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ISOGYRES IN INTERFERENCE FIGURES

W. Barcray Kaus, California Institute of Technology,
Pasadena, Calif *

ABSTRACT

The use of skiodromes in interpreting interference figures of crystal plates leads to both
qualitative and quantitative errors, and should be abandoned. The theory of isogyre pat-
terns is correctly developed by considering the effect on isogyre position of “rotation” of
the polarization plane by the optical system. Although the amount of the rotation may be
10°-15°, its effect on isogyre position is found to be small because the effects of rotation
above and below the crystal plate work in opposite directions. An analysis, based on this
conclusion, of the uniaxial flash figure, acute and obtuse bisectrix figures, and optic normal
figure leads to isogyre equations from which can be calculated the angle of rotation of the
stage (from extinction) required to disperse the isogyres from the field. The formulas are
simple and convenient, and are verified experimentally by comparison with values measured
upon oriented thin sections. They provide a means of measuring 2V in Bxo figures and in
Bxa figures of large 2V, and in particular a means of distinguishing between Bxa and Bxo
figures. The corresponding formulas given by the skiodrome theory and the theory of
Michel-Lévy are not satisfactory. An analysis of the optic axis figure reveals that 43°
isogyre curves derived by Wright upon seemingly unsound assumptions are in fact sur-
prisingly accurate. Replacements for the skiodromes currently in use are mentioned.

1. Introduction

The theory of interference figures in crystal optics was developed
mainly between about 1900 and 1925. Most of the results and methods of
this early work have fallen into disuse. In explaining the origin and form
of isogyres, recent texthbooks (Wahlstrom, 1951; Burri, 1950) make use
exclusively of the skiodrome, a device introduced originally by Becke
(1904). The skiodrome is, however, an incorrect representation of inter-
ference phenomena. It is physically unsatisfactory, and leads to incorrect
predictions as to the positions and shapes of isogyres.

With the hope of correcting this situation, the present paper advances
a coherent théory of the positions of isogyres in interference figures. The
theory is subjected to practical test with the petrographic microscope,
and its predictions are compared directly with the predictions of the skio-
drome theory and other representations of interference phenomena. As a
result of these tests (aside from the reasoning behind the theory) one may
conclude that the theory here developed accounts correctly for the posi-
tions of isogyres, and that the older theories do not. On the basis of the
theory a practical means for distinguishing between Bxa and Bxo
figures can be established, and a method given for measuring 2V in figures
of either kind.

* Division of Geological Sciences, contribution No. 865.
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2. History of isogyre theory

A survey of the literature on the isogyre problem reveals three main
lines of development: (1) a protracted dispute (1904-1923) between
T. Becke and F. E. Wright over the proper method of measuring 2V from
interference figures; (2) introduction of the skiodrome theory by Becke,
and its subsequent interpretation and development by Johannsen, and
others; (3) formulation and application of approximate isogyre equations
by Michel-Lévy and Wright.

The dispute between Becke and Wright arose from the following ques-
tion. Suppose that at a given point in the interference field of the cono-
scope, the direction of vibration (direction of electric displacement D) of
light reaching the observer’s eye is known. What is the direction of D of
the corresponding ray of light while traversing the crystal plate under
observation? Becke and Wright proposed different constructions (in
stereographic projection) for the solution of this problem, and in the
years 1904-1925 disputed the correctness of one another’s methods
(Becke, 1904; Wright 1907; Becke, 1909; Wright, 1911; Kaemerer, 1913;
Souza-Brandao, 1914; Wright, 1923). A review of the course of the dis-
pute can be found in Wright’s 1923 paper (pp. 807-809). In this paper
Wright concluded that the correct construction is unknown, and that
there is in general an uncertainty equal roughly to the difference between
the Becke and Wright methods in translating the position of isogyres in
an interference figure into conditions in the crystal plate that produce the
figure. The interpretation of interference figures is, he concluded, in-
herently approximate at best.

This conclusion was probably responsible for the lack of further devel-
opment of the theory of interference figures. Discrediting the older “ex-
act” methods of analyzing interference figures, it was probably respons-
ible for the abandonment of these methods and the reliance instead ex-
clusively on the skiodrome theory, a theory developed along lines quite
different from those of the ‘“‘exact’” methods, but one which led to con-
venient diagrams and easily visualized conclusions.

The skiodrome actually had been introduced by Becke in 1904.
Whether it was intended as an exact theory or simply a handy tool is
difficult to judge from the original article, but in the hands of others it was
treated as an exact theory and developed in considerable detail to give
isogyre equations for various types of interference figure. A detailed
development of the skiodrome theory can be found in Johannsen’s text-
book (1918, pp. 429-440).

Nowadays the skiodrome theory seems to be used mainly as a device for
demonstrating qualitatively to students the origin and general pattern of
isogryes. The exact numerical development of the theory seems largely to
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be disregarded. Neverthless, the emphasis placed on the skiodrome theory
suggests that it should provide a more accurate description of isogyres if
such a description were needed.

An accurate description was, in fact, required by Michel-Lévy in an
early work (1888) in which he proposed a method for determining 2V
from bisectrix figures. For this purpose he developed an equation for the
isogyres in bisectrix figures, by treating the interference phenomena as
though they took place in a plane and applying the planar analog of the
law of Biot and Fresnel. Wright (1905) rederived his formula but pointed
out (1907, p. 341) that it did not seem to give trustworthy results and
recommended that it not be used. Nevertheless, he applied the same type
of analysis to the optic axis figure, obtaining an equation for the isogyre
in the 45° position, from which he calculated the isogyre curves that have
been reproduced in almost every optical mineralogy textbook.

Present day teaching and practice in interference figure interpretation
are outgrowths of these three unrelated lines of approach to the isogyre
problem. In this paper I want to show that the skiodrome theory is pat-
ently incorrect and should be discarded. A theory to replace it can be
formulated when it is shown that the dispute between Becke and Wright
failed to recognize the factors that actually determine the position of iso-
gyres. The application of the new theory to bisectrix and flash figures
provides a test of the theory against the predictions of the skiodrome
theory and the theory of Michel-Lévy. Finally, the new theory can be
applied to the optic axis figure and the result compared, for the 45° posi-
tion, with the equation and curves given by Wright (1905).

3. The skiodrome theory

The skiodrome theory consists of two distinct elements: (1) definition
and details of construction of the skiodrome corresponding to a given
interference figure; (2) interpretation of the skiodrome in terms of the
positions and shapes of isogyres, and justification of this interpretation.

A skiodrome of a given crystal plate is an orthographic projection of
curves of constant wave index of refraction (‘“isotaques’’) plotted on the
surface of a sphere, which may be called the “reference sphere” for the
crystal under consideration.* The details of this construction are given in
most textbooks.

Interpretation of the skiodrome is based on an analogy with the phenom-
enon of extinction in orthoscopic light: the isogyres are said to be located

* Evans (1907), who first introduced the theory into the English language, called the
individual projected isotaques “skiodroms.” Nowadays the term “skiodrome’ is used con-
fusingly both for the individual curves, and for the entire figures which they compose.
I shall use the term only for the entire figure.
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at those points in the interference field where the allowed directions of D
in the crystal coincide with the directions transmitted by the polarizer or
analyzer. If one were to start from this assumption, he would need to
determine what direction of D in the crystal plate corresponds to an ob-
served direction of D at a given point in the interference field. This is
exactly the question disputed by Becke and Wright. Becke’s and Wright’s
methods of determining 2V from the isogyre patterns are based, in fact,
on the above assumption and on the separate constructions which the two
men proposed as the solution of the resulting problem.

The skiodrome theory, however, presents an entirely different solution
to the problem, because it asserts in effect that the allowed directions of
D, as seen in the interference field, correspond to the tangents (and nor-
mals?) to the projected equirefringence curves in the skiodrome. This
construction leads to predicted directions of D that differ by as much as
90° from the directions given by the Becke or Wright constructions.

It is difficult to see why Becke, who proposed the skiodrome approach
to the isogyre problem, should have thereby chosen a method which gives
predictions so greatly different from his own “exact” solution of the D-
direction construction. The only justification for the skiodrome method,
as far as I can see, is that the interference phenomena do take place in
effect on the focal sphere of the hemispherical objective lens, and this
focal sphere, when observed from the distance of the ocular, is for prac-
tical purposes projected onto a plane perpendicular to the microscope
axis—a fact that is responsible for the validity of Mallard’s law. The fact
that the focal sphere is observed in orthographic projection does not
necessarily mean that the directions of D on the focal sphere are ortho-
graphically projected when viewed from the ocular, and I shall in fact
show that this is definitely not the case.

