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CORRELATION OF SOME PHYSICAL PROPERTIES AND
CHEMICAL COMPOSITION OF SOLID SOLUTION
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ABsrRAcr

The tacit assumption for the linear correlation of the density and the chemical com-
position of a solid solution is twofold: one is an ideal solid solution and the other identical
or nearly identical molar volumes of the components. In an ideal solid solution, the differ-
ence in densities obtained by the non-linear and linear treatments are discussed. These
are applied to the spessartite-almandite, almandite-pyrope, forsterite-fayalite and unrtzite-
greenockite systems. The garnet systems can be treated practically by the linear correla-
tion, but the olivine and the wurtzite systems must be treated with caution. Coefficients
of thermal expansion and compressibilities of the ideal solid solution can be discussed in
the same manner. But when the solid solution is ideal, the linear correlation of molar heat
capacities and chemical composition is possible. The linear correlation of refractive index
and chemical composition of an isotropic solid solution can be derived from the Gladstone-
Dale equation, but it is required that the system must be ideal and the molar volumes of
the components are equal or nearly equal. If the concept of the volume fraction is intro-
duced, density, coefiicient of thermal expansion, compressibility and refractive index can
be correlated linearly with the volume fraction in an ideal system.

L Dprvsrry

Density has been correlated linearly for the determination of the chem-
ical composition of a solid solution. Bloss (1952), however, found out that
this is not actually true in an ideal binary solid solution. This can be
proved more rigorously in a multicomponent system by a simple thermo-
dynamical discussion. The difierence between the densities obtained by
the non-linear and linear treatments in the ideal system is of considerable
interest to us. Since we usually use the l inear correlation forlthe deter-
mination of the composition, we want to know the maximum density
difierence from non-linear correlation, so the accuracy of the density
measurements for the l inear correlation can be stated. See Fig. 1

Zen (I956a) discussed the validity of Vegard's law in an ideal cubic
solid solution and concluded that unless molar volumes of the compo-
nents are equal or nearly equal, the law does not hold. A similar situation
arises in the correlation of density and chemical composition of a solid
solution. The importance of the molar volumes of the components in the
correlation has been pointed out by Bloss. He suggested that the negative
and positive deviations of the non-linear treatment from that of the
linear depend entirely upon the ral.io of the molar volumes of the compo-
nents in an ideal binary solid solution.

In the m component solid solution, the mass, M, is given by

lnupoVo
I

M :
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where nt, p; and T,i are the number of moles,

volumes of the ith component of the solid

volume of the solid solution, tr/, is

v :

where 7; is the partial molar volume
notes all the components except the
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Frc. 1. Correlation of density and chemical composition of an ideal binary solid solution.

The curve [1] is the non-Iinear correlation and [2] iinear approximation. For other symbols,

see the text. The example is given for the case of Ap,)0, which is termed the positive devia-

tion from linearity. When the error of the density measurement is larger than Ap,, the [2]

correlation can be used approximately instead of [1]. If the density measurement is de-

signed to be more accurate and the error is smaller than Ap,, the correlation should be

more properly made by the non-Iinear curve [1]. It is noticed 11-ta1 2l'{i=0.5.

where 7 is the molar volume of the solid solution. The division of (1) by

(2) gives the density of the solid solution, that is,

J

o -- ]t w*,r,. (4)
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where ly'; is the mole fraction of the ith component. This procedure of
deriving (4) is essentially the same as that of Bloss. But (4) can be ap-
plied for both cases, ideal or non-ideal solid solution systems.

In an ideal solid solution we can set

n;-- : Ir.
Lno

I / .  -  t / .

Therefore, we have

1 _
e:  

lw , l  
) i t c ;v ' ; '

I f  the densit ies of al l  the components happen to be same,

(s)

(6)

from (6)

p :  p i .

of course, in this case, the density measurements fail to determine the
chemical composition of the solid solution. rnstead, if the molar vorumes
of the components are identical, from (6)

SINCE

t *,:'
Equation (7) indicates the l inear relation between the density and

chemical composition. Thus the tacit assumptions for the l inear cor-
relation are: an ideal solid solution and identical molar volumes of the
components. However, this is not new and only confirms Bloss, f inding.

