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rapid precipitation of silica which may be collected in the bottom sam-
pling. The effects will occur independently of the order of sampling.

The removal of the samples will also cause pronounced cooling of the
bomb, depending in part on the rate of sampling. If this is fast, then as the
latent heat of vaporization of water is in the range 8-6 k. cals/gram mol
over this temperature range, and as approximately a gram mol of water
is removed at each sampling, then one might expect cooling of the order
of 20-30o C. during the sampling. This efiect will further tend to throw
the system into the liquid-vapor region and the volumes of sample which
could be removed without causing inhomogeneity of the fluid phase will
be even smaller than indicated in column V of Table 1.

The conclusion which must be reached from the description of the
experiments given by the authors is that the anomalous results for the
solubility of albite and quartz found are in all probability related to the
drastic changes in the state of the aqueous solvent caused by the sam-
pling technique. With this doubt in mind it would be unwise to place too
much weight on the deductions made from the experimental findings.
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DIRECTIONAL HARDNESS VARIATION IN TUNGSTEN
CARBIDE (WC) MONOCRYSTALS

J. A. Konx,* Prnny G. Cormn, AND R. A. Porrnn,

U. S. Bureou oJ Mines, Norris, Tennessee.

INrnooucrroN

During a series of experiments designed to increase the hardness and
density of tungsten carbide-cobalt alloys, microhardness tests were made
on tungsten carbide single crystals.t Measurement of oriented micro-

* Present address, Chemical-Physics Branch, Signal Corps, Engineering Laboratory,
Ft. Monmouth (Hexagon) N. J.

t Crystals supplied by Kennametal Inc., Latrobe, Pa.
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indentations showed a hardness variation of almost 50 per cent on the
prismf ace;no variation was detected on the basal pinacoid. Although ac-
counts of directional hardness variation have been given for diamond
(references 1-9), corundum (10-13), sil icon carbide (10, 14, 15), and
other substances (10, 16), no such property has been reported for tung-
sten carbide.

PnocBouno

The crystals used in the investigation displayed trigonal symmetry,
having fairly well developed basal pinacoid (0001) and first order prism
(1010) faces. The specimens varied in shape from equidimensional to
tabular and had testing surface areas of 0.15 to 1.5 mm2. The crystals
were black and showed a distinct conchoidal fracture. An r.-ray powder
pattern of the crushed single crystals showed the presence of only one
phase-the monocarbide of tungsten (WC). The specimens for hardness
testing were selected on the basis of the quality of their natural faces and
the sharpness of their interfacial edges. rn a few instances the orientation
was confirmed by single-crystal r-ray exposures. The selected crystal
faces were cemented to a mounting block by a trace of Canada balsam
to maintain their orientation during the setting in bakelite.

Surfaces suitable for microindenting were prepared by grinding first
on a resin-bonded diamond wheel, next on a glass plate with 600-grit
silicon carbide, and finally on a teakwood wheel with 0- to 2-micron di-
amond paste. It is believed that this procedure resulted in a minimum of
polishing (surface-flow) action.

fndentations were made with a Tukon microhardness tester using a
Knoop indenter and a 100-gram load. The mounted crystals were
oriented on the Microton stage of the instrument by aligning the sharp
interfacial edges with the long dimension of the pyramidal diamond in-
denter. Indentations were made on both the prism and basal pinacoid.
For each crystal, the hardness of a particular azimuth was determined
by a series of five microindentations. The latter were measured by three
observers, giving 15 readings from which the hardness of each crystal-
azimuth was averaged. The microindentations were measured with an
oil-immersion objective in the optical system of the Tukon appafatus at
an effective magnification of approximately 1600 X. Orientations werq
verified on the revolving stage of a petrographic microscope fitted with
a vertical illuminator.

RBsur,rs

The data obtained from this study are summarized in Table 1.
Measurements made parallel and perpendicular to an a axis on the

basal pinacoid of three crystals (a, b, c) indicated no discernible hardness
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variation. Indentations made on the prism face ol three additional crys-

tals (d, e, /) showed a hardness variation of almost 50 per cent' On the

basis of these data, no further measurements were made on the basal

pinacoid, and attention was directed toward refining and expanding the

data obtained from the prism face.

Figure 1 shows graphically the hardness variation observed on the

fi.rst order prism face. After the general shape of the function had been

determined, it seemed, advisable to examine directions immediately ad-

follows the crystal symmetry, and accordingly the curve was drawn

symmetrically about the 90o-position. The average microhardness dif-
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Frc. 1. Variation of Knoop hardness number on the lirst order prism face of
tungsten carbide (WC).

Frc' 2. Knoop microindentations on the first order prism face of tungsten carbide (wc,
crystal d). The larger indentations are parallel to the c axis and approximately 39 microns
in leneth.
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ference between the soft direction, parallel to the c axis (1070 Kroo), and

the hard direction, perpendicular to the c axis (2000 K166), is 930 Knoop

units, or approximately 47 per cent. This striking hardness variation is

shown clearly by the two sets of microindentations pictured in Fig. 2.
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