Consider the allowed directions D; and D corresponding to a given
wave normal direction n in a crystal, shown in stereographic projection
in Fig. 1. The pole of the projection is the microscope axis. When the
waves 1 and 2, having wave normal n in the crystal, have been refracted
by the objective lens so as to travel up the microscope tube their direc-
tions of D are now D," and D/, if determined from the Becke construc-
tion, or Dy’ and D,”, if determined from the Wright construction. In the
Becke construction, the directions are rotated about the horizontal axis
N until they are horizontal, NV being the intersection of plane D, D, (which
is normal to n) with the horizontal plane. (By “horizontal” is meant
“parallel to the microscope stage.””) Thus Dy’ and D’ lie on the small
circles, drawn about IV as center, that pass through D; and D,. In the
Wright construction, the “vibration planes” Dyn and D.n are inter-
sected with the horizontal plane to find the final directions of D. Thus
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D) and Dy’ lie at the ends of the great circles passing respectively
through D; and n and through D, and n.

The skiodrome construction gives final directions Dy”" and D,""’. These
are derived by orthographic projection of the vectors D and D,. Since
azimuthal directions are the same in orthographic or stereographic pro-
jection of a sphere, D,’” and D,’” evidently lie at the ends of radii from
the pole of the projection, passing respectively through D; and D,.

The geometry of small circles and great circles in stereographic projec-
tion requires that Dy’ and D,” always lie on the same side of D"/, except

ol D DY

F1c. 1. Stereographic projection to illustrate the Becke, Wright, and Skiodrome con-
structions for finding the D vector in the interference field from the D vector in the crystal.
n is a wave normal in the crystal, and D, D, the associated directions allowed for D.
o is the microscope axis.

in the case that D lies at C or N, in which event the three points Dy,
Dy, and D"’ coincide. This fact can be justified in detail but is obvious
without detailed proof. Hence the skiodrome point Dy"" always lies oui-
side the range of directions between Dy’ and Dy”, and a similar statement
applies to D,’””. The one certain conclusion from the Becke-Wright con-
troversy is, however, that a correct construction would place the final
direction of D between D;" and D,”, and between D,’ and D,”. Thus the
skiodrome construction cannot possibly give the correct D directions ex-
cept for points on the reference sphere where D is either horizontal, or lies
in a vertical plane containing n. For all other points the skiodrome con-
struction is wrong.

This objection is fundamental, but another objection can be raised in-
dependently. For all except the centered uniaxial optic axis skiodrome,
and at all points on the skiodromes except the center and in some cases
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points on the edge, the orthographically projected equirefringence curves
are not orthogonal, so that the allowed D directions given by the skio-
drome are not perpendicular when they reach the interference field of the
microscope. The skiodrome theory takes account of this circumstance in a
clever but puzzling way. It asserts that there are, in fact, always two iso-
gyres, one in which the projected meridianal equirefringence curves are
parallel to the directions of D transmitted either by the polarizer or the
analyzer (which we will henceforth regard as NS and EW respectively),
called the meridianal isogyre, and one in which the projected equatorial
curves are parallel to NS or EW, called the equatorial isogyre. The two
isogyres are superposed to form the isogyre actually observed, and since a
doubling, even faintly, of the isogyre is never observed, the theory sup-
poses that the two isogyres are broad and overlap to such an extent that
the actual isogyre appears simply as a “broad brush” where the two
separate significantly, an interpretation that correlates qualitatively
with the observed features of isogyres.

Even if a qualitative explanation were adequate for all purposes, the
skiodrome theory would have to be discarded, because its predictions are
qualitatively wrong for at least one type of figure, the biaxial optic normal
figure. The skiodrome for this case predicts that the meridianal and equa-
torial isogyres should lie in adjacent quadrants of the interference field.
As the crystal plate is rotated away from the extinction position, in which
the isogyres form a centered cross, the cross should break up into four
hyperbolic isogyres which move out into the four quadrants of the field.
‘The meridianal isogyres move into the quadrants into which the acute
bisectrix also moves, and the equatorial isogyres move into the other two
quadrants. The equatorial isogyres disappear from the field more rapidly
than the meridianal isogyres. For 2V =90° the stage must still be rotated
about 4° before the isogyres (which in this case move out equally fast in
all four quadrants) reach the edge of the field.

One need only examine an appropriate thin section, however, to see
that the optic normal cross breaks up into only two isogyres, and these
move into the quadrants into which the acute bisectrix moves. As 2V
approaches 90°, the figure becomes less and less distinct, and the isogyres
leave more and more rapidly, until for 2V'=90° the dark field simply
vanishes as the stage is rotated from the extinction position, without
breaking up clearly into hyperbolic curves at all.

If the skiodrome theory fails qualitatively, its quantitative applica-
tions can hardly be of much value. One example had already been given—
the angle of rotation of the crystal plate required to bring the optic nor-
mal isogyres for 21/ =90° to the edge of the interference field. For a cono-
scope of numerical aperture 0.85 the calculated angle is about 4°, which is
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actually close to the observed angle for the isogyres in a uniaxial flash
figure. Thus, if the skiodrome theory were correct, optic normal figures
for which 2V =90° would resemble uniaxial flash figures quite closely,
except that there would be four isogyres instead of two.

In most cases it is difficult to propose a quantitative test of the skio-
drome theory, because the theory provides no method by which the two
types of isogyre should be combined to get the actual isogyre. Such a
method cannot be found, because the theory has no physical meaning
which would enable one to calculate the amount of light transmitted by
the analyzer for a given point in the interference field with a given con-
figuration of projected equirefringence curves. In short, a theory that
defies the laws of optics is difficult to interpret quantitatively.

Nevertheless, there is one interference figure that provides a quantita-
tive test of the skiodrome theory, the uniaxial flash figure. The skiodrome
for this case shows that there will be no equatorial isogyres, but instead a
uniform change in illumination of the field as the crystal plate is rotated.
Thus the isogyres in the uniaxial flash figure must be solely the meridianal
ones of the skiodrome theory, for which a definite position can be cal-
culated. The calculation (section 6) shows that the predicted isogyres
leave the field exactly half as rapidly as actually observed. This is a deci-
sive test and shows definitely that the skiodrome theory is wrong, even
when applied only to the inner portion of the interference field.

4. The effect of “rotation,” and the “isotropic cross”

Because the effects that produce the “isotropic cross’” are important
in determining the location of isogyres, it is necessary to discuss them.

Whenever a light wave passes through a refracting surface, a certain
fraction of the energy is transmitted and a certain fraction reflected. If the
light wave is plane polarized with D in the plane of incidence, a greater
fraction of the incident energy is transmitted than if the wave is polarized
with D perpendicular to the plane of incidence (i.e., D parallel to the re-
fracting surface).

A plane polarized light wave with D intermediate in orientation be-
tween the incident plane and its normal will therefore suffer a greater
diminution of the component perpendicular to the incident plane than
of the component parallel to the incident plane, in passing through the re-
fracting surface. This relative decrease in the perpendicular component
of the D vector is responsible for a “rotation” of the vector away from
the orientation that would be calculated by Becke’s method.

The amount of this rotation can be calculated from the electromagnetic
theory. A different derivation was given by Wright (1923, pp. 796-797),
but his method lacks a physical basis. Moreover, there are misstatements
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and misprints in the derivation and his final result is wrong; it is valid for
a wave travelling in the direction opposite to the one assumed in the deri-
vation.

Suppose that the D vector amplitude of the incident plane polarized
wave, moving in a medium of index 7;, has components D, in the incident
plane and component D;" perpendicular thereto. The incident wave nor-
mal n; makes an angle 8; with the normal to the refacting surface. D, is of
course perpendicular to n,. The refracted wave, in medium of index n,
then has components

il I 2n4 cos 6;
D, =D; —; e
. K5
4/7;;2 — n;%sin?@; + ——cos O;
2
L, L 2n; cos 6;
Dt =D, ==

/1,2 — n:2sin®6; + n; cos 6;

The derivation of these results can be found in works on electromagnet-
ic theory. From these equations, and with the help of Snell’s law,

n; sin 6; = #, sin 6;

the value of the ratio D;*/D,' is found (after some manipulation) to be
simply
i D
£ 7
= 0: — 8y). 1
Dy Da i . W
The decrease in the ratio D*/D! is thus independent of the sign of 8;,—8,.
The situation is depicted in stereographic projection in Fig. 2. In terms

of the angles »; and »;, (1) can be written
tan »; = cos (6; — 6,) tan v;, 2)

a formula first obtained by Fresnel.

It can be shown that (2) leads to the conclusion that D; and D, lie on a
great circle through n;, as shown in Fig. 2. This conclusion is the basis
for Wright’s construction, mentioned previously.

Note that if it were true that »,=»,, then D, and D; would lie on a
small circle centered at N, the normal to the incident plane. This is
Becke’s construction. Actually v, <w;, so that the D vector is “rotated”
toward the incident plane by the amount §=»;—w,.

