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PHYSICAL PROPERTIES AND BOND TYPE IN
Mg-Al OXIDES AND SILICATES -

JonN VERHOOGEN, University of California, Berkeley.

ABSTRACT
From a study of physical properties that are sensitive to the electronic distribution, it
is concluded that oxides and silicates of Mg and Al behave mostly as purely ionic com-
pounds. Departures from ionic behavior are generally not such as to suggest covalent bond-
ing.

INTRODUCTION

The solution of many petrological and geophysical problems demands
an understanding of the nature of the interatomic forces in silicate
minerals. The P-T range of stability of various phases, the kinetics of
reactions between these phases, some of their magnetic properties, the
velocity of propagation of elastic waves in the earth’s mantle, its physical
constitution, and its electrical conductivity, are examples of problems
that involve some knowledge of the nature of interatomic forces in
silicate minerals.

Of the various models that have been proposed for silicates, the ionic
one, as developed by Goldschmidt, is by far the simplest. Once a set of
ionic radii has been chosen, simple rules allow prediction of the co-
ordination numbers and the general type of structure of a compound of
given chemical composition. The interatomic attractive force is purely
electrostatic, and the repulsive force, which arises from overlap of closed
shells, contributes only a small fraction of the total lattice energy, so
that its exact description is not essential to a first approximation and
when dealing with phases at ordinary pressure. Goldschmidt’s ionic
model has unrivaled elegance and simplicity.

To be sure, not all elements and not all crystals obey the simple ionic
rules. Attention has been called in recent years to an increasing number
of substances for which the ionic model is inadequate (Fyfe, 1951,
1954; Goodenough and Loeb, 1954). Goldschmidt had, of course,
noticed such discrepancies when he introduced into crystal chemistry
the concepts of polarizability and polarizing power, both rather em-
pirically defined. Polarization leads, in Goldschmidt’s views, to a gradual
transition to covalent bonding which will occur, according to him, when
the polarizing power of the cations, as measured by their ionization po-
tential, exceeds a critical value which depends on their charge and the
polarizability of the anions. The present writer is not clear as to exactly
what Goldschmidt’s criteria may be for deciding that a compound is
covalent rather than ionic; such criteria are indeed difficult to define.

An attempt to measure quantitatively the covalent character of bonds
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was made by Pauling by means of his well-known electronegativity scale
(Pauling, 1948a). The approach is again purely empirical. It leads to
assigning to Si-O, Mg-O, and Al-O, bonds slightly more ionic character
than Goldschmidt would grant. The most covalent of the three, accord-
ing to Pauling, is the Si-O bond, with about 509% ionic character; Gold-
schmidt’s chart (1954, p. 105) would make it purely covalent, although
he mentions on the previous page that the “ionic character is about equal
in strength to the covalent bonding.” The actual charge distribution was
later revised when Pauling (1948b) introduced his elect roneutrality
principle according to which “the electron distribution in stable mole-
cules and crystals is such that the electrical charge associated with each
atom is close to zero, in all cases less than 41 electron.”” The necessary
redistribution of charge is effected by formation of = bonds, which lead
to a contraction of the bond length. The calculation of the Si-O distance
in (8i04)* groups now becomes an intricate affair, involving essentially
empirical corrections for 1) the Shomaker-Stevenson correction (for
empirical electronegativity difference) to the sum of the covalent radii;
2) the (empirical) amount of m-bond character induced by the charge
distribution; 3) the (empirical) bond contraction due to m-bond forma-
tion. How much simpler it is to note that the cosine of the tetrahedral
angle (109°28") being equal to 3, the Si-O distance is v/§ times the 0-O
distance; thus the conventional Goldschmidt oxygen-ion radius of 1.33
leads directly to an Si-O distance of 1.63!

The truth of the matter is that a complete and exact calculation, by
quantum-mechanical means, of bond energy, lattice spacing, and elastic
coefficients, of any structure more complicated than the hydrogen
molecule still cannot be done. Approximations must be made, and em-
pirical procedures resorted to. What is then the simplest model that will
account best for most properties of the substance under consideration?
Surely not the covalent one, as we still cannot compute an energy of
covalent bonding (except by empirical means) for molecules more com-
plex than Hs; no one has attempted, to the writer’s best knowledge, to
calculate from first principles the lattice energy of diamond. The pure
ionic model no doubt is the simplest; and this paper is concerned mostly
in finding how well an ionic model will account for a number of physical
properties of silicates and oxides of magnesium and aluminum. Because
of lack of experimental data on many of the more complex silicates (e.g.
pyrope), this investigation deals mainly with the component oxides
Si0s, MgO, and AlO; The remarkable additive property of the en-
tropies (Fyfe, Turner, and Verhoogen, in press) leaves little doubt,
however, that the type of bonding in the more complex oxides and sili-
cates is essentially the same as in the component oxides.
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Some of the physical properties considered, such as the diamagnetic
susceptibility and the electronic polarizability, depend critically on the
average radius 7 of the electronic distribution, 7= [org?dv. To compute
7 (or 72, or 7, as the case may be) for an lonic structure, we consider
here that all electrons occupy unperturbed orbitals of the ion to which
they are assigned; all the electrons in O?~, for instance, are assumed to
occupy unperturbed orbitals (1s), (2s), (2p), of the oxygen atom. For a
covalent structure, on the other hand, we consider again pure atomic
orbitals, neglecting the concentration of charge halfway between the
atoms that would normally arise from covalent bonding. As will be
seen, this approximation will in general appear to favor the covalent
type; that is, if the ionic model appears more adequate than the covalent
one computed on this approximation, it will a fortiori be more adequate
than the exact covalent model.

The state of oxygen in the compounds we consider appears to he
particularly critical, as the ionic structure of oxides and silicates requires
the presence of a doubly charged O~ jon which is unknown in the free
state, O~ plus one electron having a lower energy than O==. O~ may, of
course, be stabilized in ionic crystal by the additional coulomb energy
that accrues from its greater charge, and a quantum mechanical calcu-
lation by Yamashita and Kojima (1952) indeed seems to confirm the
existence of O~ in alkaline-earth oxides. Some of the testing methods
used in this paper place special reliance on the electronic state of the
anion, which is the main contributor to electronic polarizability and
diamagnetic susceptibility. Such tests are thus particularly diagnostic of
the state of the crystal as a whole.

LarTicE ENERGIES

As mentioned earlier, there is no way of calculating theoretically the
lattice energy of a covalent compound. By contrast, the calculation for
an ionic crystal may be carried out to a high degree of precision. The main
term arises from the coulomb attraction between ions, which are assumed
to have a spherically symmetrical charge distribution. Small corrections
may be made for dipole-dipole and dipole-quadruple interaction, and for
the zero-point energy, but the sum of these generally amounts to no
more than a few per cent of the total. The main uncertainty arises from
the repulsive potential, which may be evaluated either from compressibil-
ity measurements or from empirical considerations; again, the repulsive
term is small, and the calculated value of the energy may be within 2 or
3% of the true value. A comparison with experimental values, which are
probably not accurate to more than 4 or 5%, allows a check on the valid-
ity of the fundamental assumption regarding the ionic character of the
substance.
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A list of calculated and experimental values may be found in the Lan-
dolt-Bornstein Tables (1950), volume I, part 4, pp. 539-543. It appears
from these lists, as is well known, that the agreement for the alkali
halides, even CsI, is excellent; so is it for the oxides of the divalent ele-
ments and corundum. The diagnostic value of the method suffers, how-
ever, from the fact that the agreement is also quite good for sphalerite,
wurtzite, galena, and other sulfides which one would hesitate, on other
grounds, to call ionic. It is interesting that the lattice energy of sub-
stances that may not be purely ionic may apparently also be computed as
if they were.

