NEW MINERAL NAMES

Kandites, Smectites


Tentative proposals on nomenclature include the following:

“Smectites is the name proposed for the minerals at present variously known as the montmorillonoids, montmorins, minerals of the montmorillonite group, or frequently even montmorillonites. Smectites are defined as minerals composed of 2:1 or triphormic layers, which, when the readily exchangeable cations are replaced by Na+ and the material is saturated with glycerol, give a basal spacing of 18 Å, approximately. Such minerals have a cation exchange capacity of 70–120 m.e./100 g. for readily exchangeable cations.”

“Kandites is proposed for what are presently known as the minerals of the kaolinite group or the kaolin minerals. These are the minerals composed of 1:1 (diphormic) layers with essential chemical composition close to Al2O3 · 2SiO2 · 2H2O.”

“The group names are plural but an individual member of the group may be called for example ‘a smectite.’ The group names can also be used as adjectives, for example ‘the smectite content.’”

Discussion: I think that the proposed names are bad ones and I hope that they are never used. New names for minerals or mineral groups should not be introduced unless absolutely necessary. The terms “kaolinite group minerals” and “montmorillonite group minerals” have been in general use for many years and are understood by all workers in the field, and this is an advantage that far outweighs the use of fewer words. The resurrection of the long abandoned smectite, which had been used for both montmorillonite and halloysite, is particularly unfortunate.

I hope that all who are concerned with clay minerals will send comments on these and other problems of nomenclature to the British Clay Minerals Group and to the Committee on Nomenclature of the Mineralogical Society of America, so that these will have a basis for future discussion of the problems.

MICHAEL FLEISCHER

Ledikite

G. Brown, op. cit.

The name ledikite is proposed for the material described by G. F. Walker, Mineralog. Mag., 29, 72–84 (1950), as a hydrous mica bearing the same relation structurally to biotite as dioctahedral illite does to muscovite.

The name is for the locality, East Ledikin, Aberdeenshire.

Discussion: Walker (1950) wrote: “In spite of these difficulties, however, it is not proposed to introduce a new mineral name at this time, since it is felt that this would be likely merely to add to the existing confusion in the nomenclature of the clay micas, especially since data on the trioctahedral clay mica itself are still rather scanty.”

Yoder and Eugster, Geochimica et Cosmochimica Acta, 6, 182–183 (1954), discussed Walker’s data and stated, “An examination of the diffuse x-ray pattern and the accompanying table of indexed reflections published by Walker suggests that this material is a 1 Md trioctahedral mica.”

The status of this material and, indeed, the whole nomenclature of the hydrous micas therefore require reconsideration. Dr. Walker’s statement of 1950 quoted above is still a good one, and I regret that he has not agreed to the subcommittee’s proposal of this new name.

M. F.
NEW MINERAL NAMES

Ordonezite

Rabbittite

Navajoite

Goldichite

Hawleyite

Cerianite

Neomesselite

Beta-Roselite

Paramontroseite

Murdochite

Tavorite

Barbosalite

Gonyerite

NEW DATA

Fischerite (= Wavellite) (?)

Fischerite was described in 1844 by R. Hermann. Wherry (Am. Mineral., 2, 32 (1917) suggested that it was identical with wavellite. Sumin examined material from Nizhni Tagil (type locality) and from Mednorudyanorsk, Urals. Fischer examined a sample from Nizhni Tagil in the Humboldt university collection, marked “Coll. G. Rose” and 5 similar samples from the Freiberg collection, labelled as having been sent from Russia to Breithaupt in 1838.

Goniometric data gave a:b = 0.594:1 (Sumin), 0.5505:1 (Fischer). Wavellite has a:b = 0.5577:1 (Dana, 7th Ed., Vol. 2, p. 962, as the average of rather discordant values). X-ray powder patterns of fischerite and wavellite appear to be identical (Sumin) (Fischer). G. (fischerite) 2.43 (Sumin), 2.32–2.36 reported for wavellite. Hardness (fischerite) 4–5 (Sumin); 3-4 reported for wavellite. Fischerite is optically biaxial, positive with α 1.531, β 1.540, γ 1.552, 2V 65° (Sumin, who states that these are higher than the data for wavellite. (However, even higher indices have been reported for wavellite, see Dana, p. 963.)

The original analysis of fischerite corresponds to 6 Al₂O₃ - 3 P₂O₅ - 24 H₂O, whereas the accepted formula of wavellite corresponds to 6 Al₂O₃ - 4 P₂O₅ - 26 H₂O. New analyses (Fischer) gave: P₂O₅ — wavellite 34.7, fischerite 35.3, fischerite (green crust) 35.1%; ignition loss — wavellite 28.2, fischerite 27.5, fischerite (green crust) 24.7%. The crust contains a little copper. Fischer states that the low H₂O and the Cu of the crust indicate the presence of callaite or chalcosiderite, and this was confirmed by the x-ray powder photographs.

From his data, Sumin concludes that fischerite is an independent species; from his own data, Fischer concludes that fischerite is identical with wavellite.

DISCUSSION: The x-ray data seem to me to be decisive in favor of Fischer's conclusion.

M. F.