In an interference figure, the only light that reaches the observer’s eye
is light that has travelled almost straight up the microscope axis from
each point on the interference sphere (focal sphere of the objective lens).
Thus, the only light that is seen from a given point P on the interference
sphere is light that has been refracted through the optical system in a
plane of incidence always containing the microscope axis and P.

At the corresponding point P in the interference figure (Fig. 3), the
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16;-6, 1

Fic. 2 (left). Stereographic projection to illustrate the “rotation” of the D vector caused
by refraction of plane polarized light. n; is the incident wave normal, which is refracted to
n.. D; and Dy are the corresponding directions of D. The orientation of the refracting sur-
face is not plotted.

Frc. 3 (right). Pattern of D-vectors in the interference field of the conoscope. The pat-
tern, shown in the NE quadrant, can be extended symmetrically to the rest of the field, as
suggested.

light would have D-direction PD, if », were equal to »; at every refraction
in the lens system. But in fact the component of PD, perpendicular to OP
is reduced relative to the component parallel to OP, so that the actual
direction of D at P is rotated toward OP (prolonged), to some orientation
such as PD. The resulting directions of D in the interference field form the
pattern shown in the NE quadrant of Fig. 3, in which it is assumed that
the polarizer is set to transmit D accurately NS. Such a pattern was de-
scribed by Wright (1923).

The pattern shown in Fig. 3 is responsible for the isotropic cross, and
can be verified by rotating the polarizer (or analyzer) of the microscope.
The cross breaks up into two hyperbolic curves. If the D direction trans-
mitted by the polarizer, which will be called the polarization direction, is
rotated into the NW-SE quadrants of the field, the hyperbolae move into
the NE and SW quadrants, and vice versa. By rotating the polarizer,
the amount of “rotation” § at any point in the field can be measured. The
maximum value for the lens system alone (without any plate inserted be-
tween the condenser and objective) is about 6° or 7° for most microscope
lens combinations of half-aperture close to 60° (in air).

The isotropic cross described above is produced without birefringence
or path differences, as can be tested with the gypsum plate. Johannsen
(1918, p. 416), however, refers to the cross as having “weakly uniaxial
positive character,” In this statement he confuses the above isotropic
cross with a second “cross’ that can be observed when the microscope is
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adjusted improperly. The first cross, described above, is observed when
the cone of light coming directly from the light source, converged by the
condensing system, fills the field of the conoscope, so that the image of
the light source, seen in the interference field, fills the entire field. TIf the
microscope tube is then raised, the image of the light source shrinks
rapidly. Superposed upon the image of the upper face of the condenser,
which does not shrink so rapidly, can be seen a second “cross.” It can
better be observed by substituting a small bright light source for the usual
diffuse one—for example, by removing the blue diffusing plate used in
most lamps. A gypsum plate shows that path differences are associated
with this cross (in some microscopes). If the cross were interpreted as
uniaxial, its sign would be +, as noted by Johannsen. When the polarizer
is rotated, the cross of the second kind behaves very differently from the
cross of the first kind, as shown in Fig. 4 (row II).

Upon raising the microscope tube further, so that the image of the con-
denser face shrinks down into the center of the field, a third kind of cross
can be observed in the remainder of the field. It can also be seen simply by
swinging the movable substage condenser out of the optical train. It has
no “uniaxial”’ character. Upon rotating the polarizer the cross breaks up
into a pair of hyperbolae that move slowly out into the same quadrants as
the direction of polarization does, as shown in Fig. 4, row IIL

The crosses of the second and third kinds are produced by light that has
been twice or more reflected at lens surfaces in the optical train. If a beam
of perfectly parallel light enters the condensing system from below, the
light reflected by the lens surfaces from rays that do not travel exactly
along the condenser axis forms, after a second reflection that sends the
light in a general upward direction again, a broad weak cone of light di-
verging at all angles from the main light cone. The light in this cone is
polarized with D nearly perpendicular to the plane of incidence, because
the perpendicular component is preferentially reflected. That portion of
the twice reflected light that has been reflected at the polarizing angle
will have D exactly perpendicular to the incident plane. The twice (or
more) reflected light from the condenser forms the cross of the second
kind, and light similarly reflected in the objective forms the cross of the
third kind.

A plot of the expected direction of D after one reflection is shown in
Fig. 5. The plot is qualitative only. Radial distance is angle of incidence
plotted stereographically. The solid circle is drawn at the polarizing angle.
The polarizer is set NS. To determine the directions of D expected in the
multiple reflected light from the actual lens combinations requires a
knowledge of the paths of the reflected rays, and hence a detailed knowl-
edge of the lens system design. However, it can be shown rather simply
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Fr16. 4. The three types of “‘isotropic cross” seen in the conoscope field. Column A shows
the centered cross seen when the polarizer is set NS and the analyzer EW. When the
polarizer is turned to the position DD, the cross breaks up into the form shown in column
B. The circular object within the field in rows II and III is the image of the upper face of
the substage condenser.

that the twice reflected light from the objective which appears at a given
point in the interference field can have been reflected at an angle of inci-
dence at most equal to the angle, in glass, corresponding to the distance
of the given point from the center of the field. At the edge of the field this
angle is about 30°, much less than the polarizing angle (56° for #=1.50),
so that a distribution of vectors roughly similar to that shown inside the
solid circle in Fig. 5 may be expected for the cross of the third kind. This
conclusion is in agreement with the behavior of the cross upon rotation of
the polarizer. Thus, if the analyzer transmits in the direction 44 in Fig.
5, a dark curve would be expected to follow the heavy dotted line shown.
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Fi1c. 5. Direction of D after one reflection of plane polarized light. The directions are
shown as short arrows stereographically projected into the plane of the drawing from their
actual position in space. The incident light is polarized in such a way that before reflection
all the arrows would have been NS. Radial distance is angle of incidence plotted stereo-
graphically. The diagram is qualitative only. The solid inner circle corresponds to the
polarizing angle.

The cross of the second kind behaves in a way appropriate to the outer
portion of Fig. 5. I do not know the exact reason for this, but it appears
that the light must have been reflected several times.*

A more exact analysis of the crosses of the second and third kinds would
be interesting, but it is unnecessary for a discussion of interference figures,
which are observed in the strong direct beam of light from the light
source, to which the discussion leading to Fig. 3 applies. It is reasonable
to assume that the weak light responsible for the crosses of the second
and third kinds, which are always superposed on the interference field of
the direct light, will have a negligible effect on the appearance of the inter-
ference figure. This is evident in observing the behavior of the isotropic
cross of the first kind, which blots out the other two crosses.

5. Location of the isogyres

The isogyres are regions in the interference figure where the light inten-

* The path differences exhibited by the cross of the second kind are doubtless due to
strain birefringence caused by internal stresses in the lenses of the substage condenser.
In all internally stressed lenses that I have examined, the birefringence has radially-slow
character, as observed in the cross of the second kind. All Leitz microscopes that T have
examined show the presence of these internal stresses. The new Zeiss research and student
models, however, have stress-free substage condensers, and the cross of the second kind
in these microscopes shows no path differences.
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F16. 6. Diagrams to illustrate the factors that determine isogyre position.
6a, orthographic projection; 6b, stereographic projection.

sity transmitted by the analyzer is locally a minimum. We therefore
ask, for a given point P in the interference field (Fig. 6a), what orientation
of the allowed directions of D for the corresponding wave normal in the
crystal will minimize the light intensity from 2P transmitted by the
analyzer? The allowed directions are shown as a small cross in the stereo-
graphic projection of Fig. 65. Note that a stereographic projection of the
cross is equivalent to rotating the cross from the reference sphere into the
horizontal plane by Becke’s construction, that is, about a horizontal axis
perpendicular to OP at P.

Figures 7a and 7 are magnifications of a small region about n and P in
Fig. 66 and 6a. The vector D of the plane polarized light wave that enters
the base of the crystal plate is resolved into two components D, and Ds.
The birefringence is assumed small enough that D; and D, can be con-
sidered to lie in the same plane, so that D; and D, are perpendicular. The
dashed axes lie NS and EW. If there were no “rotation” of the D vector
in passing from the polarizer to the crystal plate via the condensing sys-
tem, D would lie along NS. Instead, it has been rotated an amount 8, to-
ward On. £ defines the orientation of the allowed directions of D. At the
top of the crystal plate the resolved waves 1 and 2 can be written

Dy = Dcos (£ + 8)eit
Dy = Dsin (£ + 8)ei®—ivt 3)

where a phase shift ® between the two waves is produced in traversing
the crystal plate.

Next the effect of rotation in the remainder of the optical system must
be accounted for. We suppose that £ is small enough that the rotations
of the plane polarized waves D’ and D,’ are the same as for waves with
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a b

FiG. 7. Enlargements of portions of Fig. 6. 7a represents the region around n in Fig. 6b.
7b shows the D vectors in the light that reaches the analyzer from the point £ in Fig. 6a.