The following values (Table I), taken from the L.B. Tables, illustrate
the general agreement for oxides.

TaBLE I. LATTICE ENERGY

(Kcal/mole)
‘ Calculated l Experimental
e _ . I | : .
BeO ‘ 1080 1053
MgO 936 913
CaO 830 823
ALOs 3720 3609

Caucny RELATIONS

It is well known that if the lattice structure is such that every atom
or jon occupies a center of symmetry, and if the particles interact with
forces that depend only on distance (central forces), the following rela-
tions must exist among the elastic constants (Born and Huang, 1954,

p. 136).
C23 = C44 CSI = C55 CI‘Z = C61

Cu = Cse Cos = Cy Css = Cus

These relations are known as the Cauchy relations; they reduce the
number of independent elastic constants in the general case from 21 to
15. In crystal with symmetry higher than triclinic, some of the Cauchy
relations are identically satisfied, as the corresponding elastic constants
are equal to zero. Thus, in hexagonal and rhombohedral crystals the
Cauchy relations reduce to

Cu = Cu
Cu=3Cn

regardless of whether there are, 5, 6, or 7 independent elastic constants.
In cubic crystals, there is a single Cauchy relation

C12 = C44

between the 3 independent elastic constants.
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In crystals consisting of spherically symmetrical ions, forces should
be central; in crystals held together by covalent bonds they should not.
Thus the Cauchy relations could be used to test the ionic vs. covalent
character of a compound, provided it fulfills the additional requirement
that each particle should occupy a center of symmetry. This latter re-
quirement rules out, for instance, corundum, but applies to any crystal
with NaCl structure. NaCl itself, for which Ciz=1.30 101 dynes/cm.?,
Cu=1.27810" dynes/cm.® at 270° K. (Durand, 1936), seems indeed
to satisfy the Cauchy relations; Mg0, however, does not, as shown by
the following figures (Durand, 1936).

T° K Cu Cio Cy
(10" dynes/cm.?)
80 29.87 8.56 15.673
300 28.93 8.77 15.477
560 27.25 8.96 15.092

Failures of the Cauchy relations in ionic crystals have been assigned
to a number of causes. Herpin (1953) believes that they arise from the
polarizability of the ions. Léwdin (1956) has shown by a thorough quan-
tum-mechanical treatment of the alkali halides that a notable fraction of
the lattice energy arises from many-body potentials. The forces acting
between two ions depend on the presence or absence of other ions in the
neighborhood, and are therefore not purely central, ie., function of
only the separation between the ions. Laval (1957) and his collaborators
have insisted that the introduction of non-central forces must, in fact,
invalidate the classical theory of the elasticity of crystals; there should
be, in the general case of non-central forces in a triclinic crystal, 45
rather than 21 independent static elastic constants.

Whatever the case may be, it should be noted that very few substances,
if any, satisfy the Cauchy relations. The agreement for NaCl mentioned
above is really fortuitous, as the temperature coefficients of Cp and Cy
have opposite signs (see Hearmon, 1956). Thus the Cauchy relations
offer no test of whether a crystal is jonic or not; what they test is whether
the ions are deformable or not. In addition, Léwdin has shown quantita-
tively for NaCl that the difference between Ci; and Cy arises almost en-
tirely from the repulsive term in the expression for the potential energy
of the crystal; this repulsive term, in turn, is only a fraction of the total
energy. Thus the existence of many-body potentials will only slightly
affect the cohesive energy, which, as we know, comes out correctly on
the ionic hypothesis. Stated in other words, elastic constants being sec-
ond derivatives of the potential energy, one might obtain a potential
energy function which would not yield the correct elastic constants but
which would still give usable results with regard to the cohesive energy
and the volume.
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X-RAY METHODS

If one now looks for physical properties that depend on the actual dis-
tribution of electrons in the crystal, the atomic scattering factor f first
comes to mind. This factor, which is the ratio of the radiation amplitude
scattered by the charge distribution in an actual atom to the amplitude
scattered by a point electron at the center, is

i=[Tv0 =
0 M
where U(r) is the radial electronic density and py=4 = sin 8/\, X being the
wave length of the radiation, and 6 the angle between the direction of the
incident radiation and the scattering plane. One notes that for §=0,
f=2Z, the total number of electrons in the atom. Thus, if one could

TapLe IT. ATOMIC SCATTERING FACTOR OF ALUMINUM AND ALUMINUM Tons*

Sin 6/AX 1078

‘ 0.0 ' 0.1 ‘ 0.2 0.3

|
Al 10.0 ‘ 9.7 8.9 7.8
AR+ 11.0 10.3 9.0 7.75
Al 12.0 10.9 9.0 7.75
Al ‘ 13.0 ‘ 11.0 | 8.95 | 7.75

* Hartree, with interpolation for Al* by James and Brindley. L. B. Tables, vol. T,
part 1, p. 300.

measure f for various values of 0 at fixed A, extrapolation of the experi-
mental curve to =0 would indicate whether the atom is ionized, and
to what degree. Atomic scattering factors have been calculated for many
atoms and ions from the charge distribution computed by various meth-
ods (Hartree’s seli-consistent field, Thomas-Fermi, etc.); these calcula-
tions generally show that the scattering factors for an atom and the
corresponding ions differ appreciably only at small values of u, as shown
in Table II for aluminum.

The Landolt-Bornstein Tables (vol. I, part 1, pp. 300-310, 1950) give
an extensive list of references on the experimental values of scattering
factors; these may then be compared with theoretical values to determine
the actual charge on the atom. The experimental determinations require
that due allowance be made for thermal vibrations, which depend on the
temperature and the compound of the atom being studied. Various other
necessary corrections, as for extinction, were not made in early work.
We note the value of f for oxygen in Fe;O, at sin 8/A=0.07, which is 9.3
(Claasen, 1926); this implies a negative charge greater than that of
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O, for which f=9.0 at #=0. Froman (1930) found the total number of
electrons on oxygen in MgO to be 9.3, the corresponding number for
Mg in the same substance being 10.32. Wyckoff and Armstrong (1930)
also determined the scattering factors for oxygen and magnesium in
MgO, but only for values of sin 8/ which do not allow a discrimination
between the various possible electronic states. For the values for MgO
determined by Brill, Hermann, and Peters, see below.

