hexagonal rings. At room temperature there are
(Si.soBe r0) cations in the tetrahedra of the hexagonal rings and
(Si.,ro,Be.zrAI.33) cations in the connecting tetrahedra (Ito and Sadanaga
1952). Consequently Be can be present in both tetrahedra, and the rejec-
tion of the connecting tetrahedra in the consideration of the tetrahedral
frame of milarite or beryl is artif icial. The only consistent treatment is
the acceptance of all tetrahedra, and the classification of milarite and
beryl as structures containing three-dimensional networks of tetrahedra.

There is only one important criterion which can lead to discarding a
tetrahedron from consideration as part of the tetrahedral frame, namely
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the nature of its bonding. The tetrahedral structure of a sil icate can be

regarded as the frame of the crystal. This frame is a strong unit within

the structure, since in each tetrahedron half or more of the cation's bond

strength is expended in holding the tetrahedral frame together and less

than half is expended in connecting the cation to the rest of the struc-

ture. Any tetrahedron can be part of the {rame, provided that half or

more of the cation's bond strength is distributed within the tetrahedral

frame. If less than half of the bond strength of the cation is distributed

within the frame, the tetrahedron belongs to the rest of the structure,

rather than to the frame. A good example is ofiered by axinite. Here the

four-membered rings of Si tetrahedra are connected by AI tetrahedra,

but the Al's contribute less than half their bond strength to connect the

Si tetrahedra and more than half to connect the Fe octahedra and B tri-

angles.
Of course, it is expected that in a sil icate a large number of tetrahedra

are Si tetrahedra in order to classify the crystal chemically as a sil icate.

If the replacement of Si by another cation goes as far as the complete re-

placement of all the Si, the compound should not be called a sil icate

chemicaily, although structurally it sti l l  might be included in the sil icates.

An example is yttro-garnet, in which practicaliy all the Si is replaced by

Al (Yoder and Keith 1950).
By accepting the tetrahedraily coordinated cations in the tetrahedral

frame of the sil icates, some changes have to be made in the conventional

classification of beryl, cordierite, hemimorphite, phenacite, wil lemite,

bertrandite and melil i tes. Beryl and cordierite are three-dimensional net-

works instead of single rings, and hemimorphite, phenacite and wil lemite

are three-dimensional networks instead of pairs of tetrahedra. Bertrand-

ite is also a three-dimensional network instead of a complex of chains

and groups of tetrahedra. In the melil i tes the pairs of tetrahedra become

sheets of tetrahedra.
In hemimorphite, phenacite, wil lemite and bertrandite, all of the cat-

ions are tetrahedrally coordinated. These tetrahedra build up a neutral

network, somewhat similar to that of the pure sii icas. The cation-anion

ratio in these minerals is higher than in SiOz, and consequently the shar-

ing of one oxygen by two cations would no longer give a neutral structure.

In order to obtain neutrality, the oxygens are shared by up to three cat-

ions, and some of the O-- is replaced by (OH)-.
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AlpnNorx

The sharing coefficient of a tetrahedral structure can be obtained from the subscripts
of the tetrahedrally coordinated cation (t) and anion (.4 ) in the chemical formula. An equa-
tion has been derived for this calculation.

There is a total number of 4l tetrahedral corners in a chemical-formula unit, r of
these are joined to anions shared by nll tetrahedra and. 4T-n to anions shared by z
tetrahedra. Then the avera€le number of tetrahedra participating in the sharing of a
corner rs:

sharing coefficient :
r ( n ] _ l ) l ( 4 T - x ) n

: 4 r + n  ( 1 )

,4 is the number of anions per chemical formula and is the sum of the number of corners
shared between niL and n tetrahedra:

r  4 T - r
A : -- +---

n * l  n

:nnl4r_q + t)::!_:
n 2 + n

r :  4T(n I l )  -  A(n2 I n) (2)

Equations (1) and (2) can be combined to obtain the sharing coefficient in terms of
T, A and,n:

sharing coefficient :
4 T ( n l l ) - A ( n z  l n )

t n

4T

4T
A

: n + l  -  _ ( n ' I n )  * n'  
A T

: 2 n r 1 - + @ 2 t n )  ( 3 )
4T

'I'he 
oniy unknown in ecluation (3) is z. Fortunately, n canbe obtained frorn the ratic

of the number of available tetrahedral corners to the number of shared corners:4TfA,
Tlris ratio does not express the proportion of corners shared by nIl and by z tetrahedra,
but it is equal to the sharing coefficient rvhen its value is an integer. Between integers the
integral part of 4T/A is equal to the integral part of the sharing coefficient, that is, to z
in equation (3) Consequently:

T T
+ a

n : the integer of 
, 

(4)

In conclusion, the sharing coefficient of a tetrahedral structure can be obtained from
the structural chemical formula by using equations (a) and (3).
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