£=0. The condition for this is £&y, which we will verify a posteriori to
be satisfied, because when y~45°, §¢~1° at most. It will develop later that
the amount of rotation for Dy varies as sin 2y, and is therefore equal for
¥ and 7/2—y, so that Dy and Dy’ are rotated by equal amounts é,, both
toward the incident plane On, as shown in Fig. 7b. It can be shown that
if 8, is small the two waves are attenuated by nearly the same factor C
owing to the energy carried away by the reflected light, so that we can
write for the amplitudes D\ and D, of the waves that arrive at the
analyzer:

DY = CuDy, DY = CrDy (4)

where C is a constant factor independent of £, & and x; are functions of
¢ and &, and can be shown to be

K1=1—52tal’1¢+"', K2=1—‘52C0t|l/+"'
to the first order in 8,. Note that x =k, for ¢ ==/4. The first order terms

8, tan  and 8, cot  remain small for any value of ¢, because of (10), below.
The amplitude of the wave transmitted by the analyzer (set EW) is
Ds= — DY sin (¢ — &) + Dy’ cos (§ + 82). 5
The intensity I of the light seen at P is obtained by combining (3), (4),
and (5):
i = [—D—Al—z = we?sin? (£ + &) cos? (£ + 82) + x?cos? (£ + &) sin? (£ — 62)
cr, D)2 ' Ll E
— 2uikesin (£ + &) cos (¢ + 81) sin (£ — &) cos (£ 82) cos 6)
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where I, is the intensity of light entering the crystal plate at the bot-
tom.

In keeping with the assumption that £, 6, and 8, are small angles (all
less than about 5° in the field of the conoscope), (6) may be expanded to
lowest order in powers of these quantities to obtain
7 ,

Cop = 280487+ 26(0 — 6) — 2[£2 + Bibo + £(01 — 8| cos @ (D)
To find the condition that P lie on an isogyre, we minimize (7) with
respect to £:

(26 + (81— 82)](1 — cos &) = 0. (8)

® applies, of course, to a given wavelength of light. Cos @ is equal to 1
only for certain select wavelengths, so that the term 1—cos ® does not
in general vanish for white light (for monochromatic light it locates the
dark fringes). Thus the isogyre passes through points in the interference
field where

£=13(8:— ). &)

This shows that the effects of rotation in the condenser and objective
tend to cancel in determining the position of the isogyre. The protago-
nists in the Becke-Wright controversy had assumed in effect that £=,,
evidently a serious error if §; and 8, are of roughly the same size. The
“correct” construction envisaged by Wright (1923) would have required
£ to be about 6° (about one half §;,, in Table 1), whereas, as we shall see
below, £ is almost certainly less than 1° in practice.

Note that the condition (9) for location of the isogyre is based on two
important assumptions: (1) the birefringence of the crystal plate is small;
(2) the variation of C with position in the interference field is not large
enough to be significant.

To assess the size of £, consider first the application of (2) to the rota-
tion produced in the microscope. If the angles of rotation are small,
v=y, so that we may write for the rotation & produced in one reflection

tan (¥ — 8) = cos Af tan ¢

which when expanded for § small gives

Af
6 = sin 2y sin27 . (10)
TasiE 1
Series I I1 IT1 Average
Sy 11.4° 12558 11.1° 11.7°
81 6.1 7.5 7.1 6.9
8p 5.3 5.0 4.0 4.8
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For the complete rotation in the microscope
AY;
8146, = sin 2y 2 sin® —= (11)

where A#; is the change of direction of the ray at the #’th refracting sur-
face.

The applicability of (10) can be tested in the following way. A clean
glass slide of known index of refraction is placed on the stage, and the
angle of rotation for light in the interference field is measured by rotat-
ing the polarizer. In view of (10), the maximum rotation, § max, occurs
at ¢ =45°. § max. is easily measured, because it requires setting the
polarizer so that the center of the dark hyperbolic shadow in Fig. 4 (IB)
is just tangent to the edge of the interference field. Call the rotation
measured in this way 8,,,. The glass slide is then removed and the rota-
tion &; due to the lens system alone is measured. The difference 64, —8:
is the rotation produced by the plate. Since there are two refractions of
amount Af in passing through the plate, and since the rotation is meas-
ured at Yy =45°, (10) predicts

. Al
Siip — 81 = 8, = 2 sin? > (12)

where

sin 8,

Af = l 0;,—86, =6, —sin!——- (13)
n

6, is the half-aperture (in air) of the conoscope, and is a constant for a
given objective lens; » is the index of the glass plate.

The results of three series of measurements are shown in Table 1. The
objective used is a Leitz achromatic, No. 7 (N.A. 0.85). The glass plate
has #=1.516, measured by the immersion method. Each measured &
value given in the table is the average of four or five individual measure-
ments. The scatter of the results indicates the inaccuracy of such meas-
urements. The inaccuracy arises from the diffuseness of the hyperbolic
shadow. There seems also to be a personal bias in judging when the cen-
ter of the shadow is set at the edge of the field, and this bias varies un-
predictably from one series of measurements to another. Nevertheless,
there is a general consistency in the results, and the average, §,=4.8°,
agrees exactly with the value calculated from (12) and (13) with the
assumption #,,=57.6°, which is the value derived from isogyre measure-
ments (section 7), for the particular objective used. The exact agree-
ment is, of course, fortuitous, but verifies the correctness of (12).

Wright (1923, p. 802) gave a more elaborate series of measurements of
the same kind, although he did not explain exactly what he measured,
and he described the results rather vaguely as ‘“positions of extinction of
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different points in the interference field.” He did not compare his results
with the predictions of a theory of the effect. The position Y=45°
8,,=57.6° at which I have measured 8, corresponds to small circle co-
ordinates N=236.6°, E=36.6°, as used by Wright; interpolating in his
table (1923, p. 802), I find that he measured §;=6.8°, which is remark-
ably close to the average in Table 1.

To estimate £ note that the effects of rotation due to equal refraction
angles Af; above and below the crystal plate under examination cancel,
so that rotation produced by refraction at the surfaces of the crystal
plate does not affect £ nor does the rotation produced by the glass slide
and cover glass, if the two have the same index #. Moreover, since the
front surface of the front objective lens element is plane, as is also the
upper surface of the upper lens of the condenser, the effects of rotation
at these two surfaces also cancel if the two lenses have the same index.
If this index is about 1.5, the contribution of these surfaces to §; is close
to 6,. If there is a difference between 8, and &, its maximum value is evi-
dently

| 60— o1l < 814 6, — 8, =81 — 8, == 2°.

Hence £ is certainly no larger than about 1°, and very likely it is smaller,
because it seems obvious that all of the remaining rotation is not pro-
duced solely in the objective or solely in the condenser. In section 8
it will be shown that £ can be measured by means of interference figures,
and the conclusion that £ is less than 1° verified experimentally.

In the theory that follows (except in section 8) I shall assume that
£=0. When a given lens combination produces a significant value of £,
the resulting effect on the position of the isogyres can be obtained by an
obvious extension of the theory developed. For any point in the inter-
ference field

1 1 i A0 min A6,
E= 7 (82— 81) = o sin 2¢ 4 — D sin? o + 22 sin? —2—§ ; (14)
inl

t=ny+1
To the first approximation we can write
AG; = K0 135)

where # is the inclination in the crystal plate of the wave normal cor-
responding to a point P in the interference field with coordinates (6, ¢).
K, is a constant for the i’th refracting surface. There are », refracting
surfaces in the condenser and #, in the objective. To the same approxi-
mation to which (13) is valid, sin?Af,/2=(A8;/2)? so that (12) becomes

N,

S re|.

ny+l

1 2 L
= —sin2y — —ZKﬁ—l—
2 4 1
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The distribution of ¢ values in the interference field is therefore, to the
first approximation in 8,

: 6
§0,4) = fusin 29— (16)

& is the maximum value of £, the quantity estimated above.

Based on the assumption that £ is 0, the isogyre theory I shall apply
is contained in the following principle. At each point P in the interference
field, imagine a cross to be drawn in the orientation given by a stereo-
graphic projection of the allowed directions of D drawn as a small cross
on the reference sphere at the point corresponding to P. An isogyre
passes through those points at which the crosses are aligned parallel to
the NS and EW crosshairs of the microscope.

Note that Becke’s construction would have given the same method of
finding the position of the isogyres, if he had applied it in this way, in-
stead of relying on the skiodrome theory. However, the assumption
behind Becke’s construction would 7ot lead to the correct method. It is a
case where an incorrect assumption and an incorrect construction lead
to the correct conclusion.