Essentially the same information that goes into the determination of
the scattering factor may be used for a Fourier analysis, which gives in a
more graphic form a representation of the electron density distribution in
a crystal. By integration of the density outward from an atomic position
to a radius where the electronic density is negligible, the total charge on
an ion in the crystal may be computed. Several investigators, using this
method, agree that the total charge on Na in NaCl is close to 10.05 elec-
trons, that on Cl being about 17.85 (Witte, 1956; Brill, 1939; Havighurst,
1927); this corresponds to about 90% ionic character, which is consider-
ably more than the Pauling electronegativity scale would allow. Brill
el al. (1939) find a density of only 0.006 electrons/A? at positions
(3, 1, 1). Brill, Hermann, and Peters (1948) have also examined MgO;
they find a distribution that is less localized than in NaCl, the density
in MgO nowhere being less than 0.15-0.2 electrons/A%. There is, how-
ever, no indication of directional bonding: the density at the same dis-
tance is about the same in the [100] and [110] directions. This is in con-
trast with diamond, in which there is a strong charge concentration on
lines joining the atoms, with corresponding low electronic densities at
other points. The atomic scattering factors, corrected for temperature,
are listed in Table III, together with the theoretical factors from the Har-
tree-James-Brindley Tables. i

The experimental scattering factors listed in Table IIT are not incon-
sistent with a purely ionic structure. Brill, Hermann, and Peters (1948)
concluded, however, from a more detailed study of the electronic density
distribution, that a certain amount of covalent bonding must be present.
The density distribution is indeed interesting: going out from an atomic
position the density at first drops sharply in all directions, then tails
off to a fairly uniform value. This occurs at about 0.9 A from the center
of a magnesium position along the [111] and [110] directions, and at
about 1.15 A from the center of the oxygen position along these same
directions. Only in the [100] direction is there a sharp minimum (0.3e/A3)
at about 1.0 A from Mg and 1.1 A from O. The ions thus both seem to be
very nearly spherical, although magnesium seems larger, and oxygen
smaller, than their conventional ionic radii would predict. Along the [111]
direction one finds a zone, about 1.6 A in length, along which the density
has an almost constant value of 0.15-0.20¢/ A2,
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TABLE III. EXPERIMENTAL SCATTERING Factors iN Mg0,* AND THEORETICAL Varuest

= - - = . —
Sin 8/x Mg exp. Mgtt Mg O exp. 4 e 0~ l [0}

L i | | Chual | ISR =S e
0 — 10.0 120 | — 10.0 ‘ 9.0 8.0
0.1 9.3) 9.75 | 10.5 (8.0) 8.0 7.75 7.1
0.2 8.24 8.6 8.6 5.76 5.5 5.65 5.3
0.3 7.06 7.25 7.25 4.02 3.8 3.95 3.9
0.4 5.78 5.95 5.95 2.87 2.7 3.0 2.9
0.5 4.65 4.8 4.8 2.25 2.1 2.3 2.2
1.0 2.02 2.0 2.0 | 1.36 ‘ 1.35 1.35 1.35

* Brill, Hermann, and Peters, 1948.
t L. B. Tables, vol. T, part 1, p. 300. Values for Mg*+ and O do not agree well with re-
cent calculations by Berghuis ef al. (1955).

In Table IV are listed some electronic densities computed either from
the approximate Slater wave functions (see for instance Coulson, 1952,
p. 40) or, when available, from the density distribution curves in the
Landolt-Bornstein Tables, vol. I, part 1, pp. 284 ff.; the latter curves are
plotted from a variety of sources, most of which use the method of Har-
tree’s self-consistent field.

The last entry in the table is the computed density midway between
oxygen and magnesium, assuming a double covalent bond of the type
V=0(2ps) +¥ue(3s), the bond length being taken as 2.1 A. The (2s)
and (2p) orbitals of Mg, and the (25) and remaining (2p) orbitals of
oxygen are assumed to be undisturbed.

The observed density of 0.3 between Mg and O along the cube edge is
seen from Table IV to be consistent with a superposition of the densities
of Mg*+ and O~—; it is much less than the covalent value 0.63. The den-

Tapie IV. TypicaL ELECcTRONIC DENSITIES

Distance from Electronic |

Atom or ion center of atom density Source
(Angstrom units) (electrons/A3)
Mg+t 0.85 0.13 L.B. Tables
0 1.06 0.16 L.B. Tables
1.27 0.06 L.B. Tables
1.9 <0.004 L.B. Tables
(O 1.06 0.2 L.B. Tables
1.27 0.09 L.B. Tables
1.9 0.008 L.B. Tables
o~ 1.06 0.27 Calculated from Slater function
1.85 0.002 Calculated from Slater function
Mg-O covalent 1.05 0.63 See below
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sity of about 0.2 at 1.15 A from oxygen along the face and body diagonals
is again about correct for an undisturbed O—— ion, but the diffuse and
even distribution between ions of opposite sign along the body diagonal,
and between ions of the same sign along the face diagonal, cannot be
reconciled with a simple ionic model nor, for that matter, with any simple
covalent model. As Brill, Hermann, and Peters point out, the situation
is somewhat reminiscent of the distribution in metals. The total number
of electrons on Mg and O, out to a given distance, is given in Table VIL.

Too much weight should not be given to these figures, as they must
embody the fundamental uncertainties inherent in the type of analysis:
clearly, one cannot expect much detail or precision on the scale of 0.1 A
when using radiation with a wave length many times larger. One derives,
however, the rather surprising result that in MgO the net charge on Mg
is probably somewhat larger than 2, while that on O is somewhat less
than 2. The structure is thus not a simple ionic one, but deviations are
not of the type expected in covalent bonding, In particular, the spher-
ically symmetrical distribution of charge around the nuclei, the absence
of any localized bonds such as found in diamond, and the appreciable,
but smooth and uniform electron density over a large fraction of the cell
suggest more a transition to a metallic state than to a covalent one.

To the writer’s best knowledge, no detailed studies of this kind have
been made on any other oxide of the element under consideration. One
notes with interest that Parker and Whitehouse (1932) found a full
complement of 26 electrons on Fe in pyrite (FeS,), and that Witte (1956)
finds indications of electron concentration between Li and F in LiF,
making this substance somewhat less ionic than NaCl.

DiaMacNETIC SUSCEPTIBILITY

An electron moving within an atom is equivalent to a tiny current in a
resistanceless conductor. When an external magnetic field is applied
through an electrical circuit, an induced current is set up, the magnetic
effects of which tend to oppose the primary field. In the same way the
electronic motion within an atom will be disturbed by an applied
magnetic field in a way such as would be equivalent to a current tending
to cancel the applied field. This effect leads to diamagnetism, which
exists in all substances, although it may be overshadowed by more
powerful effects of the opposite sign in paramagnetic or ferromagnetic
materials. It can be shown (e.g., Kittel, 1953, pp. 134-135; Selwood,
1956, chap. V) that the diamagnetic susceptibility for unit volume y,
is given by the simple Langevin expression

Xv = — ——72 1)
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where IV is the number of atoms per unit volume, Z the number of elec-
trons per atom, e and #, respectively, the charge and mass of the elec-
tron, ¢ the velocity of light, and 7% is the mean square distance of an
electron from the center of the atom. Instead of x, one also uses the
molar susceptibility xa, which is equal to xV, V being the molar volume,
and the specific susceptibility, or susceptibility for unit mass, xa=xu/M,
M being the molecular weight. Substituting numerical values of funda-
mental constants in (1), one finds

xar = — 2.821010) s2

where the summation is to be extended over all the electrons in each
atom. If radial distances are expressed in atomic units (ao=0.528X 10-8
cm.), we get

i = — 0.79 10762 7.

Thus the diamagnetic susceptibility depends essentially on the radial
distribution of electrons around the nuclei, which would be different in
covalent and ionic structures. If one compares, for instance, the struc-
tures Mg-O and Mg*t+-O~~, the 2 electrons transferred from Mg to O
will occupy on the oxygen ion orbitals of smaller average radius than that
of the (3s) electrons of the isolated magnesium atom. As the effect of a
covalent bond is generally to concentrate charges between the bound
atoms, the change from the covalent to the ionic structure should be
accompanied by a notable decrease in susceptibility. A comparison of
calculated and observed values of x will thus give information regarding
the actual state in the crystal. One notes that, in general, the larger
anions will contribute more to the susceptibility than the smaller cations.

