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ABSTRACT

There is a simple relation between the forms of the transmission factors for upper levels
and the zero levels for rod-shaped specimens. When the equi-inclination technique is used,
the several ray paths for a given T have lengths x; for the zero level, while the ray paths for
the upper level at the same T are x;/cos ». If the form of the transmission factor for the zero
level is known, the form for the upper level is therefore the same for the same value of T,
except that the geometrical scale of the cross-section is increased by the factor 1/cos ». The
resulting correction for absorption for all levels is especially easy to apply if the cross-sec-
tion of the crystal is circular.

INTRODUCTION

If a material has a linear absorption coefficient y;, then, after traversing
a path of length x, a beam of original intensity I, is reduced! to

I = Ipe e, ¢))

If the crystal has a shape such that the various paths have different
lengths, x, then (1) must be integrated over the volume of the crystal.
The transmission factor is defined as the ratio of the intensity which is
diffracted by the specimen to the intensity which would be diffracted if
the specimen had no absorption. Let K be the fraction of the intensity of

the direct beam diffracted by a crystal in a particular spectrum. Then
the transmission factor for that spectrum is

T mest
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What is termed the transmission factor here is ordinarily called the

1M, J. Buerger. X-ray crystallography. John Wiley and Sons, New York, (1942)
181-182.
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“absorption’ factor. But, as Joel et al.? have pointed out, that usage is
confusing. The fraction transmitted is I/I,, whereas the fraction ab-
sorbed is its complement (Io—1I)/ 1.

Claasen,® and later Bradley,* solved (2) for cylindrical samples by
graphical integration. As a result, the transmission factor for cylindrical
samples is available!? tabulated as a function of the Bragg angle 6 and
the product u,R, where R is the radius of the cylinder. Evidently the
transmission factor for a single crystal which has been ground to circular
cylindrical form can be treated in the same way®~® provided that the cor-
rection is required only for reflections from planes parallel to the cylinder
axis, and provided that the incident z-ray beam is normal to the cylinder
axis. But this corresponds to correcting only the zero level for normal-
beam or equi-inclination techniques.

TRANSMISSION FACTORS FOR THE GENERATL CASE

Fig. 1 shows a cross-section of a crystal ground to circular cross-sec-
tion. The path of the primary ray to the element of volume dV is x, and
the path of the diffracted ray from the element of volume is x3. From this
point of view (2) can be written

v
T = f WA @)

In the general case, Fig. 2, the primary ray makes an angle g, and the
diffracted ray makes an angle », with a plane normal to the cylinder axis.
The diffracted ray is more completely defined by cylindrical direction
coordinates » (the angular component in the plane of the cylinder axis)

2 N. Joel, R. Vera, and I. Garaycochea. A method for the estimation of transmission
factors in crystals of uniform cross section. Acia Cryst., 6 (1953) 365-468.

3 A. Claassen. The calculation of absorption in x-ray powder photographs and the scat-
tering power of tungsten. Phil. Mag. (7) 9 (1930) 57-65.

¢ A. J. Bradley. The absorption factor for the powder and rotating-crystal methods of
w-ray crystal analysis. Proc. Phys. Soc., 47 (1935) 879-899.

5 H. Kersten and W. Lange. Method of preparing crystals for rotation photographs.
Rev. Sci. Instr. (12) 3 (1932) 790-791.

6 C. A. Beevers and W. Hughes. The crystal structure of Rochelle salt (sodium potas-
sium tartrate tetrahydrate, NaKCH¢Og- 4H:0. Proc. Roy. Soc., London (A) 177 (1941)
251-259.

7 Ray Pepinsky. Method of cutting and shaping fragile crystals. Rev. Sci. Instr., 24
(1953) 403.

8 F. Barbieri and J. Durand. Method of cutting cylindrical crystals. Rev. Sci. Instr., 27
(1956) 871-872.

9 C. Hermann. Internationale Tebellen zur Bestimmung von Kristallstrukturen, Vol.
11. Gebriider Borntraeger, Berlin, (1935) 584.
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F16. 1. Crystal ground to a circular cross-section.

and T (the angular component in a plane normal to the cylinder axis).
Both u and » are setting coordinates for any method involving a rotating
crystal; T is a setting coordinate for a quantum-counter apparatus,!®
also is the coordinate on the Weissenberg film normal to the center line
of the film. Now, if one compares the situation for a general level at a
value of T equal to the 20 of Fig. 1, it is evident that for the general case,
the path a; is replaced by x;/cos u and the path «; is replaced by the path
x2/cos ». Therefore the transmission factor for the upper level for this
reflection has the form similar to equation (3), namely

v
T = %f ¢~ (B2, loos I-L,+I‘la;2/cos YV, (4)

The integration is equivalent to an integration of %; and x, over segments
of two ellipses, respectively, and then integrating over a change of loca-
tion of the join of the ellipses.