0. Uniaxial flash figures

It is worthwhile to make a detailed application of the principle stated
in the last section to the uniaxial flash figure, because for this figure the
predictions of the theory can be compared precisely with the predictions
of the skiodrome theory.

In applying the principle, it is easier and more direct to work with the
reference sphere than to carry out the stereographic projection spe-
cifically. Fig. 8a is an orthographic view of the reference sphere, showing
a point P defined by coordinates ¢ and p=sin 6, where 6 is the inclina-
tion in the crystal plate of the wave normal n corresponding to P. PD;
and PD; are drawn parallel to the arms of the stereographically projected
D, D, cross corresponding to P. Fig. 85 is a stereographic projection of
the same sphere. For a uniaxial crystal with optic axis emerging at A,
the allowed directions of D at n are parallel and perpendicular, at n, to
the great circle 4n. In stereographic projection the angle v, on the
sphere, between On (prolonged) and nd is preserved, because the
stereographic projection is angle-true and the great circle On projects
as a line with the same azimuth ¢. Thus in Fig. 8a the angle v between
PD, and OP (prolonged) can readily be calculated from spherical tri-
angle OnA in Fig. 85:

cos 0 cos (% — ¢) = — sin (% — ¢) cot (m — ). an
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Fic. 8. Diagrams for analysis of the uniaxial flash figure. 84 represents the interference
field (orthographic projection), and 8b is a stereographic projection of the interference
hemisphere.

Now a given isogyre is traced out by all points P having a given inclina-
tion u of the stereographically projected axes Dy, D, to the axes ¥,y

o
R (18)

Combining (17) and (18) we have for the equations of the isogyres
tan (¢ — p) = cos 6 tan ¢ (19)

where u is constant for a given isogyre.

(19) is written in coordinates (6, ¢) measured with respect to axes
«', v fixed in the crystal plate. If, as in most microscopes, the plate is
rotated and the nicols remain fixed, it is more appropriate to describe the
isogyres in terms of coordinates (0, ¢) defined by the NS and EW cross
hairs, which, for an isogyre passing through P, must be the x, y axes of
Fig. 8a, so that

y=¢—u (20)
and the isogyre equation is
tan (4 + ) = 1)
cos 6

u is the angle through which the crystal has been rotated from extinction.

To translate (21) into an equation describing the isogyre seen in the
flash figure, it is necessary to introduce a relation between 6 and radial
distance p’ from the center of the figure. If Mallard’s law is valid, o’ is
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F16. 9 (left). Form of the isogyre (heavy curve) in the uniaxial flash figure. The diagram
is an orthographic projection of the entire interference hemisphere, of which only the inner
part is visible in the conoscope. p is exaggerated in the drawing.

Fic. 10 (right). Diagram for calculating the position of meridianal isogyres from the skio-
drome theory for the uniaxial flash figure. The meridianal skiodrome passing through P is
shown.

proportional to sin § and hence to p in Fig. 8¢, the proportionality con-
stant depending, of course, on the microscope objective and the index of
refraction of the crystal plate. I shall write the isogyre equations in terms
of 6 or p, realizing that these can always be converted to radial distance
p’ in the interference figure when needed.

The main features of an isogyre defined by equation (21) are plotted
approximately in Fig. 9, which is an orthographic projection similar to
Fig. 8a. The isogyre has a roughly hyperbolic shape. It passes through
the optic axis at +'=1 and through the cross hair axis y at the edge of the
sphere. The curve is mirror symmetric about the line Vv=y,=n/4—u/2.
Its closest approach to the center is along this line, and the derivative
dp/dy vanishes at the point of closest approach. dp/dy is zero where the
curve meets the edge of the sphere, but this affects only a small portion
of the curve, as shown in Fig. 9. These features can be verified from equa-
tion (21).

Consider the shape of the isogyre near the center of the field for small
angles of rotation 4. (21) can then be expanded:

(tany + usec?¥)(1 — $p?) = tan y
or
p?sin 2y = 4. (22)

(22) is the equation of a rectangular hyperbola, as can be verified by sub-
stituting
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x = psin ¥,
= p cosy.

As a quantitative test of eqn. (21), I shall use the angle u, required to
bring the isogyre out to the edge of the interference field, defined by some
angle 6, and corresponding distance p,. The isogyre actually disappears
from the field along the line ¢ =m/4—pu/2, but since u, Is about 5°% in
practice this differs little from ¢ ==/4. The distance p, of the isogyre
along ¢ =/4 is obtained by substituting this value in (21). After some
simple reduction it is found to be given exactly by

i r_”—";m; : (23)
Note that (22) agrees with (23) in the limiting case in which p, and
are small. The difference between 6, calculated from (23) and §,” meas-
ured along ¢y =n/4—pu/2 can be shown from (21) to be 0.05°, which is
imperceptible. The change in u required to move the isogyre from the
position where it touches the edge of the field along Y=x/4 to the posi-
tion where it touches along ¢y =m/4—pu/2 is 0.014°.

For comparison with (21), (22), and (23), the corresponding results
for the meridianal isogyre given by the skiodrome theory will now be
derived. The orthographically projected sphere is taken to have radius
1, as before. The meridianal skiodroms are ellipses, as shown in Fig. 10.
« is a parameter defining the particular ellipse that passes through P.
We have

/2

x'z + ‘——2 el 1
(a4
dy’ &
tan pp = — Ec_’= ?a2 = o? tan ¢.
Now put
= psin ¢
! = pcos¢
Then
02 cos?
p?sin’ ¢ + Cos Py ¢ =
n
or
p?sin 2¢
tanpu = ————— "

2(1 — p%sin?¢)
To write the result in cross hair coordinates, substitute (20) to get

pPsin 204 + )
2(1 = p?sin? (Y + )

tan g =

(24)
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(24) is the skiodrome equivalent of (21). Near the center of the field,
where p is small, and g must be small for the isogyre to be visible, (24)
reduces to

2u = p?sin 2y, (25)

a rectangular hyperbola thatis to be compared with (22). The meridianal

isogyre reaches a given point in the interference field only after a rotation

u twice as great as the isogyre described by (22). Thus even at the cen-

ter of the field the predictions of the two theories differ by a factor of 2.
For y=n/4—u (24) reduces to

2 tan p, = —pi* (26)

1 — zpo?
(26) is also very nearly true for y =n/4, so that it is the skiodrome equiv-
alent of (23).

A test between the two theories can best be made on the basis of (23)
and (26). Note that (24) predicts a slightly larger value of u, than does
(26), so that it accentuates the difference between the values of , given
by (23) and (26).

The results of a series of measurements of y, for flash figures in oriented
mineral sections is given in Table 2. Each value reported is the mean
of about 30 measurements for a given point in a given thin section. The
“limit of error” values do not represent estimated standard errors of the

TABLE 2. SUMMARY OF FLASH FIGURE MEASUREMENTS
CoNoscoPE OF HALF APERTURE 6,,2255°

Mineral i 1o values
Quartz 1.55 4.440.6,5.0£0.6,4.840.6 (av.) 4.7
Beryl 1.56 3.740.3,4.64+0.6,4.0+£0.7,3.840.3,5.7+0.8,4.940 7,
4.6+£0.6,5.2+1.2 (av.) 4.6
Apatite 1.64 4.3+0.4,3.5+0.4,4.44+1.1,4.340.8 (av.) 4.1
Tourmaline 1.64 4.5£1.7,4.44£2.1,3.541.1,4.5+2.1 (av.) 4.2

mean, but rather the maximum scatter of u, values obtained in each set
of about 30 measurements. The means scatter more than one would have
estimated from the scatter of the individual measurements, probably
because of subjective effects of the kind mentioned in section 5, and also
because of an effect discussed in section 8.

The measurements are made in the following way. Only nearly cen-
tered figures are measured. The azimuthal setting of the stage required
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to place the isogyre at the edge of the field in each quadrant of the field
is then measured five or six times, for rotation from a given extinction
position. Finally several measurements are made of the azimuthal setting
that produces the centered cross. The u, values are obtained afterwards,
by difference. This procedure tends to eliminate advanced bias as to
how the values should turn out. The final u, value, obtained by averag-
ing the values from each equadrant, tends to eliminate the effects of
slight misorientation of the section.

In making the measurements, the object is to set the center of the
isogyre at the edge of the field. This is made difficult and somewhat un-
certain by the fact that when set properly, only one edge of the isogyre
can be seen. It is necessary to swing the stage back and forth through
the correct position in order to make sure where the center of the iso-
gyre is. The flash figure isogyre is rather diffuse, so that the settings can-
not be made very accurately. It might be preferable to make the set-
tings for a p, value within the field of the conoscope, as could be done
with an ocular provided with a circular reference hair. Such an ocular
was not available, but in addition I considered it desirable to make the
measurements at the largest possible value of g,, for which the y, values
predicted by (23) and (26) differ most.

