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ABSTRACT
The polar axial ratios of a triclinic crystal can be calculated by means of the equations:
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The polar axial ratios of some triclinic minerals can thus be obtained as the ratios of the
sines of measured interfacial angles. The polar axial angles X, p, and » of a triclinic crystal
are by definition the interfacial angles 010A001, 100A001, and 100010 respectively.
The polar axial angles of some triclinic minerals can thus be obtained as measured inter-
facial angles or as the sums of measured interfacial angles. In the absence of one or more of
the necessary faces it will be impossible to measure one or more of the interfacial angles
needed for the application of at least two of the equations (1'), (2), and (3'). The required
interfacial angles can then be calculated from measured interfacial angles in some cases
by the methods of plane trigonometry, in other cases only by the methods of spherical
trigonometry, provided at least 5 interfacial angles have been measured that will permit the
solution of certain triangles.

The direct axial ratios of triclinic crystals can be evaluated as the ratios of the sines
of certain interzonal angles, as is well known. These interzonal angles are not equal to any
interfacial angles in the case of triclinic crystals, but they can be calculated from certain
interfacial angles by the methods of spherical trigonometry, and this has been the practice
of crystallographers making use of the one-circle goniometer or the contact-hand-
goniometer.

The direct axial ratios of triclinic crystals can be calculated more easily in many cases
by means of the polar axial ratios and polar axial angles than by means of interzonal
angles. The equations necessary for this purpose are derived very simply by the application
of the law of sines for spherical oblique triangles.

A simple method of calculation of crystallographic axial ratios and
axial angles, and a simple method of determination of Miller indices
from measurements of interfacial angles with the one-circle goniometer
or with the contact goniometer, are especially needed by mineralogists
and geologists whose principal interests are in branches of geologic science
other than crystallography but who wish to make some use of crystallo-
graphic data in mineral determination. The purpose of this paper is to
outline the simplest methods known to the writer of accomplishing these
results.
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F16. 1. Gnomonic projection of a triclinic crystal. The figures in roman type are the
coordinates in the plane of the gnomonic projection; the figures in italics are the Miller
indices.

The Miller indices of crystal faces can usually be determined most
easily by the use of the gnomonic projection (Fig. 1) and the polar lat-
tice.! This method of indexing faces has been the usual procedure in
cases of measurements of coordinate angles by means of the two-circle
goniometer, and, as T. V. Barker? has pointed out, it can also be readily
applied with measurements of interfacial angles by means of the one-
circle goniometer or contact goniometer. In order to determine the Miller
indices of a face by this method from measurements of interfacial angles,
it is best to construct the stereographic pole of the face by the use of a

! The polar lattice of the mineralogist is identical in proportions and angles with the
reciprocal lattice of the x-ray crystallographer, but is not, in general, drawn to the same
scale (Palache, C. Am. Mineral., 19, 108 (1934)).

? Barker, T. V. Graphical and Tabular Methods in Crystallography, Thomas Murby &
Co., London, 1922, p. 25.
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stereonet and then to construct the gnomonic pole from the stereo-
graphic pole by means of an auxiliary section (Fig. 2) or by the use of a
stereographic-gnomonic protractor. Application of Neumann’s gnomonic
theorem then permits the indices of the face to be obtained from the
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Fie. 2. Construction of the gnomonic pole of a face from its stereographic
pole in the case of a triclinic crystal.

coordinates of the gnomonic pole, provided the plane of the gnomonic
projection is parallel to two of the polar axes, by the addition of the third
coordinate, which is one, and the multiplication of all three coordinates
by the smallest factor necessary to convert all fractions, if there are any
fractions, into integers. The plane of the gnomonic projection being
coincident with the first level of the polar lattice, the face-poles in the
gnomonic projection the coordinates of which are integers are nodes of
the first level of the polar lattice (Fig. 3); face-poles in the gnomonic
projection having one or both coordinates fractional correspond to nodes
of higher levels of the polar lattice projected onto the gnomonic plane
along the face-normals.

In all crystal systems the polar axial angles are defined as the angles
between the edges of a parallelepiped constructed with its edges per-
pendicular to the faces 100, 010, and 001, and with its body diagonal
perpendicular to the face 111, and the polar axial ratios are defined as
the ratios of the lengths of the edges of this parallelepiped. The edge
perpendicular to the face 100 is designated po’ in this paper, the edge
perpendicular to the face 010 is designated ¢o’, and the edge perpendicular
to the face 001 is designated 7¢’; the angle between g, and 7, is desig-
nated A, the angle between p,’ and 7, is designated u, and the angle
between po’ and ¢, is designated ». The polar axial angle A is thus by
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T1c. 3. Section of the polar lattice of a triclinic crystal through the
normals to 100 and 001.

definition the angle between the normals to the faces 010 and 001. Like-
wise the polar axial angle u is by definition the angle between the normals
to the faces 100 and 001, and the polar axial angle » is by definition the
angle between the normals to the faces 100 and 010.