Formula (1) is strictly valid only if the charge distribution is spheri-
cally symmetrical. For diatomic and other non-symmetrical molecules,
one must add a term of opposite sign which represents a paramagnetic
contribution (Van Vleck paramagnetism) differing from ordinary para-
magnetism due to uncompensated spins in that it is temperature in-
dependent. Theoretically the Van Vleck term should vanish only in
completely symmetrical systems in which the field direction is an axis
of symmetry and the electronic distribution is spherically symmetrical
about the nuclei; it is difficult to evaluate exactly and is not likely to be
important in crystals of high symmetry.

For an electron with wave function ¥, it follows from the definition of

72 that
72 = f riydy
0

and may therefore be calculated if the wave function ¢ is known. A par-
ticularly simple formula can be obtained for 2 if one uses Slater wave
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functions of the type

l// e Arn‘le*l:r/n
where 4 is a normalizing factor, # is the principal quantum number of the
electron, and ¢, the effective charge, is equal to the atomic number Z
minus the screening constant s which is computed according to Slater’s
well-known rules (see, for instance, Slater, 1951, p. 476). A simple in-
tegration yields directly

72 =n¥n + 5(n + 1)/c2 )
Pauling (1927), by a more elaborate calculation, finds
_ ey " [+ D -1
x=—201X10%) = [1 o 3)

where 7 is the second quantum number of the electron. Pauling gives in
tabulated form the susceptibilities of many common ions. For O,
for instance, he finds ya= —12.6X107%, whereas the simpler Slater
formula (2) gives —12.8 X105, Susceptibilities have also been calculated
from various other models and are collected in the Landolt-Bornstein
Tables (vol. I, part 1, pp. 394 ff.). A calculation using the Thomas-
Fermi-Dirac model has recently been made by Thomas and Umeda
(1956).

Experimental susceptibilities of ions have been obtained from meas-
urements on solutions and crystals. Tt appears that ionic susceptibilities
are nearly additive; for example, the difference between the molar sus-
ceptibilities of LiFF and NaF is nearly the same as the difference between
LiCl and NaCl. The matter is reviewed by Selwood (1956), who gives
(p. 78) an extensive table of jonic susceptibilities.

The diamagnetic susceptibility of minerals is difficult to measure, be-
cause of paramagnetic impurities (e.g., Fett or Fet++) which may over-
shadow the diamagnetic effects, even when these impurities are present
only in very small amounts. Surprisingly, there is even some uncertainty
regarding the susceptibility of common oxides. Yamashita and Kojima
(1952), while studying the electronic state of O—= in MgO, used a value
of —18.8X10°% for the molar susceptibility of this oxide; there are,
however, several other determinations which give an average value of
—10.5X10~% (Ray, 1955). The International Critical Tables (vol 6)
gives on page 359 a value of —10.2 (in units of 10-%) for Al,Os, and on
page 364 a value of —34.7; the latter value will be used here, as it agrees
with measurements of Rao and Leela (1953) on white sapphire. Corun-
dum is slightly anisotropic, and the value given here is an average.
Spinel (MgAlLO,) is listed in I.C.T. as paramagnetic (x» = 488X 107)
which seems unlikely in the absence of iron or manganese impurities.

The following table (Table V) shows the molar diamagnetic suscepti-
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TABLE V. MOLAR DIAMAGNETIC SUSCEPTIBILITIES (IN UNITS OF —1X 108%)

0 |0 | Mg [Mgrt| a1 |amr | si | s e+ | ¢ ‘ e
Pauling | — | 12.6| — | 32| — | 25| = | 2.1]015 | = | 500
Siater | 7.0 | 12.8 | 27.5 | 3.1|26.9 | 2.5| 25 ‘ 20| — |14 =

bility of several ions and atoms computed by Pauling (1927) or by Slater’s
formula (2).

From these values one obtains by simple addition the following values
(all multiplied by —1X10¢), which may be compared with listed experi-
mental values (Table VI).

The figures for diamond show that the diamagnetic susceptibility of a
covalent crystal is not very different from that computed by addition of
atomic susceptibilities; we note that the susceptibility per atom of
diamond is greater than that of a single carbon atom, in keeping with
the expected effect of covalent bonding mentioned above. By contrast,
the figures suggest a truly jonic state for SiO,. For Al,O3 the agreement
between the experimental susceptibility and the sum of the susceptibili-
{ies of the ions is still fairly good; clearly, the state of AlO; is more
ionic than covalent. The figures for MgO require closer scrutiny.

Yamashita and Kojima (1952) have examined the stability of the O~
ion in oxide crystals. Using Hartree-Fock wave functions for Mgt and
(1) and (2s) electrons of O——, they determine by a variational method
the parameters of an empirical wave equation for (2p) electrons that
will minimize the energy of the crystal for an Mg-O distance of 2.1 A.
Repeating the procedure for O, they find that 0=~ is decidedly more
stable (by about 12 e.v.) than O~ in magnesium oxide. They also com-
pute the ionic susceptibilities which they find to be —3.7X 10-% for Mgt
and —21.0X 107 for O~ in this same compound. This would make the
molar susceptibility of MgO (—24.7X107%) much too large in absolute
value.

Essentially the same result would accrue from the electron density
distribution of Brill, Hermann, and Peters discussed above. It will be
recalled that the main features of this distribution are: 1) an unusually

TaBLE VI. CALCULATED AND EXPERIMENTAL* SUSCEPTIBILITIES,
FOR VARIOUS STRUCTURES (1N UNrTs or —1X107%)

1
MgO AlyOy | il €t (dizmond)
Mg-O | Mg++0-- | exp. | Al-O | Al%*-0O~~ | exp. | Si-O | Sit*-0~~ | exp. | C-C | €& | exp.
34.5 15.9 10.5|74.3 43.55 34 | 39 27.6 | 25.6 | 4.8 | 30,15 | 12.0

* Value for MgO from Ray (1955); others from International Critical Tables.
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large magnesium ion, extending outward to 0.9-1 A; 2) a very high
and uniform density between the oxygen and magnesium; this density
being almost as large as that (0.3 electron/A3%) of the conduction elec-
trons in Al (Witte, 1956); and 3) a somewhat small oxygen ion. If the
diffuse charge is assigned to any one of the ions, its spatial extension
becomes so large that its diamagnetic susceptibility, which is propor-
tional to r2, becomes enormously greater than the experimental value.

The following table (Table VII) gives the total number of electrons
and the corresponding ionic susceptibilities computed by integration
of the density data of Brill, et al., out to a specified distance. From thijs
table we see that if we assume, for instance, radii of 0.9 for Mg and 1.2 for

TasLE VII
Mg | 0
1 | 2 3 5 | 6

Radius | Total number | Diamagnetic R g Total number | Diamagnetic
(A) of electrons | susceptibility aduas of electrons | susceptibility

0.9 9.2 | 5.8 1.15 8.3 9.0

1.0 9.6 6.9 1.20 8.6 9.7

188 9.0 10.9

I | 1.40 | 9.3 11.9

oxygen, the total number of electrons on the ions is 9.2+8.6=17.8,
leaving 2.2 electrons per ion pair in the inter-ionic space; the sum of the
susceptibilities of Mg and O comes out as 15.5, which again is more than
the experimental value. From this we infer that a small paramagnetic
susceptibility must also be present. This paramagnetic contribution is
considerably smaller than the Pauli paramagnetism of interstitial elec-
trons with a density of 0.2/A3; these should anyhow form a filled band
and could not be regarded as “free,” as the extremely low Intrinsic
conductivity of MgO clearly shows. Similarly, the paramagnetism due to
a single uncompensated electron spin, as would occur in ions such as
O~ or Mg*, would be of the order of 10-3 rather than 10-¢ at ordinary
temperature. Thus presumably the small paramagnetic contribution
must be a Van Vleck term, arising from the fact that the field at the
center of the cube forming % of the unit cell is far from symmetrical;
indeed, on any body diagonal of this elementary cube there are ions of
oppostle signs on either side of the side.