Before beginning the measurements, I estimated from standard Bxa
slides that the conoscope used (see section 5) has a half-aperture in air,
which I will call 8,,, of about 55°. For a mineral with index n=1.56, the
interference sphere can therefore be seen out to 8,=31.9°, and for n=1.64,
8,=30.0°. Equations (23) and (26) then predict the p, values shown in
Table 3.

TasrE 3. CoMPARISON OF CALCULATED AND OBSERVED io
VALUES FOR FrasH FIGURES. 0, =55°

o o (23) 1o (26) Hobs (av.)
1.56 4.6° 9.1° 4.6°,4.7°
1.64 4.1° 8.1° 4.1°,4.2°

The observed values are the averages from Table 2 for each of the four
minerals. It is clear that (23) accounts for the observed values and (26)
does not. To obtain agreement between (26) and the observed values it
would be necessary to assume f,=37.8°, whereas the isogyres in 45°
position in a centered Bza figure of muscovite, with £=39° are well
within the field of the conoscope.

The measurements of Bxa and Bxo figures, given in the next section,
suggest that the correct value of 8, for the conoscope used is about



1052 W. BARCLAY KAMB

57.6°% slightly larger than the value used in Table 3. The numerical aper-
ture 0.85 of the objective, stated by the manufacturer, corresponds to
8, =58.2°. This value gives calculated y, values somewhat larger than
those listed in Table 3 (e.g., u,(23)=35.1° for »=1.55). Students who
have made flash figure measurements for me generally find somewhat
higher po1s values also, for lenses of the same rated N.A. as the one I used.

At first I was cautious not to rely on the accuracy of the conoscopic
angles and numerical apertures stated by lens manufacturers, but the
close agreement between g, values actually measured and p, values cal-
culated from the theory by assuming the correctness of the rated numer-
ical apertures shows that this caution is unnecessary. Several examples
of the agreement will be seen in sections 7 and 8. For any lens for which
the numerical aperture in air,

N.A. = nuir sin 6, = sin 6w = po,
is accurately known, isogyre calculations can be readily made by taking

Pm
Po = —
n

where #» is the index of refraction of the crystal plate.

7. Acute and Obluse Biseclrix Figures

The analysis of Bxa and Buxo figures can be carried out by the methods
used in the last section, with the help of Fig. 11. Angles a;, a» and v can
be introduced as shown, and the inclination u calculated from the law of
Biot and Fresnel. T shall not write down the details of the derivation,
but simply state the result, converted to cross-hair coordinates 6 and ¢,
as defined by (20):

cot 2¢ sin 2(¢ + u) cos 8 + sin? (¢ + u)(2 — sin? ) = 1 +sin*Geot? V.  (27)

The result is cumbersome, but can be simplified in two ways. If we sup-
pose that ¢ is small enough that to a sufficiently good approximation
cos =1 — 3p2
then one can show, after some calculation, that (27) reduces to the simple
form
- " p*
1—_—%; sin 2u = 1—_—%[); sin 2y, (28)
where
pr=sinV
and, as before,

p = sin 6.



ISOGYRES IN INTERFERENCE FIGURES 1053

a D

Fic. 11. Diagrams for analysis of centered Bxa and Buxo figures. In 115 the optic axes
project to the points A and 4. 11a represents the interference field (orthographic projec-
tion), and 115 is a stereographic projection of the interference hemisphere.

(28) describes a curve that approaches the shape of a rectangular
hyperbola for small p. Its closest approach to the center is along the
line y==/4.

A second simplification is to evaluate (27) for ¢ =w/4. Tt then reduces
exactly to

2 2

T gt 2 = 1—%—”—2 : (29)
Note that (28) yields (29) when ¢ ==/4, and that (29) reduces to (23)
when p;=1 (uniaxial flash figure). Since the exact shape of the isogyre,
as given by (27), is not important in practice, I will make use only of
(29) in applications of the theory.

The relationship between (28) and (29) makes possible a fairly simple
evaluation of the deviation of (27) from (28). The two curves evidently
intersect at p=p,, ¢ ==/4. The slope df/dy at this point is found to be

de 2 cos 2po

Eb = cos 6,(1 + sin 2u, + 2 cot? V)

(1 — %pe® — /1 — pod).

The slope is greatest for the uniaxial flash figure (for which it is 0.036),
and decreases steadily as V' decreases and u, increases, becoming zero for
po=45° (V'=40,). This conclusion seems to violate what is observed in
practice, that for figures with y, about 15° or greater, the slope d8/dy of
the isogyre at y =7/4 appears to become noticeable. However, I think
the apparent slope is exaggerated by the rapid fanning out of the iso-
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gyre near the optic axes, which are near the edge of the field in such fig-
ures.

Because of the importance of p?/1—35p? in (28) and (29), the function
is plotted againt 8 in Fig. 12. In Fig. 13 are shown curves giving g, as a
function of V, from (29), for various values of the mean index # of the

Y

a2

Fi6. 12. The functions f(p) =p2/1—1%p? and f(p) =2/1— 2p? plotted against 9.

crystal plate. The conoscope half aperture 6,, is assumed to be 57.6° in
the calculation of these curves. Each curve corresponds to a given value
of 6,, as shown in Table 4, so that the curves can be adapted to cono-
scopes of different aperture by using the relation (Snell’s Law)

% sin 6, = sin 6,,.

Equation (29) and the curves of Fig. 13 provide a means of measuring

(30)

TABLE 4. PARAMETERS FOR THE CURVES IN F16. 13

Curve 1 2 3 4 5
N 3B 12 31.9° 30.8° 29.8° 28.8°
po2/1-%pe? .351 .326 .302 .281 .261

% 1.55 1.60 1.65 1.70 1.76
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Fi1c. 13. Comparison of theoretical curves of mo as a function of ¥V with measured u
values from oriented thin sections. Conoscope is assumed to have half aperture 6,,=57.6"
(N.A. 0.845) for the theoretical curves, which are calculated for crystal plate indices of re-
fraction varying from 1.55 to 1.70 in intervals of 0.05. The curve for n=1.65 is drawn with
a heavy line, and is to be compared with dashed curve (1), given by the theory of Michel-
Lévy for the same index and aperture, and with curves (2). and (3), from the skiodrome
theory. The plotted points are identified by number in Table 3, and by index in the key
on the figure.

V in Bxa and Buxo figures, and in particular a means of distinguishing
between Bxa and Buxo figures. The method was first proposed by Michel-
Lévy (1888) but his theoretical treatment of the method was not satis-
factory. Curve 1 (dashed) in Fig. 13 shows the angles u, given by his
theory for #=1.65. 6,,=57.6°. The curve is calculated from the isogyre
equation

p?sin 2y = pi2sin 2u (31)

by putting l[/=7r/4, P=Po, U= Uo.
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A derivation of (31) can be found in Wright’s paper (1905, p. 288) or in
Johannsen’s text (1918, p. 441).

Curves 2 and 3 are derived from the isogyres of the skiodrome theory.
The calculation of skiodrome isogyre shapes is cumbersome, but simpli-
fies for y==/4 to the relationships

o™

= - 32a
sin Zuo1 — Ep(1 — tan w)] P2

pa?
tim g 320
P sin 21 4 Spo*(cot g, — 1)] (320)

(32a) gives curve 2, which corresponds to the meridianal isogyre for
V >45°, while (328) gives curve 3 (Fig. 13).

To test the various theories, I have measured angles p, for a number of
Buxo figures, and Bxa figures of large 2V, obtained from oriented thin
sections. The points are plotted in Fig. 13. The measurements were made
in the way described in section 6 for uniaxial flash figures. Values of V
are averages of data given by Winchell (1951) and Troger (1956). I have
avoided minerals for which a wide range of V is reported. Note that the
points in Fig. 13 are identified by index # and by a reference number,
which refers to the summary in Table 5. Rough “limit of error”” brackets
have been added to those points in Fig. 13 for which the uncertainty in
measured p, values or in V values quoted in the literature is important.

The measurements confirm the applicability of (29). Best overall agree-
ment with the calculated curves is obtained by taking 6,,=57.6°. Points
14-17 were omitted in the comparison.

The averages of the u, values given by curves 2 and 3 in Fig. 13, for
given values of V, reproduce rather closely the 4, values calculated from
(29). In this sense the skiodrome theory is “on the average” correct,
which can be understood from the way the D, D, cross behaves when
orthographically projected. Nevertheless, the skiodrome theory itself
has no means of predicting what sort of averaging of the p, values should
give the correct result, and the use of (32) and (33), with averaging, is,
of course, more cumbersome than direct application of (29).