We now consider the ideal system in which the densities of the com-
ponents are not identical, nor the molar volumes. In an ideal solid
solution, th,e difference between the densities given by the non-linear
and linear treatments is as follows.

.^ _ )- 1r,p,7o _l n,
" ' :  L N r n - L t Y P t '  

( 8 )

The function, Ap, has at least one extremum (maximum or minimum).
Though no detailed mathematical proof is given here, this is quite clear
since Ap:Q at the pure end members. The.ly'; at which Ap has the ex-
tremum can be solved by transformation of mole fraction in (8) into

(7)o : l N o r
1
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number of moles, differentiating both sides of the equation with respect

to n" and setting

1444) : o
\ 0n; / "r"

The reason for this transformation is obvious from the independent

property of number of moles. Arranging the results with the revelse

transformation of ni into ly';, we have

r, p,D!!, - LJ!!_ r F v r.rz, , - - -&  
_- f  N" : -  

-  \  l J  L ' t '  t )  . (e)

However, it must be noted that in the binary system only one equation

is necessary, but two for the ternary system and so forth. This can be

easily understood by the property of the mole fraction.

For simplicity, only the solution for the binary system is given here.

Suppose the two components are i and 7, respectively, and the required

mole fraction is eI[;. Then, from (9)

(eN;)z(Vr-  V)  +2eN{1 -V, :g (10)

The solution of the above quadratic equation is given by

(1 1)

It is quite surprising to see the el{tat which Ap has the extremum is not

a function of densities, but of the molar volumes of the components' The

negative sign in front of the square root of (11) has been dropped, since

0<tr ,< 1.
We know

V ,  * V ,  / :

- - 2  
! V ; v ;

in  (11) .  Thus i f

is substituted into (11) in the place ol t/ToTi, el{o:| is obtained'

Therefore, eltri approaches |, as 7; approach es V 1, or vice versa, because

,# = \/v,v,,

whenV;=7,. This is why Bloss follnd in some of his studies that the

mole fractio'f at which the deviation is extr€mum is about 0'5' (Fig' 1)

Vr, i Vi
z
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If ely'; determined by (11) is substituted into (8), this wil l give us the
extremum deviation of the non-linear treatment from the linear Ap,,
that is,

or" :H G;-  p)  ( r2)
Y V r l ! V i

According to (I2), the function ) Ape, rr'ay be positive or negative de-
pending on the sign of (\/V r- {7,) ana bo- p).

The following examples are given under the assumption of ideality
except in the case of the forsterite-fayalite system. This is somewhat
arbitrary, since we do not have experimental data to support this.
Ifowever, this is the simplest way for the purpose of the present discus-
sion.

Erample 1 . S pes s artite- Almand.ite S ystem

According to Skinner (1956), the densities are 4.190 and 4.318 for
spessartite and almandite, respectively. Also the molar volumes are
118.15 cc./mole for spessartite and 1I5.28 for almandite. From equation
(11), the mole fraction of spessartite, eI{;, is found to be 0.49s which is
quite close to 0.5. The deviation of density Ap" is -0.0006. Thus the
deviation is almost insignificant compared to the accuracy of the present
density measurements and the l inear correlation can be justif ied.

Erample 2. Almandite-Pyrope System

Skinner gives, for pyrope, the density, 5.582 and the molar volume,
I13.29 cc./mole. The desired mole fraction of almandite eNt is found
to be 0.492 and the extremum deviation Ap" is -0.0032. By the same
reason as the former example, the l inear correlation is possible, if the
error in the density measurements is greater than 0.0032g/cc.