Summing up, the diamagnetic susceptibility of SiO, is consistent with
that calculated for a purely ionic structure. The agreement between
measured and calculated values for an ionic model of Al:Q; is not very
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good, and it is bad for MgO. In the latter compound, there is probably a
small paramagnetic component arising from a high electronic density in
regions of the unit cell where the field is not centro-symmetric. Depar-
tures between measured and “ionic” susceptibilities are definitely not
suggestive of covalent bonding, the ionic values being intermediate be-
tween experimental and covalent ones.

POLARIZABILITY

When a dielectric substance (“insulator”) is subjected to an electrical
field E, charges within the substance may be displaced. Now displacing a
charge ¢ by a distance  is equivalent to adding a charge (—e) at the
original position and a charge ¢ at the new position; this, in effect, is
equivalent to adding a dipole ex in the direction of the displacement. If
the polarization P is defined as the vector sum of the induced dipoles per
unit volume, the displacement vector D is defined as D= E+4xP, and
the dielectric constant e, which is the ratio of D to E, is given by the rela-
tion

P
e=1+47rE=1—|—47rK )

where k= P/E is the electrical susceptibility.

Consider an atom of type 4 in a crystal, and assume that under the
effect of the electrical field Ei. acting on it, it acquires a dipole moment
pi. The polarizability a; of this atom is then defined as ;= P/ Foc
and

P = Z Eyoe Nia; 6]

where N, is the number of atoms of type 7 per unit volume. If one further
defines o= n,a;, where #, is the number of atoms ¢ per molecule, one
may write

P=N % Eioo ©)

where V is the molar volume and N is Avogadro’s number.
Eloc 1s the effective field acting on an atom inside the solid. If one sets
simply Eie=E, one gets the well-known Drude formula

e—1=47r7a.

In general, however, the field at any point inside the crystal is the sum
of the external field E and contributions arising from the polarization of
neighboring atoms. The calculation of Ei, is complicated, except in
cases where the distribution of atoms is isotropic, or where the lattice
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has a high degree of symmetry* (see Kittel, p. 92). One finds then
Eioe = E+ ; P (8

from which derives the well-known Clausius-Mosotti formula

e—l_4 N ©
et2 3 v*®

A more general expression used by Mott and Gurney is

: 4
Eloe = E + ? wy P (10)

where v is an empirical factor to be determined from experiments.

We must now consider two separate effects. When the field has a very
high frequency, as in the visible part of the spectrum, the dielectric con-
stant in media of unit magnetic permeability is equal to the square of
the index of refraction; accordingly, from (9) we get

n?—1 4 N

—_— =g —q (i1

nt4 2 3 7
a relation known as the Lorentz-Lorenz equation from which a may be
determined. This value of a is called the “optical,” or “electronic”
polarizability, as the polarization arises entirely from shifts in the dis-
tribution of the electron clouds with respect to the positively charged
nuclei. At lower frequencies, as in the infrared, an additional effect arises
from the relative displacement of the positive and negative ions in the
crystal. This additional contribution to the dielectric constant is said to
arise from ‘“‘atomic” or “lonic” polarizability. In purely covalent
crystals, such as diamond, there is no ionic polarizability, as the atoms
carry no net charge; accordingly their dielectric constant in low-ire-
quency or static fields is equal to the square of the index of refraction cor-
rected for dispersion. A comparison of the index of refraction, suitably
extrapolated to zero frequency, with the dielectric constant in static
fields affords thus a measure of the ionic character of the substance.

We consider first the electronic polarizability.

ELECTRONIC POLARIZABILITY

From (11) it follows that « has the dimensions of a volume; indeed
one would expect the deformability of an atom to be proportional to its
spatial extension. A theoretical calculation of the polarizability is easy

* More precisely, the condition is that the coordinates x;y:z; of the lattice points
around a central lattice point taken as the origin should satisfy the condition that St
=33 (2%, where r;2=x,24y,2+ 2,2 This condition is satisfied if xl=yl=z2
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for simple atoms, such as hydrogen: all that has to be done is to add to
the potential energy of the electron arising from the coulomb attraction
to the nucleus the energy arising from the external field. A simplified
quantum-mechanical calculation (Pitzer, 1953, p. 69) leads to the ap-
proximate value for hydrogen a=4a,", where a,, the “radius’ of the hy-
drogen atom, is 0.528 10~% cm. A correct calculation (Pauling and Wilson,
1935, pp. 227-229) yields a=9/2a,°. More generally, the electronic
polarizability will be a function of 73, the mean cube radius of the elec-
tronic density distribution, just as the diamagnetic susceptibility
measures the mean square radius. It is historically interesting that the
first determination of the radius of the O~ ion was made precisely from
a consideration of polarizability.

Pauling (1927) suggested that the polarizability of an atom should be
given by the relation

o (5u8 + Tnt) (2L + 1)
= (.281 =
“ 2 Z — o)t

where 7 and [ are the two first quantum numbers of an electron, o, is en
appropriate screening factor, the summation being carried over all
electrons in the atom. Slater (1951, p. 204) points out that as the radius
of an orbit with quantum number # is roughly proportional to n%/(Z—s),
where Z and s are, as usual, the charge on the nucleus and the Slater
screening factor, the polarizability should be proportional to

nlagy )3
Z—s/’

the proportionality factor would be 4.5 for =1, 1.1 for n=2, 0.63 for
n=3, etc. The Slater rule is somewhat easier to apply than the Pauling
formula.

The value for hydrogen (9/2 ao®) cannot be checked because of the ab-
sence of measurements on afomic hydrogen. For the helium atom, the
experimental value of & is 0.205X10~* cm.?. Pauling and Wilson (1935,
pp. 226-229) calculate values ranging from 0.15 to 0.23 A?, depending on
the choice of wave function. The Slater rule gives a=0.27 As. Further
comparisons are listed in Table VIIL

We note the very small polarizability of the smaller cations, as com-
pared with that of large anions.

Polarizability of ions in solution and certain crystals obey an additivity
law similar to that followed by ionic diamagnetic susceptibilities. Tables
of empirical polarizabilities have been set up in this way (see Kittel,
1953, p. 97).

In Table IX are listed the values of the polarizability of several
compounds, computed by adding the Slater values of the polarizability
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TaBLE VIII. COMPARISON OF THE POLARIZABILITY OF VARIOUS IONS
CALCULATED BY PAULING (1927) AND BY THE SLATER RULE

Polarizability of ions, in Aa,

According to Pauling (1927) | Calculated by Slater rule

(O 3.88 1.46

Bet+ 0.008 0.026
Mgt 0.094 0.17
Als* 0.052 0.12

Sitt 0.0165 0.08

of the component ions. These values may be compared with the experi-
mental values
3V nr—-1
a = —— = 1
4xN n®+ 2

n being the index of refraction for the sodium D line, or an arithmetic
mean of the indices for non-cubic crystals.