The fundamental relations between polar axial ratios and interfacial
angles can be derived very easily. In Fig. 4 let O4 represent a line per-
pendicular to the face 100, OB a line perpendicular to the face 010, and
OM a line perpendicular to the face 110 of a triclinic crystal. Then, by
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Fic. 4. Relationship of the polar lattice elements o’ and go’ of a triclinic crystal to
the interfacial angles 100110 and 010 A110.
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applying the law of sines for plane triangles to the triangle OBM, we

obtain immediately the relation
po’  sin ZBOM _sin (010 A 110) .

g’ sin ZOMB  sin (100 A 110)
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Fi1c. 5. Relationship of the polar lattice elements go” and 7’ of a triclinic crystal

to the interfacial angles 010 A011 and 001 AO11.

n

In Fig. 5 let OB represent a line perpendicular to the face 010, OC a
line perpendicular to the face 001, and OQ a line perpendicular to the
face 011. By applying the law of sines for plane triangles to the triangle

OB(Q, we obtain the relation

g’ _ sin ZOQB _ sin (001 A 011)
v’  sin ZBOQ  sin (010 A 011)
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F16. 6. Relationship of the polar lattice elements po’ and 74’ of a triclinic crystal

to the interfacial angles 100 A101 and 001 A101.

@

In Fig. 6 let OA represent a line perpendicular to the face 100, OC a line
perpendicular to the face 001, and OR a line perpendicular to the face 101.
By applying the law of sines for plane triangles to the triangle OCR, we

obtain the relation

% Goldschmidt, V. Einleitung in die formbeschreibende Krystallographie, Julius

Springer, Berlin, 1887, p. 102,



56 GEORGE TUNELL

p’ _ sin ZCOR _ sin (001 A 101)
7’ sin ZCRO  sin (100 A 101)

(3)

Thus, the polar axial ratios can be calculated from the four interfacial
angles 100010, 100001, 100101, 100110, or from the four inter-
facial angles 1002010, 001010, 100110, 010 A\011, or from the four
interfacial angles 100001, 010001, 100,101, 010011 in the most
general case, that of the triclinic system.

Ii the face 110 is not present on the crystal, but some face #%0 is present
in the zone containing the faces 100 and 010, the ratio of po’ to go’ can
be obtained by the use of the equation

hpe'  sin (010 A hkQ)
kgo  sin (100 A 7kO)

1

Likewise, if the face 011 is not present on the crystal, but some face 0kl
is present in the zone containing the faces 010 and 001, the ratio of ¢o’
to ro’ can be obtained by the use of the equation

kgo' _ sin (001 A\ 0kl)

Iry  sin (010 A\ OK)
Similarly, if the face 101 is not present on the crystal, but some face
k0l is present in the zone containing the faces 100 and 001, the ratio of
po’ to ry’ can be obtained by the use of the equation :

hpo’  sin (001 A %00)

o' sin (100 A 70D)

Hence if the forms {100}, {010}, {001}, and either one {#0l}-form
and one [Okl}-form, or one {k0l}-form and one {%kO}-form, or one
{Okl}-form and one {%k0}-form are present on the crystal, all the polar
axial ratios and polar axial angles of a triclinic crystal can be obtained
by the measurement of five interfacial angles and the calculation of two
quotients of sines of measured angles. One or another of these combina-
tions of forms is a combination of common forms of the following triclinic
minerals: babingtonite, amblygonite, wollastonite, axinite, and tarbut-
tite, and this method could thus be used to calculate the polar axial
ratios and polar axial angles of crystals of these minerals.

If various other combinations of forms are present, the calculation of
all the polar axial ratios and polar axial angles of a triclinic crystal can
still be accomplished very simply by the application of the equations of
plane trigonometry. This is possible, for example, if the forms {001} and
{010} and two {kkO}-forms, one {OFl}-form, and one {40l}-form are
present (a combination of forms that is commonly found on triclinic as
well as on monoclinic feldspar crystals).

It is not possible, of course, to calculate all the polar axial ratios and
polar axial angles from measured interfacial angles of triclinic crystals

29
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in all cases without the solution of any spherical triangle. Thus, for exam-
ple, if only the forms {100}, {010}, {110}, {011}, {011} were present, it
would be necessary to solve two oblique spherical triangles in order to
calculate all the polar axial ratios and polar axial angles* from measure-
ments of the interfacial angles.®

The direct crystallographic elements of a triclinic crystal are the inter-
axial angles, a, 8, v, and the axial ratios, ¢/b and ¢/b. The direct axial
ratios and axial angles can be calculated from the interfacial angles; in
some cases, however, the direct axial ratios can be calculated more casily
from the polar axial ratios and polar axial angles.