E*ample 3. F or sterite-F ayalite S ystem

Yoder and Sahama (1957) concluded from the heat of solution and
additivity of the molar volumes that this system belongs to an ideal
system within the accuracy of the measurements. They give the densi-
ties, 3.222 for synthetic forsterite and 4.392 for synthetic fayalite. The
molar volumes are also given, 43.7cc.f mole for forsterite and 46.4 for
fayalite. The desired mole fraction for fayalite ely'; is 0.492 and the devi-
ation Ap, is *0.017e . The deviation is rather high. This can be explained
if we look at the equation (12). That is, when the molar volumes of the
components are small and the density difference is large, the deviation
becomes larger. As shown already, the maximum deviation of the density
is about 0.5/6. Thus caution wil l be necessary in using the l inear cor-
relation.
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Erample 4. W urtzite-Greenockite System

Hurlbut (1957) noticed that the density data of the intermediate com-
positions in this system fall below the straight line in the linear cor-

relation, though the difference is not much. The data for the present

calculation are taken from Hurlbut. Wurtzite has the density, 4.I, a.o
:3.811 A and co: 6.234 A, and greenockite, the density, 4.9, as:1.142 A

and, co:6.724 A.
The number of formula weights in a unit cell is two. Using Avogadro

number N:6.023 X 1023, the molar volumes calculated are 23.6 cc./mole
for wurtzite and 30.1 for greenockite. The desired mole fraction of

wurtzite el{,; rs 0.47 t and the maximum difierence between the non-linear

and the l inear treatment, Ap" is *0.0482 in density, which is about t '116

deviation from linearity. The conclusion starting from the ideality of the
solid solution gives the positive deviation but the experimental data
contradict this, that is, the data by Hurlbut give the negative deviation.
If the negative deviation is true, thelN rT r ,--lN aT af.rom (8). Thus the
volume increase can be expected by the mixing according to (4). How-

ever, the calculation of the molar volumes of the intermediate and end
members of the synthetic wurtzite-greenockite system from his data
indicates a volume decrease by mixing. If the density of greenockite is

chosen to be 4.8, which is calculated from his r-ray data for synthetic
greenockite, instead of the measured value ol 4.9, his density data show
the positive deviation as the present theory predicts. I{owever, a further
study is necessary in this respect.

II. ConnrrcrENT oF Tnpnuar. ExeAwsrow, Colrpnnsstsrr-rtv
,q.Nn HB.qr Cepacrrv

In an ideal ,n component solid solution, we have

v : i l , , i u  ( 1 3 )

Differentiating the molar volumes with respect to temperature at con-
stant pressure or with respect to pressure at constant temperature, the
following equations can be obtained.

(#).: r 'n (T;),
(#),: r no (#),

(14)

": + (#),, dd: +,(#).
,:+(#),, F,:-;(#),

However,

(1s)
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Then the suitable substi tut ion of (15) into (14) gives

1 _
a : F s  l N ; a r V ;  ( 1 6 )

2 2 t \ i V z

€ : - 1 - , ' L * , u o r ,  ( 1 7 )
Z ) t \ i v d

where a and ar are the coefficients of thermal expansion of the solid
solution and the lth component, and B and B; are the compressibil i t ies.
Here again, if the molar volumes of the components are equal or nearly
equal, (16) and (17) can be reduced into

o : i N * o  ( 1 8 )

B : i n n o o  ( 1 e )

Therefore, the analogous equations such as (8) to (12) can be constructed
in the correlation of coefficients of thermal expansion and compressi-
bil i t ies with chemical composition. Equation (11) shows that the mole
fraction of the ith component at which the deviation of density from the
linear is maximum, is a function of molar volumes of the components
only, thus the mole fraction is common in the cases of correlation of
density, coeffitient of thermal expansion and compressibility with the
chemical composition of the solid solution.

The molar heat content, H, ol a solid solution can be expressed by

n:L r ,  fg )  : lN ,n t  eo )"  \ 0 n ; /  ^ n

where Er is the partial molar heat content of the ith component. Differ-
entiating both sides of (20) with respect to temperature at constant pres-
sure, we have

(+):r1r,f+3)
\  A [ /  p  \ 0 r 0 n t , /  ^ o

Exchanging the order of differentiation in the right hand side of the
above equation and from

/  dH \

\  * ) , : ' ' '

which is the molar heat capacitv.

c , :L  - , f  : - c " ) :  I nne ,n  (21 )-  
\ } n t  

' /

where Co- is the partial molar heat capacity of the ith component. fn an
ideal system

Cet :  Cot ()'r)'



PHYSICAL PROPERTIES AND COMPOSITIONTS OF SOLID SOLATIONS 377

Thus we can have

co : I N{,t (23)

Therefore, the correlation of the molar heat capacity with the chemical
composition of a solid solution is linear as far as the solid solution is

ideal. Apparently few experimental data exist for the discussion of

Part II.