The agreement between figures in the two columns is surprisingly good,
when it is remembered that the Lorentz-Lorenz formula (11) is strictly
applicable only to substances with high symmetry, and that the Slater
rule is only approximate as it neglects the difference between orbitals of
same principal quantum number but different . Where disagreement
exists is it not an indication of strong covalent bonding, as the following
values (Table X) for covalent vs. ionic structures show.

TABLE IX. COMPARISON OF POLARIZABILITIES OF VARIOUS ComPOUNDS, DERIVED FROM
INDICES OF REFRACTION OR CALCULATED BY ADDITION OF POLARIZABILITIES OF I0ONS

‘ Polarizability of compounds (in units of 10~2¢ cm.?)

3V n?—1
o a=2Z ma;
‘ 47N n24+1 (Calculated by Slater rule)
BeO | 1.31 1.49
MgO ‘ 1.75 1.63
ALO; 4.18 4.62
MgAl7y 6.2 6.25
SiOz (quartz) 2.86 3.00
Si0;, (cristobx lite) 2.90 3.00
BeA]zO4 5 ‘65 6. 11
Mg:Si0, 6.45 6.26
MgSiO; 4.72 4.63
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TaBLE X. CALCULATED AND EXPERIMENTAL POLARIZABILITY OF MgO AND BeO

Polarizability (102! cm.?)
Calculated Experimental
Mg+0O 6.83
Mg*t+0~ 3.30 1.75
Mgt +0-~ . 1.63
Be+0 3.50
Bet+0~ 1.86 1.31
Bett40~" 1.49)

Strictly speaking, the polarizability of a covalent compound need not
be equal to the sum of the polarizabilities of its constituents; the correc-
tion for covalency is, however, small, as shown by diamond: the polariza-
bility of the isolated carbon atom, computed by the Slater rule, is
1.2X1072* cm.?; the experimental value for diamond is 0.84X 1072,

As the polarizabilities of the cations are small and not likely to be
much in error, we have computed the value of the polarizability of the
oxygen that would give perfect agreement with experimental data. Re-
sults are as follows:

TabLE XI. PoLARIZABILITY OF THE OXYGEN Ion 1IN VarIOUS COMPOUNDS

MgO 1.58X1072
MgsSi0, 1.51
BeAl:O, 1.50
MgSiOs 1.49
Si0; (quartz) 1.39
Si0, (cristobalite) 1.41
AlLO; 1.31
BeO 1.28
CaCOy 1.31
AlLSiO; (sillimanite) 1.40
AlSiO;s (andalusite) 1.39
AlLSiO; (kyanite) 1.34
Mg3AlLSi;0s2 (pyrope) 1.39
Average 1.41

The average of these 14 values, 1.41, is very close to the value for
O~ obtained by the Slater rule (1.46). It is interesting that the cube
root of the polarizability, which might be taken as an empirical radius,
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is 1.16 A for O in MgO; this is precisely the distance at which the electron
density around the O sites tails off. Similarly for CaCO;: the empirical
radius of +/1.31=1.1 is that which one would compute from the C-O
distance (1.27 A) assuming that the 3 oxygens surrounding carbon are
just touching.

The electronic polarizability of an ion, as we have seen, is a function of
the average radius of the electronic density; it should therefore be closely
related to the ionic radius itself. We thus expect a relationship between
the index of refraction of a compound and the radii of its constituent ions.
Kordes (1956) has found empirically a relationship of this type. The
“optical” ionic radii computed by him from refractive indices agree well
with the conventional ionic radii, corrected where necessary for coordina-
tion number. He finds no indication of covalent bonding either in SiO,
or in grossularite (CazAl,SizOrs).

In summary, the polarizability of compounds computed by adding the
polarizabilities of their ions agrees with experimental values, if one uses
the Slater rules to determine the polarizability of the ions. Polarizability
gives no clear evidence of covalent bonding in any of the compounds con-
sidered.

IoNic POLARIZATION

Consider a substance consisting of positive and negative ions. Under
the influence of an external electrical field, the positive and negative
ions will be displaced in opposite directions; these displacements produce
a polarization which contributes to the dielectric constant an amount
which is proportional to the net charges on the ions and to their displace-
ment. These displacements, in turn, depend on the restoring forces be-
tween lons; if one assumes, for instance, a restoring force f= Kx propor-
tional to the displacement x, x will be given by the simple relation Ee
= Kx where ¢ is the charge on the ion, £ the field acting on it, and K is the
force constant. The induced dipole is ex, and the polarizability a=ex/E
=¢%/K.

Now if the restoring force between two particles of mass my, m, is pro-
portional to the displacement, the particles will oscillate with a frequency

wo = \/1?/7
where u is the reduced mass
1 1 1

I my e

This frequency usually falls in the infrared. In the visible part of the
spectrum the frequency of the electric field is much greater than the
natural frequency of oscillation of the ions which remain essentially un-
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disturbed; the ionic polarization does not contribute to the dielectric
constant or to the index of refraction, which arises entirely from the elec-
tronic polarizability discussed above. For a static electric field, or in
general for fields with frequency less than w, the oscillations of the ions
contribute a polarization which increases the dielectric constant. The di-
electric constant for static fields is thus found to be greater than n*
by an amount Ae, #* being the square of the refractive index extrapolated
to infinite wave length by a suitable dispersion formula. Ae thus measures
the charge on the ions and the force constant. As the force constant also
determines the compressibility, one expects a relation between the actual
charge on the ions, the compressibility, Ae, and the fundamental fre-
quency wg. Thus if Ae and « or the compressibility are known, it should
be possible to determine the actual charge on the ions. Conversely, one
could also compute the compressibility for purely ionic structures and
compare the calculated and experimental values.

There is an abundant literature on the subject (Hgjendahl, 1938;
Szigeti, 1949, 1950; Mott and Gurney, 1948, pp. 20-21; Kittel, 1933, pp.
98-100: Born and Huang, 1954, chap. I1). Difficulties arise from a correct
evaluation of Eie, the field acting on a particle inside the structure. It
was pointed out earlier that both the Drude formula (Ej=£) and the
Lorentz-Lorenz formula (K= E-44/3 xP) are approximate. The field
is not necessarily homogeneous and need not be the same at various
points within an ion of finite size. The ionic polarization also affects the
electronic polarization, and the ions may overlap and thus become de-
formed. As mentioned before, Mott and Gurney use the more general
relation (10) Eje=F-+v4/3 =P where v is an empirical factor to be de-
termined from the dielectric constant and compressibility; they find
rather good agreement for alkali halides if v =0; but they believe that dif-
ficulties in estimating v preclude accurate calculation of the dielectric
constant or of the exact charge distribution; they point out that homo-
polar bonding will increase the dielectric constant, and recall that the
high dielectric constant of rutile (about 100) and other salts has been
ascribed to an effect of this type; of which more later.