The derivation of the equations needed for the calculation of the direct
crystallographic elements of a triclinic crystal from measurements of
interfacial angles has been given in several treatises® and is as follows.

1 Since only the relative dimensions of the polar lattice are fixed by measurements of
interfacial angles, the scale on which the polar lattice is drawn in morphological work
is arbitrary. In investigations of crystals with the two-circle goniometer, the plane of the
gnomonic projection has been constructed tangent to the projection sphere, the length
of the radius of this sphere being taken equal to unity. Elements of the polar lattice drawn
on this scale have been called “projection elements” by V. Goldschmidt and those who
have made use of his methods of calculation, and have been designated by letters with
primes by them. Elements of the polar lattice drawn on the smaller scale on which the
length of the element normal to the face 001 is taken as equal to unity have been called
“polar elements” by Goldschmidt and those who have made use of his methods, and have
been designated by letters with subscript zeros by them. In this paper, where the scale is
that of the “projection elements,” the phrase “polar lattice elements” is used tather than
“polar elements,” since, in the terminology of Goldschmidt and those who have made use
of his methods, “palar elements’” are based on the scale on which the length of the element
normal to the face 001 is taken as equal to unity. It is clear, however, that hoth Gold-
schmidt’s “projection elements” and his “polar elements” are elements of polar lattices
that differ only in scale,

s As Barker and others have stated, greater accuracy is usually obtainable with meas-
urements of coordinate angles made by means of a two-circle goniometer than with meas-
urements of interfacial angles made by the use of a one-circle goniometer. In the investiga-
tion of complex crystals there is also an important saving of time and labor when the two-
circle goniometer is used. The very simple fundamental relations between interfacial
angles and polar elements as well as the simple fundamental relations between interzonal
angles and direct elements need to be understood by students of mineralogy, however,
even if they intend to proceed to the more complicated methods permitting the calculation
of the most accurate values of the crystallographic elements from measurements of the
coordinate angles with the two-circle goniometer. Moreover, measurements of interfacial
angles made with the one-circle goniometer or with the contact goniometer are important
in determinative work.

6 Cf. Liebisch, T., Grundriss der physikalischen Krystallographie, Veit & Comp.,
Leipzig, 1896, pp. 21-22, Tutton, A. E. IL., Crystallography and Practical Crystal Meas-
urement, Macmillan and Co., London, 1922, Vol. 1, p. 111, Peacock, M. A., in Technique
of Organic Chemistry, Edited by A. Weissberger, Interscience Publishers, New York, 1949,
Vol. 1, Second Edition, Part 1, pp. 1005-1006.



58 GEORGE TUNELL

&-ox1s5

&
1% i

F16. 7. Relationship of the unit plane 111 to the unit distances along the
¢-axis, b-axis, and c-axis in the case of a triclinic crystal.

In Fig. 7 the plane 4'B’C’ represents the plane chosen as the unit plane
111. The ratios of its intercepts on the three crystallographic axes are
consequently the axial ratios, that is,

671_/

a
—— = 4
OB’ b @
and
oC’ ¢
S0 - 5
OB’ b ®)

By applying the law of sines for plane triangles to the triangle OA’B’,
one obtains immediately

o4’ OB’

; = - = (6)
sin ZOB’A’ sin ZOA'B

and, combining equations (4) and (6), one has
i=s.inAOB'A”. )
b sinZOA'B
Now the angle OB’A’ is the angle between the zone-axis OB’ (which
Is the zone-axis of the zone including 100 and 001) and the zone-axis
A’B’ (which is the zone-axis of the zone including 111 and 001). Also
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F1c. 8. Relationships of the principal interfacial and interzonal angles in the stereo-
graphic projection of a triclinic crystal. The points a, b, and ¢ are the stereographic poles
of the faces 100, 010, and 001 respectively (the points a, b, and ¢ are not the stereographic
projections of the points in which the a-axis, b-axis, and ¢c-axis intersect the sphere of pro-
jection in the case of a triclinic crystal). The a-axis, b-axis, and ¢c-axis are not drawn in the
figure; they are perpendicular to the great circles bge, cra, and amb respectively.

the angle 6 in the stereographic projection of the crystal faces (Fig. 8)
is the angle between the zone including 100 and 001 and the zone in-
cluding 111 and 001. Therefore §= ZOB’A’. Furthermore the angle
OA'B’ is the angle between the zone-axis 04’ (which is the zone-axis of
the zone including 010 and 001) and the zone-axis B'A’ (which is the
zone-axis of the zone including 111 and 001). And, the angle ¢ in the
stereographic projection (Fig. 8) is the angle between the zone including
010 and 001 and the zone including 111 and 001. Therefore ¢= £LOA'B’.
Hence, by substituting sin 8 for sin ZOB’A’ and sin ¢ for sin ZOA4'B’
in equation (7), one obtains

sin 6

a
csoul 8
b sin ¢ ®

Similarly, by applying the law of sines for plane triangles to the
triangle OB’C’, one obtains

oc o8’