III. RrrnacrrvE INDEX

In general practice, the index of refraction of an isotropic solid solution
is linearly represented as follows.

, : i * n  u  Q 4 )

where 7 andTaare the refractive indices oI m component solid solution
and its ith component, and /y'; is the mole fraction of the ith. Equation
(24) has been also generalized for anisotropic solid solutions. According
to Barth (1930), the equation is analogous to the second theoretical
equation by Mallard which is the same as that obtained by Duffet

empirically. The tacit assumption in his practice will be studied from

the property of refractivity. The total refractivity, R, is expressed by

R : t---l V (Lorentz-Lorenz) (25)
t ' * 2

or  
R:Q-DV (Gladstone-Dale)  (26)

The calculation of the index of refraction from the density data has

been attempted by several authors (e.g., Larsen (1921), Jaffe (1956) and
Ailen (1956)), though Barth stated that the relation between the two

is not simple. However, the empirical equation by Gladstone-Dale rather

than the theoretical one by Lorentz-Lorenz generally appears to be in the

best agreement with the observed facts (Eitel (1954)).

We define the partial molar refractivity of the ith component of the
solid solution as follows.

R,: f i4\  e7)'  
\  0n; /  "*

And generalization of the equation by Guggenheim (1957) gives

P : inonu (28)

The differentiation of both sides of Lorentz-Lotenz equation (25) with

respect to nt gives
-  t ' - l -
R t : ; - ; ;V t (2e)
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From (25), (28) and (2), with transformation of na into ly';,

f .v,nr :+:l unv, (30)
1 ' f  z

Call Rr the molar refractivity of the lth component and then the fol-
Iowing equation is valid.

^ . . 2  _  1

f  , \ ' ;R;: ln, ! ;  , rV,
I t  |  -

The division of (30) by (31) gives

" , 2 - 1' __ j- ryoto
L n o n o  f l 2 u '

fi,a,:;-E; (32)

If the deviation of ideality is not great in a solid solution, then

! lrrRn

; ntu& 
-'

Thus

t- ]  = 1 
s.  . ,7 , . ' -  1-

f  l 2  |  n o F n L N t  * v t

Equation (34) may be expanded as follows.

( r -1+4-1* { . . . \=  1
\  r t  ra  . )u  ? t  /  L  ,n i ,

: I ro( ' -++ "1--*+-# )r , ,  (3s)

(31)

(33)

(34)

Then we can have

I  1  1 _

, r -  |  w o T u L N ;  ' v ;
1  I  t _

1 ^ =  L  N ; v o L N o  ^ r ' n

:

These are obtained by equating the terms of both sides of (36), which
have the same power of r and /i. This method indicates also
EUoTn=2NnV;from the first term. This can be understood from (33).
If this is an ideal solid solution and the molar volumes of the components
are equal or nearly equal, equation (36) becomes

1  - _ _  1
-  :  2  N;  

- i  
l ' :  2q,  q:  1,2,3,  '  '  '  (37)

(36)
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However, when g:1 in the equation above, we have

1: t r ,1"  ( r8)
a' "yi-

which is analogous to the first equation given by Mallard theoretically

in 1884 for the binary cubic mixed crystals. Barth (1930) believes that

Mallard's theory depends on the analogy of the phenomena produced

by the superposition of thin crystall ine plates. It is proved that Mal-

lard's equation can be derived from Lorentz-Lotenz equation. And the

equations for q) 1 should be tested by experiments.
From Gladstone-Dale equation.

n': (t - DVn (39)