Szigeti (1949) recognized that the polarizability should depend on the
wave length and character of the wave (whether longitudinal or trans-
verse) ; the Lorentz-Lorenz formula (11) should hold for the polarizablity
of a sphere in long waves, whereas the Drude formula (7) should be ap-
plicable to short transverse waves. Taking into account possible over-
lap of ions, and the interdependence of electronic and ionic polarizabil-
ities, Szigeti derived a relation between Ae 2, the frequency of the
transverse optical branch and the effective charge sze on the ion, where
2 is the valency and e the charge of one electron. Values of s for alkali
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halides range from 0.69 (for KI) to 0.93 (for NaF); s is usually some-
what larger than the ionic character obtained from Pauling’s curve,
but does not vary systematically with the Pauling electronegativity scale:
for instance, KI and RbI should have the same amount of ionic char-
acter according to Pauling, whereas s is 0.69 for KI but 0.89 for RbI.
One is surprised to find s=1 for CuBr, and s=1.10 for CuCl. Szigeti ob-
tains s=0.88 for MgO, taking the wave length of the fundamental in-
frared absorption band to be 17.3 w; if one uses Saksena’s (1956) value
25.2 p, s comes out at 0.62, although the agreement between calculated
and measured compressibility is much improved.

Tt seems difficult to ascertain whether Szigeti’s results bear signifi-
cantly on the matter of ionic vs. covalent bonding. Szigeti believes that
the deviation of s from the value unity is caused mainly by the mutual
distortion of neighboring ions owing to their overlap; this is independent
of, and need not reflect on, the total number of electrons on the ion.

The view was expressed above that homopolar binding might tend to
increase the dielectric constant, and that the high dielectric constant of
compounds such as rutile has to be ascribed to this effect. Other explana-
tions are also possible. Szigeti finds s =0.7 for rutile, which implies a nota-
bly ionic structure. The Clausius-Mosotti equation, which is based on
the Lorentz field Ere=E+4/3 7P, may be rewritten

8= N

1 ———
Tyve

which shows that ¢ may be very large if

dr N

3v”
happens to be sufficiently close to 1. For static or low frequency fields,
a must of course include the ionic and electronic polarizabilities.

The electronic polarizability of rutile is interesting: from the average
value of the index of refraction (2.705), one finds @=5.1X10~2¢ cm?. The
polarizability of Ti*t is small (0.19 according to Pauling; 0.45 according
to the Slater formula), so that the polarizability of O~ should be
2.3X107% or more, which is much greater than in the other oxides con-
sidered so far. It is actually not necessary to resort to covalent bonding
to account for the anomaly if one notices that the ionization potentials
of 3d and 4s electrons in titanium are almost equal; thus the Tit3 jon
would have a large polarizability due to its remaining (4s) electron, and a
small admixture of the ionic state
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[
Tist

to the state

would appreciably increase the electronic polarizability.

In conclusion, it would appear once again that there is nothing in the
theory of electronic or ionic polarizability that compels us to abandon a
simple ionic representation of the compounds presently under considera-
tion.

COORDINATION NUMBERS

In covalent bonds the coordination number of an atom depends es”
sentially on the ease with which it can form hybrid orbitals of variou®
types. On the other hand, the coordination number of a cation is predict”
able, in the purely ionic model, by the simple radius-ratio rule: the num’
ber of nearest neighbors depends solely on the ratio of the ionic radii of
the anion and cation. According to this rule, one generally expects to find
small cations in a lower coordination than large ones. At first sight, the
structure of spinel (MgAl,Oy) in which Mg is in 4-coordination and Al
in 6-coordination, appears anomalous. There has been a tendency to ex-
plain such anomalies in radius-ratio rules by recourse to covalent bond-
ing. As it turns out, the structure of any particular member of the spinel
group can be simply explained in terms of an ordinary coulomb attrac-
tion between charged ions, the Madelung constant being larger for the
normal than for the inverse structure for large values of the oxygen
parameter # (Gorter, 1954). One could argue, however, that the tendency
of any particular ion to occupy 4-coordinated (A) sites rather than 6-
coordinated (B) sites, or vice versa, determines in the first place whether
the structure will be normal or inverse, the oxygen parameter % then ad-
justing itself so as to minimize the coulomb energy. It is thus interesting
to compute the energy that would be necessary to transfer any particular
ion from, say, a 6-coordinated (B) site to a 4-coordinated (A) site of the
spinel structure. X-ray, crystallographic, and magnetic data are fortu-
nately available from which the distribution of the various ions among
the A and B sites may be calculated in minerals and artificial “ferrites”
with the spinel structure. Consider the general case of a spinel with for-
mula M N._,0,0; in which M is a divalent element (Mg, Ni, Fe¥*, etc.),
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while NV and Q are trivalent elements (Al, Fe, etc.). Assume the distribu-
tion to be

MoNyQ:[M12N21 Qi |0,
where brackets indicate 6-coordinated cations in B sites, and x+y+z=1.
The configurational entropy is S= K In W where K is Boltzmann’s con-

stant and
12 — Hi

alylzl(l — )12 — £ — I — 2)!

If U is the internal energy and F the Helmholtz free energy F=U—-TS,
a simple algebraic calculation yields

or 1—x

S U — KT E

ox %]

oF 5

ey KT TY 12)
9y y

oOF

I —2z
=U)— KT'lp ——
0z 4

when U,"=6U/éx, etc. Since x+y-+2=1, F is minimum when
9F _8F _ oF

dx ay [i}4

so that in the equilibrium configuration we have (Smart, 1954)

U/ — U/ =KTin —:—Zi—— (13)

In these relations, U,’—U,’ is the energy necessary to move an atom of
M from a B to an A site, an atom of N being simultaneously transferred
from an A to a B site. These energy differences may thus be calculated
from measured values of x, y and z. Note that only differences such as
U.'—U,’ can be gotten in this way; the values of U,’, U,’, U.’ can be ob-
tained separately only on the assumption that enough vacancies exist in
A and B sites that the relation x+y4z= 1 need not hold; that is, that one
could transfer an atom from a B to an A site without simultaneously mov-
ing another atom from A to B.

A carefully studied compound of this type is MgFe#O,, with structure
Mg.Fe,*"[Mg_.Fe, ,*]O04, for which & has been determined as a function
of temperature by Pauthenet and Bochirol (1951) (see also Bertaut,
1951). For a binary compound, equations (13) simply reduce to

U/~ U/ =KTln——"—, 19
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The calculated values vary slightly with temperature, due perhaps to in-
complete annealing at lower temperature; at high temperature (1200°
C.) the authors find U,’—U,'=0.11 e.v. A calculation based on the as-
sumption stated above gives

U, = + 0.15 e.v. = 3500 cal/mole

U/ = +004ev.
only the difference between these two quantities being truly significant.

Similar calculations have been carried out for other compounds and are

listed in Table XII. Data are from Gorter (1954); Greenwald, Pickart
and Grannis (1954); Bacon and Roberts (1953). In all the instances
listed, it has been assumed that measured values of x, v, and z are those
for specimens perfectly quenched from a-high temperature (1200° C.).
This may not be generally true, as some workers used annealed speci-
mens; some of the energies listed in Table XII may thus be too large by
a factor of 2 or 3.