In Fig. 14 are given curves of u, against V calculated from (29) for
values of # ranging from 1.45 (curve 1) to 1.80 (curve 8). The curves 1to
8 are for an objective of N.A. 0.85, and the curves a to & for N.A. 0.65,
these being the numerical apertures of standard objectives used in cono-
scopic work. The larger aperture is clearly advantageous. For example,
the reliability with which a figure can be distinguished as Bxa or Bxo
increases with the (magnitude of) the slope of the u, vs. V' curve at
V=45°.

It is advisable before using the curves of Fig. 14 to check the N.A. of
the objective used. This can conveniently be done, and the applicability
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TaBLE 5. MEASURED DaTa PLoTTED 1IN F16. 13. LiMIT OF ERROR 1S (ROUGHLY) ESTIMATED
StaNDARD DEVIATION OF MEAN. OBJECTIVE 0F N.A. 0.85 (Leitz No. 7)

Point

Ref. Mineral Sec. " wo (measured) V (lit)
No.
1 Topaz Bxa 1.63 33.24+1.3 30 -33
2 Kyanite Bxa 1.72 14.3+1.4 41.7
3 Andalusite Bzxa 1.64 16.44+0.1 41.5-42.5
4 Staurolite Bra 1.75 12.3+40.9 42 45
5 Andalusite Bxo 1.64 11.84+0.1 41.5-42.5
6  Andalusite Buxo 1.64 11.9+0.3 41.5-42.5
7 (F—) Topaz Bzo 1.63 7.4+0.4 30 -33
8  Siilimanite Bxo 1.67 5.940.5 12.5-15
9  Barite Bxo 1.64 5.440.5 18.7
10 Quartz flash 1.55 4.740.2 0
11 Beryl flash 1.56 4.6+0.2 0
12 Apatite flash 1.64 4.1£0.2 0
13 Tourmaline flash 1.64 4.2+0.2 0
14  Barite o.n. 1.64 4.3+0.4 18.7
15  Topaz 0.n. 1.63 3.240.2 30 -33
16 Augite o.n. 1.70 3.44+1.3 29.5
17 Topaz o.n. 1.63 1.7+£0.7 30 -33
18  Tremolite Bxa 1.61 16.4+1.0 42? 44
(poorly centered)
19 Augite Bxo 1.69 8.24+0.7 29.5

of the theory also tested, by measuring u, for Bxa and Bxo figures of
andalusite (I’=42° and 48°), plotting the measured points on Fig. 14,
and checking that they fall at places appropriate to n=1.64. If the ob-
jective has numerical aperture (p,,) other than 0.85 or 0.65, the curves of
Fig. 14 can be adapted to it by assigning new values of # by the relation
(30). The p, values for the curves of Fig. 14 are given in Table 6. If p,,
for an objective is unknown, it can be determined by reversing the above
procedure, or also, of course, by using a stage apertometer.

8. The effect of non-zero &

Although ¢ (section 5) is small, so that the isogyre equations for
£=0 give a good representation of ohserved interference figures, an
actual non-zero value of { has a small but definite effect on the u, values
measured. It can be seen from Fig. 11, or from diagrams of the kind
shown ‘@in Fig. 19, that if u, is measured by rotating the crystal plate
from the extinction position where the optic plane is NS, then a positive
value of £, as defined in eqn. (9) and Fig. 7a, tends to reduce the meas-

ured u, value from the value predicted for £=0. Call the u, value meas-
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ured in this way ur, and call the value measured about the extinction
position with the optic plane EW ug. If £ is positive, then uy is less
than u,, the value expected for £=0, but uy is greater than y,. A detailed
analysis of this situation would be required if ¢ were large. Instead, since

45 T | ASned RARLARALAE RAGRI RALES LARRS RARL
L
URVE NA n
r 1 085 145
40 2 " 1.50 e
3 o 1.55
4 " 160
5 n 1.65
[ 6 " 1.70
i 7 U 175
- 8 " 1.80 -1
a 065 1. 45
b " 1.80
g c " 1.55 1
30 d " 1.80 -
b [} L[] 1 6% 4
L f i .70
L g i L8
L h " .80
25
Fo |
L
20
5=
104
L
o 1 i i ail 1 Pawiibivayl 1 1 i I 1
0 30 0 | w2 0 70 80 90

F1c. 14. Theoretical curves of uo against V for conoscopes of N.A. 0.85 (numbered
curves) and N.A. 0.65 (lettered curves). The curves are calculated for crystals of mean
index of refraction ranging from 1.45 to 1.80 at intervals of 0.05, as indicated.

¢ is small, then if p, regarded as a function of y for constant §=6, in
eqn. (27), varies much less rapidly than y itself, as is true for the Bxa
and Bxo figures considered above, we may write (to first order in £,)
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TABLE 6. Darta ror CURVES OF FIGURE 14

PO

N.A. Curve " By B —
1‘%P02
0.85 1 1.45 35.9° 0.586 0.415
2 1.50 34.5 .566 .382
3 1.55 33.3 .548 .354
4 1.60 32.1 531 .328
5 1.65 31.0 515 .306
6 1.70 30.0 .500 .285
7 1.75 29.1 .486 .267
8 1.80 28.2 472 251
0.65 a 1.45 26.6 .448 223
b 1.50 25.7 433 .207
¢ 155 24.8 .419 .193
d 1.60 24.0 .406 .180
e 1.65 23.2 .394 .168
f 1.70 220.5 .382 .158
g 1.75 21.8 .37 .148
i 1.80 21.2 .361 .139

UV = po — m (330)

ur = o + En
where £, is the value of £ at y=n/4, §=6, (eqn. (16)).
Thus for a given figure w, and £, can be determined by measuring uy
MH:
wo = 3{uv + pn) (330)
bn = $(un — wa) (g

To test the above conclusions, I have made a careful series of measure-
ments on three figures: andalusite Bxa, andalusite Bzo, and quartz
flash, for which the data are given in Table 7. The figures were measured
with a Zeiss model GFL668-666 petrographic microscope, using objective
“Pol 50/0.85” of N.A. 0.85. The scatter in &, values calculated from
(33¢) is probably mainly random, though £, may be affected by the
slides themselves, if slide and cover glass have different indices. Evi-
dently &, is about—0.7° for the lens combination used. The measured
4o values, obtained from (330), agree excellently with the values calcu-
lated from the theory (eqn. (29)) by assuming p,=0.85 and assuming
V' =42° for andalusite. I consider the data of Table 7 to be the most de-
finitive test of the theory, because the measurements reported in Tables
2 and 5 were made before T was aware of the proper way to take a non-
zero £ into account, and they were made with an inferior microscope.
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TABLE 7. INTERFERENCE FIGURE MEASUREMENTS WITH ZEI1SS MoDpEL GFLG668-666,
OBjECTIVE “Pol 50/0.85,”” oF N.A. 0.85

Extinc- Optic Isogyre | Andalusite Bxa Andalusite Bxo | Quartz Flash
tion plane in e
setting set quadrant 734 K MV M uy HH
1 NS 1 16.3 — 12.7 — 5.6 —
) 15.7 — 11.0 — 6.7 —
3 18.0 — 12.7 — 5.0 —
4 15.7 - 14.7 — 6.8 =
2 EW 1 — 15.2 — 9.8 = 3.8
2) — 14.3 — 11.5 — 4.9
3 — 16.0 — 11.9 4.8
4 — 16.1 11.6 — 4.4
3 NS 1 18.5 — | 13.3 — 541 ==
2 16.3 — 14.0 — 347 —
3 15.9 — 14.0 — 5.4 =
4 16.3 — 10.8 — 6.3 —
4 EW 1 — 15.7 — 12.1 — 4.9
2 — 16.9 - 11.6 — 4.2
3 15.7 — 10.2 — 3.7
4 — 13.4 — 10.5 — 4.7
Average uy and uy 16.6 15.4 12.9 11.1 5.8 4.4
£ from (33¢) —-0.6 -0.9 | —-0.7
uo from (330) 16.0 12.0 5.1
o from (29) 16.1 12.0 [ 5.1

The important conclusion to be drawn is that in measuring Bxe and
Bxo figures, the effect of a small non-zero £ is eliminated by averaging
ur and ugy.

9. Optic Normal Figures

Equations of the optic normal isogyres can be obtained with the help
of Fig. 15. The rather unwieldy result is

2 cot 2y cos O sin 2(¢ — u) — (2 — sin? 6) cos 2(¢ — u) + sin? B cos 2V =0 (34)
(34) simplifies for y=m/4 to

F'02
2 sin 2pp = —————cos 2V
1 — 3po?

or
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2 po’ -
g P 35
1 — 2 LAy e 3p0° )

Note that when p;=0 (uniaxial flash figure), (35) reduces to (32).