Under the same assumption and with the same procedures as before, we

have

I NorVo
' =  

7 ;unvn
When the solid solution is ideal, (40) becomes

.: r-""{' (4r)' 
I unin

In addi t ion,  i f  the molar  vo lumes of  the components are equal  or  near ly

equal, (41) can be reduced into (24). The linear correlation can be derived

from Gladstone-Dale equation under the condition of the ideal solid

solution and identical or nearly identical molar volumes of the com-

ponents. The similarity of equation (41) to those of density, coefficient of

thermal expansion, and compressibility equations is obvious. Therefore,

it is suggested that the analogous equation such as (8) to (12) may be

constructed in the correlation of the refractive index and the chemical

composition of the solid solution. But equation (41) should be tested by

experiments. The simplest test may be the measurements of the re-

fractive indices of an ideal binary solution.

Suulranv .cNp CoNcrusroN

The simple linear correlation of the density and the refractive index

with the chemical composition of a solid solution which is found in

standard textbooks in mineralogy was analyzed in Part I and Part III. In

Part I, the conservation of mass and additivity of partial molar volumes

are the basis of the discussion. In Part II, additivity of molar volumes (in

an ideal system) and that of partial molar heat content are uti l ized.

In Part III, the discussion was conducted from additivity of partial

(40)
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molar refractivity, which is not a thermodynamical quantity and also
from that of partial molar volumes.

In an ideal system, equations (6), (16), (17) and (41) indicate that
these physical properties of the components are weighted to their pro-
portion of volumes and then give the average properties of the solid
solution. As already shown, these equations can be summarized as fol-
Iows.

ZP!:E!!4:L:y*-r, :Z!{r, - \- ,r r7
P  q  P  

- ; - : L l \ i v i

We define the volume fraction, z';, in the following manner.

NrVt
1 l : : --" 

L novo
Thus

+": | (M)
In terms oi the volume fraction, (42) can be expressed by

p :  L  p p ;
o :  \ o a o ;

o : L / , , o ,  
( 4 5 )

t  :  L v z t

In other words, these physical properties can be correlated Iinearly with
the volume fraction of the components. When the molar volumes of the
components happen to be identical, the volume fraction is identical with
the mole fraction. This can be shown from (43). As shown by (44) and
(45), measurements of one physical property is sufficient to determine the
volume fraction in an ideal binary solid solution, two for an ideal ternary
system and so on. One might prefer the use of "degree of freedom" in
this kind of discussion. But, according to the present discussion, the
determination of the lattice constant is only involved in equation (44).
Thus this does not introduce a new physical property to determine the
volume fraction, that is to say, the determination of the lattice constant
does not reduce the degree of freedom of the system to determine the
volume fraction. On the contrary, the Iattice constant determination can
be used for the conversion of the volume fraction into the mole fraction.
For simplicity, suppose a cubic ideal solid solution, then

- NaB - Natg
I r : _ ,  I ' j : _

Z Z

where o and aa are the lattice constants of the

(42)

(43)

(46)

sol id solut ion and i ts ath
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component, Irr is Avogadro number and Z is number of the formula in

a unit cell. No structure change is assumed in this solid solution' Equa-

tion (46) is substituted into (13), thus we have

o, : I Naa,;g

Therefore, the volume fraction can be expressed by

/ a":\ 3
ar : 1r; (-/

And the conversion of volume fraction into mole fraction

the follorving equation.

(47)

(48)

can be done by

1[; : (48')

Regression equations relating chemical compositions and physical prop-

erties have been prepared for dolomite by Zen (1956b) and for antho-

phyll ite by Hey (1956). Hey emphasized certain inherent l imitations for

their use, that is, a regression equation can only be uti l ized for one par-

ticular purpose. An equation or set of equations derived to predict the

physical properties at the given chemical composition, can not properly

be used to predict the chemical compositions at the given physical prop-

erties. This restriction in regression equations is lucidly i l lustrated by

Moroney (1956). If i t is desired to predict the chemical composition.

given an adequate number of physical data, a set of regression equations

must  be calculated for  th is  purpose (e.g. ,  Zen (1957)) ,  as Hey asser ts '
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