TaBLE XIT. ENERGIES (IN ELECTRON VOLTS) TO TRANSFER ATOMS
FROM 6- TO 4-COORDINATES SITES IN SPINELS

Compound and distribution | U'mg | U'Ni | U'pusy | U'al ‘ Transfer energies
Mgo 2Fen 15+ [Mgo, sFev+ 2]01 |+0.15 | 40.04 ‘ U'mg— U'Fe=0.11
Mgo s3Fedto_a7[Mgo 47AIF e3+9 52]O4 —0.015 ‘ 40,015 U'mg—U'Fe=—0.03
Fed*_asAls s[Fe2tAlo 16F €30 54]O4 ‘ —0.015 | 4+0.18 | U'post-—U'a1=—0.19
Niy, 15F e3%0_21Ale 61 [Nio_ssF 3% 01Al.14]04 +0.221 | —0.41 +0.1 U'Fes+—U'a1=—0.51
‘ 40.12 | U'Fesr—U'a1=—0.22

Nio. osFes*o gsAlo 27{Nio_ssI e3+0 s2Aln 73104 |

+0,375 | —0.1

The energies listed in Table XII, as explained, are approximate; yet
their magnitude is very striking in being so small. Compare, for instance,
the promotion energies of aluminum to a valence state sp? (tetragonal
hybrid; 3.6 e.v.) or to a d state (octahedral hybrid; 7.5 e.v.). Clearly, the
equilibrium distribution of ions among the 4- and 6-coordinated positions
in the spinel structure depends on very small energy differences that do
not suggest any fundamental difference in type of binding. The transfer
energy for a given pair (e.g., Al-Fe?+) also varies appreciably as a func-
tion of composition, or of cell dimensions. The general trend for Mg is to
go into A sites only when the structure is such that the radii of the A and
B sites are nearly equal; when the radius of a B site becomes appreciably
(209,) larger than that of an A site, the transier energy of Mg becomes
positive, as in MgFe,04. Aluminum has precisely the opposite tendency,
its transfer energy becoming more and more positive as the ratio 7g/74 be-
comes smaller. In MgALQ,, 7¢=7; accordingly Al is in B sites and Mg in
A sites. Such relationships are not easily explainable in terms of purely
covalent binding.

It would seem to follow from these considerations that a departure
from the usual coordination number (e.g., Mg in 4- rather than 6-coordi-
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nation) does not necessarily Imply an appreciable change in the amount
of covalent bonding; simple electrostatic considerations may still be used
to predict coordination numbers in the spinel structure.

It is interesting to note that Loeb and Goodenough (1955), who rely
on covalent bonding to explain a number of structural features of spinels,
consider that Mg and Al in spinels are essentially electrovalent, in agree-
ment with our conclusion. Covalent effects occur only with transition or
heavier elements.

It is unfortunate that so few data should be available on the physical
and thermochemical properties of the aluminum silicates AlSiO;, in
which the aluminum coordination is either 6 (kyanite), or 6 and 5
(andalusite), or 6 and 4 (sillimanite). As far as is known, it would seem
that the free energies of these three compounds do not differ by more
than a few thousand, or even perhaps a few hundred, calories at room
temperature and ordinary pressure. The entropy of any of these 3 phases
is almost exactly the sum of the entropies of the oxides, corrected for
density differences. The polarizability of the oxygen ion (Table XI) is
the same in sillimanite and andalusite; in kyanite it is exactly equal to
the average for quartz and corundum. Here again, it seems unlikely that
the change in coordination should reflect any notable change in electronic
density distribution and bond. type.

This does not mean that coordination numbers cannot, in some rare
instances, be taken to indicate the presence of a notable amount of co-
valent bonding. ZnO is a good example. Surely, as has been pointed out
many times, the difference between MgO (6-coordination, NaCl struc-
ture) and ZnO (4-coordination, wurtzite structure) cannot be explained
on the basis of radius-ratio considerations, as Mg+t and Zn++ are said to
have rather similar radii. However, tetrahedral coordination presumably
requires hybridization, the ease of which may be roughly evaluated by
comparing the jonization potentials of successive electron shells or sub-
shells. For instance, the difference in ionization potential of 2p and 2s
electrons in C is 0.7 atomic units (1 atomic unit=13.54 e.v.); 3p—3sin
silicon is 0.5; 45 —3d in Zn is 0.5; etc. By contrast, consider 3s—2pin Mg
=3.1, 45—3p in Ca=1.45. Thus one expects hybridization, and forma-
tion of tetrahedral coordination, to occur readily in C, Si, Zn, but not in
Mg, Ca, etc. It is interesting that ZnO and BeO are actually the only
oxides of bivalent elements that occur in either the zincblende or
wurtzite structures; and the 4-coordination of Be in BeO is readily ex-
plained on radius-ratio considerations alone (radius of Bet+=0.35). In
the same way, one expects on general grounds that carbon would occur
covalently either in 2-(CO,) or 4-coordination (CH,). The occurrence of
the CO; group in carbonates is difficult to explain (Fyfe, 1954); yet it fol-
lows directly from radius-ratio rules.
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SUuMMARY AND CONCLUSIONS

We have examined such physical properties of simple oxides and sili-
cates of Mg and Al as could lead, independently of any chemical consid-
erations, to an evaluation of the ionic or covalent character of these com-
pounds. We noticed first that lattice energies computed for purely ionic
structures usually agree well with “experimental” values, as they also
do for some sulfides and selenides with less pronounced ionic character-
istics. The Cauchy relations between elastic coefficients offer no critical
test of ionicity; they point to the existence of non-central forces which
may arise from a mutual deformation of ions rather than from directed
bonds of covalent type. X-ray data on MgO are interesting: they show
the presence of nearly perfectly spherical units, with a charge distribu-
tion suggesting a structure intermediate between Mg++—O~~ and Mg+
—O, the remaining electrons are spread out evenly without any indica-
tion of localized bonds. The interpretation of the diamagnetic suscepli-
bility offers some difficulty. Experimental determinations are few and
likely to be inaccurate because of the presence of uncontrolled amounts
of paramagnetic impurities. Results for 510, are quite consistent with a
fully ionic structure Si*=—0~—, and the same applies, to a lesser degree,
to ALOs. For MgO the susceptibility suggests a structure more ionic than
Mg++—0-—, and one suspects an appreciable Van Vleck term related
to the interstitial electrons mentioned above. The electronic polarizability
is again consistent with a fully ionic structure, the average polarizability
of oxygen in a number of compounds being almost exactly that predicted
by the Slater rule for O~~. The donic polarizability shows departures
from the values expected for purely ionic structures, although differ-
ences may be due in large part to theoretical difficulties in evaluating the
internal field; the degree of covalency derived from the ionic polariza-
bility does not agree with that calculated from the electronegativity
values. Coordination numbers are probably rather poor indicators of co-
valent vs. ionic character. The calculated values of the transfer energy
required to interchange 6-coordinated and 4-coordinated cations in
spinels turn out to be so small as to suggest very little difference in bond
character in the two sites.

Thus it would seem that on the whole, the physical properties of the
compounds studied are much more easily explained on ionic than on a
covalent basis. This is, surprisingly, particularly true of SiO,, which is
generally regarded as at least 509, covalent. The agreement between ex-
perimental data and values calculated for purely ionic structures is by
no means perfect; but the fault may reside in the theory. There is, of
course, ample evidence that ions do not behave as rigid spheres; they are
deformable, as the index of refraction readily shows. This polarizability,
however, seems calculable on a purely electrostatic theory and is there-
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fore more amenable to treatment than when interpreted in terms of co-
valent binding. The polarizability will lead to difficulties in estimating
elastic coefficients, but would not seem to be of major importance in other
calculations.

We conclude, therefore, that for practical purposes it is legitimate to
consider the compounds under consideration as purely ionic.

The author wishes to acknowledge generous help from the National
Science Foundation and the Institute of Geophysics, University of Cali-
fornia.
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