3 = - = )
sin ZOB’C’ sin ZOC’B

and combining equations (5) and (9), one has
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< s.inAOB’C" (10)
b sin ZOC'B’

Now the angle OB’C’ is the angle between the zone-axis OB’ (which
is the zone-axis of the zone including 100 and 001) and the zone-axis
C’B’ (which is the zone-axis of the zone including 100 and 111). Also
the angle ¢ in the stereographic projection (Fig. 8) is the angle between
the zone including 100 and 001 and the zone including 100 and 111.
Therefore y=Z0B'C’. Furthermore the angle OC’B’ is the angle be-
tween the zone including 100 and 010 and the zone including 100 and 111.
And the angle x in the stereographic projection (Fig. 8) is the angle be-
tween the zone including 100 and 010 and the zone including 100 and
111. Therefore x=2ZO0C’B’. Hence, by substituting sin ¢ for sin ZOB’C’
and sin x for sin ZOC’B’ in equation (10), one obtains

¢ sin

(1

b sin x

By means of equations (8) and (11) the direct axial ratios of a triclinic
crystal can be calculated from the interzonal angles 8, ¢, ¥, and x. These
interzonal angles must themselves be calculated from the measured inter-
facial angles by application of the equation of spherical trigonometry
giving the angle of an oblique spherical triangle in terms of the three
sides.

The interaxial angles, a, 8, v, of a triclinic crystal are the supplements
of the angles of the spherical triangle abc (Fig. 8),

a = 180° — ZLbac, (12)
8 = 180° — Zabc, (13)
v = 180° — Zach. (14)

Thus «, 8, and v can be calculated from the measurements of the inter-
facial angles 100010, 100001, and 010001, which are the sides of
this spherical triangle. By applying the standard formula of spherical
trigonometry giving an angle of an oblique spherical triangle in terms
of the three sides? one obtains

sin Zbac - 1/511 (s —_&Tﬁ (s — v')‘_ ' (15)
2 sin g sin »

where s=(A+u+»)/2. Hence, making use of equation (12), one has

i 180“—01= 1/sin (s —p)sin (s — ») (16)

sin - -
2 sin u sin »

and, finally,

7 This standard formula is to be found in text-books of spherical trigonometry.
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cos o 4/éin (s — ) s?n (s —v») ) an
2 sin u sin
In an analogous way one can prove that
sin (s — A) sin (s — #
cos L i - ) ‘d—n £k (18)
2 sin A sin v
and
cos T = /éffﬂ —Menb—w 19)
2 sin A sin u

Instead of calculating the direct axial ratios of a triclinic crystal from
interfacial angles, one can compute them more easily in some cases from
the polar axial ratios and polar axial angles by means of the well known
equations?®

@ ¢’ sinh

= — (20)
b po’sinu

and
i=qo’sinv' 1)
b rsinu
These equations can be readily derived by application of the law of sines
for oblique spherical triangles. In Fig. 8 the angle am is the angle between
the face 100 and the face 110,

Zam =100 A 110, (22)
also the angle mb is the angle between the face 110 and the face 010,
Zmb = 110 A 010. (23)

Applying the law of sines for oblique spherical triangles to the triangle
ame, one obtains

sin 6 sin Zamc

; =r— 29
sin Zam sin Zac

and applying the same law to the triangle bmc, one obtains
.smqs _ 511'1 Lbme . (25)
sin Zmb sin Zbc

Now £ amc+ £ bmc=180°, since amb is an arc of a great circle. Therefore

sin Zamec = sin £bme. (26)

Substituting this value for sin Zbmc in equation (25), one obtains

8 Cf. Palache, C., Am. Mineral., 5, 81 (1920), Goldschmidt, V., Kursus der Kristallo-
metrie, Gebriider Borntraeger, Berlin, 1934, p. 135, Hermann, C., Editor, Internationale
Tabellen zur Bestimmung von Kristallstrukturen, Bd. 1, Gebriider Borntraeger, Berlin,
1935, p. 68.
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sin 8 sin
————sin Zac = sin Lame = —L sin £ be. 27)
sin Zam sin Zmb

Since Zam=100A110 and Zmb=110A010 and Zac=p and Zbc=A,
we have
sin 6 sin A sin (100 A 110)

i - ' (28)
sin ¢ sin u sin (010 A 110)
and, making use of equations (1) and (8), one obtains finally
o _ l‘i sinh |
b po sinp (29)

Equation (21) is readily derived in an analogous way.
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