In Fig. 13 (35) is plotted as a continuation of the u, vs. ¥ curves, with a
new origin for the V coordinate. The angle u, for a “neutral” figure with
2V =90° is 0, meaning that the cross does not break up into hyperbolae
as the crystal is rotated from extinction.

y
v Voo
A A
/
b N
—_ /
E /£
/-8
a b

F1c. 15. Diagrams for analysis of optic normal figures. 15a represents the interference
field (orthographic projection), and 15b is a stereographic projection of the interference
hemisphere.

Most of the measured u, values for optic normal figures lie above the
curves of Fig. 13. The figures are difficult to measure with any accuracy
because the isogyres are so diffuse, and it therefore seems that a detailed
comparison with the other theories is not of much value over this range.
Michel-Lévy’s equation cannot logically be extended to optic normal
figures. T have bothered to analyze the skiodrome theory only for V'=45°,
where it predicts two points at an equal distance above and below the
uo=0 axis, corresponding to the continuation of curves 2 and 3 of Fig.
13. The predicted value of u, is given exactly by

tan wpo po’
1 —tan?p, 4(1 — 3009

(36)

Since g, is small, the value given by (36) is just half the value predicted
by the skiodrome theory for uniaxial flash figures, eqn. (26). It is plotted
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as a point in Fig. 13, and curve 2 is connected across schematically from
V=0 to V=45°.

10. Optic Axis Figures

As a last application of the theory, it is interesting to compare its pre-
dictions with those of Wright (1905, 1907) for optic axis figures. In the
1905 paper Wright gave a series of curves showing the appearance of the

7] (30°) e

Frc. 16. Orthographic projection of the interference hemisphere for the optic axis
figure. The optic axis is at 4, and the heavy line shows the position of the isogyre in the
45° setting. The second optic axis is shown schematically at A’, as envisaged in Wright’s
derivation of the isogyre equation.

optic axis isogyres in the 45° position. The curves were computed from
the equation

xy + gnly —x) =0 (37)

where x, y are coordinates (in the interference field) of points on the
isogyre and x; is the x-coordinate of the second optic axis, which may or
may not be in the interference field, as shown in Fig. 16 (note that
x1=m). (37) is derived by applying a planar analog of the law of Biot
and Fresnel to the plane of Fig. 16, and is thus the optic axis figure ana-
log of Michel-Lévy’s equation, (31). To be consistent, one would assume
that the points (x, y) and (%, y,) represent an orthographic projection
of the interference sphere. However, Wright assumed the projection to
be gnomonic in calculating his isogyre curves. The only justification for
such an assumption, as far as I can see, is that it gives the correct type of
isogyre (a straight line) for 27=90°, which an orthographic projection
would not.
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In his 1907 paper, Wright superseded the earlier curves with a new
set, apparently determined from the skiodrome theory. Nevertheless, the
older curves have found their way into optical mineralogy texts and the
newer ones not, perhaps because the newer curves do not look much like
the isogyres actually seen in interference figures.

The present theory may be applied by using Fig. 17. Written in co-

a b

Fic. 17. Diagrams for analysis of optic axis figures. 17a represents the interference
field (orthographic projection), and 17b is a stereographic projection of the interference
hemisphere.

ordinates (, ) measured with respect to the cross-hair axes w, y, the
isogyre equation is
sin 0 cot 2V + cos 6 sin (¢ — u) — cot 2y cos (¥ — p) = 0. (38)

For the isogyre in the 45° position, put u=7/4 in (38); the isogyre then
has the form shown by the solid curve in Fig. 16. A good test of Wright’s
curves (1905, p. 291) is to compare the angle n (Fig. 16) at the periphery
of the field (which Wright chose as 6,=30°) with the corresponding val-
ues calculated from (38).

Since p=7/2—y¢, (38) becomes

in 0
tan2V = — ——— = — - (39)

taneos (=) = cososin (=)
cot 29 cos 1 7 cos 6 sin 1 7

from which values of V can be calculated for a series of 7 values, at a
given value of 8. A curve for §=30° is plotted in Fig. 18. Note that, to a
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90-
60
2 B
7 .
e Wright,(1905) Fig.3
304 o Wright, (1905} Fig 4
o ' ' 30 ' i 60 7 ’ 90

2V

Fic. 18. Curve showing 25 (30°) as a function of 2V, from equation (39). For comparison
are plotted values measured from Wright’s isogyre curves (1905, Figs. 3 and 4).

good approximation, =V, a fact that may be convenient to remember.
Plotted also in Fig. 18 are points measured from Wright’s (1905) Fig. 3
and Fig. 4. The agreement is remarkably close, certainly well within the
accuracy needed for practical work.

This unexpected agreement has an interesting explanation. If we sup-
pose the interference sphere to be orthographically projected, so that

x = psiny, ¥ =pcosy,
%%+ 32 = p?, p = sin 6,

then (38) becomes, in cartestian coordinates, and with u=n/4:
(22 — ¥%)(x + ) — 24/2p2%y cot 2V — 24/1 = p2x — Yay =0 (40)
(40) is to be compared with Wright’s equation, (37).
In case p is small enough that we can write
Vi—pr=1—1}p®
then (40) reduces to
(x — »)A + xy) — 24/Z kycot 2V = 0. (41)

This is of the same form as (37), except for the factor (1+xy). The fac-
tor is always near 1 for points in the conoscope field, where xy has a
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maximum value of 1/4. Hence (41) is approximated by
sy +——— (O —x) = (42)

which is a rectangular hyperbola passing through the origin.

Now if (37) were a plot in gnomonic projection, with the plane of pro-
jection tangent to the unit sphere about the projection point, presum-
ably this would mean taking

. tan 2V
X1 = p1SIny = —\72—
and this substitution makes (37) and (42) identical. This is the reason
for the close agreement between Wright’s curves and the predictions of
(39). It seems remarkable that the gnomonic projection of a sphere that
should be orthographically projected, combined with the planar analog
of a law that applies to the surface of a sphere, should yield a result so
nearly correct. It seems unlikely that there is anything specially suitable
about the gnomonic projection, because the substitution py=tan ¥ in
Michel-Levy’s equation, (31), does not yield the correct result, (28).

11. Summary and Conclusion

The most useful result obtained with the present theory is a relation
from which 2V can be measured in centered Bxa figures of large 2V, and
in centered Bxo figures. One measures the angle of stage rotation u, re-
quired to disperse the isogyres from a centered cross (extinction) to the
edge of the interference field of radius

i Bm "
po = sin b, =g Gyl
n n
where 6,, is the half-aperture of the conoscope in air and » is the average
index of refraction of the mineral examined. p, is the numerical aper-
ture of the objective lens. u,is then related to py=sin V by
po? e1?

e
le= %012

which is plotted in Fig. 14 for N.A. 0.85 and 0.65, and various values of
n. Experimental verification of this relation is considered a verification
of the theory here used. The relation does not depend on the validity of
Mallard’s law. It provides in particular a means for distinguishing be-
tween Bxa and Bxo figures.

An important practical feature of the theory is that, although the
effect on isogyre position of the much-debated “rotation” of the polari-
zation plane in the conoscope is small but definite, it can be entirely
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eliminated from the measurements simply by averaging the u, values
obtained by turning from the two extinction positions (optic plane NS
or EW).

An application of the theory to the optic axis figure shows that the
45° isogyre curves derived by Wright (1905) are very nearly correct,
quite good enough for practical work. This seems remarkable, in view
of the peculiar assumptions made in Wright’s derivation of the curves.

The skiodrome theory gives incorrect isogyres, significantly incorrect
even near the center of the field. Stereographic projection of the refer-

a b

Fic. 19. “Extinction direction nets” for uniaxial flash figure (a) and
optic normal figure with 217 =90° (b).

ence sphere would give a much better representation of the isogyre pat-
tern. If the stereographic projection is carried out by the relation

o’ = 1945 tan /2
the radial distance p’ will differ little from the radial distance
p =sin @

for orthogonal projection of the interference sphere, within the field of
practical conoscopes (8 <30°). The outer portion of the stereographically
projected pattern would be enlarged, but this part is never seen anyway.

The main advantage of the skiodrome is that the projected isotaques
are easily calculated, at least when projected on the principal planes,
where they are ellipses or hyperbolae. The same advantage probably
will not accure to the stereographically projected curves. In principal it
is possible to calculate the two orthogonal sets of curves of a net which
would correctly represent the isogyres in the orthogonally projected in-



ISOGYRES IN INTERFERENCE FIGURES 1067

terference sphere, according to the theory here developed. However, for
quantitative purposes the direct approach used in this paper is more use-
ful, and for qualitative purposes, as in teaching, a diagram can be drawn
from qualitative considerations that shows all the features that are im-
portant, without the need of resorting to exact calculation of the net.
Thus Iig. 19a represents the “extinction direction net” for the uniaxial
flash figure—it rather resembles a stereographic projection of the refer-
ence sphere—and Fig. 195 represents the net for an optic normal figure
of 2V =90°.
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