ABSORPTION FACTORS FOR EQUI-INCLINATION AND
ANTI-EQUI-INCLINATION

Relation (4) has a simple solution when v= —y (equi-inclination, gen-
eral level) or when »= 4y (anti-equi-inclination, zero level only). In
these cases

1 v
T = _f e—(Mlzl+Ml:v2)/cos vdv.
14
1 v
=y [ erremar. ®)

This is exactly the same as (2) except that every ray path is increased by
the factor 1/cos ».

10 M. J. Buerger. New single-crystal counter-tube technique. Acta Cryst., 9 (1956) 834.
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Fic. 2. General case: primary ray makes an angle u, and the diffracted ray makes an
angle », with the plane normal to the cylinder axis.

To correct the upper-level equi-inclination reflection for absorption,
therefore, one applies the same correction that would be applied at the
same value of T for the zero level (where T=26), except that it should
not be looked up under the value of R, but rather R/cos ».

This analysis neglects an end effect (for which there is less absorption)
for the ends of the cylinder in Fig. 2. This end effect is negligible if the
length-to-diameter ratio of the cylinder is large. (If the absolute length
of the cylinder is so large that the ends are not in the x-ray beam, then
there is no end effect, but there must be a correction for the volume inter-
cepted by the beam. This is proportional to 1/cos », so that the “‘inte-
grated intensity” must be corrected by cos » if the x-ray beam does not
bathe the full length of the cylinder.)

ExTENSION T0 Rops oF NoN-CIRCULAR CROSS-SECTION

If the zero-level transmission factor is found for any rod-shaped speci-
men of uniform cross-section, it follows from the above discussion that
the transmission factor for the upper levels is the same as that of the
zero level for the same value of T, except that the scale of the cross-sec-
tion (or else the absorption coefficient) must be regarded as increased by
the factor 1/cos », provided equi-inclination is used. The simplicity of the
absorption correction for equi-inclination provides one more reason for
using that technique whenever possible.
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ExampLE

To illustrate the importance of making a correction for absorption in
data taken from upper levels, an example is given here of the computa-
tion of the correction and its application: Three-dimensional data were
obtained from a small crystal of wollastonite. The average diameter was
0.0076 cm. The linear absorption coefficient, calculated as outlined else-
where,! is ;=215 cm.™! for CuKe. Thus p,R=0.81. Table 1 shows the
computation of the transmission factor. For each level there is derived a

TaBLE 1. CALCULATION 0F CORRECTION FOR ABSORPTION FOR ROD-SHAPED
CRYSTAL OF WOLLASTONITE

(u=215 cMm.7t ForR CuK o; Rap1US, R=,0038 M)

| Transmission factor, 7'

level: o [ 4 |2 | 3 4| s |6 | 7 | s

x v | 0° 603 12°107 | 18°25" | 24°55’ | 31°47" | 39°12° | 47°31 | 57°267

|| cosw: 1 004 1,978 949 | 2907 | 830 L1775 | L6735 538

| wgR/cosp:| .81 JB13 .828 853 .893 .954 1.045 1.20 | 1.505

0 | .264 ‘ 262 257 ‘ .248 .233 213 | 185 146 ‘ .088
45° 274 2272 267 258 | 243 ‘ .224 .198 .160 .103
90" || 302 300 295 | .287 2273 L2355 .230 195 .141
135° | 334 | .332 .328 .320 307 .291 .268 2815, .181
180° [ | .353 | .351 | 347 -339 1326 ‘ -308 285 ‘ .251 | .199

1N, Iiizeki and . J. Buerger. The crystal structure of livingstonite, HgShsSg. Zeit.
Krist., 109, 129-157 (1957).

value of u;R/cos v. For each of these values, the transmission factor is
found by interpolation from the corresponding value of ;R in standard
tables.*® To make actual use of these sample values of the transmission,
they should be plotted and connected by curves as shown in Fig. 3. Then
the transmission factor 7' for any reflection on any level can be read
when the value of T for the reflection is known. Since this is a Weissen-
berg coordinate, and also a setting coordinate for the single-crystal
Geiger-counter instrument'® the value is known for each reflection.

Fig. 3 brings out the importance of making appropriate corrections for
absorption in upper-level intensity data. The transmission factors for
the higher levels differ so widely from those of the zero level that only a
poor residual factor, R, can be expected if the zero-level correction is
applied to all levels." The crystal in the example is about as small as
can be handled conveniently, yet the transmission factor falls in the
range 8% to 359, for CuKa radiation. For MoK, the value u;R is of the
order of only 109, of that for CuKe, and the corresponding transmis-
sions are in the range 909,-1009.
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F1G. 3. Transmission factor T plotted against values of T for various levels.
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