BURBANKITE AND CALKINSITE, TWO NEW CARBONATE MINERALS FROM MONTANA*

W. T. PECORA AND JOE H. KERR[†], U. S. Geological Survey, Washington 25, D. C.

Abstract

Burbankite and calkinsite, two new rare-earth-bearing carbonates, have been discovered in veins in the Bearpaw Mountains of Montana. Burbankite is an anhydrous carbonate with the general formula $Q_6(CO_3)_5$, where Q represents Na, Ca, Sr, Ba, and rare earths. Calkinsite is a hydrous carbonate with the formula $(RE)_2(CO_3)_3 \cdot 4H_2O$, where RE represents the summation of the rare earths. Burbankite is unlike any other carbonate, and calkinsite resembles lanthanite but has less water.

The physical properties of burbankite are: Hexagonal; color, grayish yellow; H, $3\frac{1}{2}$; Sp. gr., 3.50; uniaxial (-); ω , 1.627; ϵ , 1.615; cleavage, prismatic. The physical properties of calkinsite are: Orthorhombic; color, pale yellow; H, $2\frac{1}{2}$; Sp. gr., 3.28; habit, platy, {010}; biaxial (-); 2V, 57.2°; α , 1.569; β , 1.657; γ , 1.686; cleavage, {010}, perfect, {101} distinct; parting (?), {001}.

X-ray crystallographic data for burbankite: $a_0 = 10.53 \text{ Å} \pm 0.05 \text{ Å}$, $c_0 = 6.47 \text{ Å} \pm 0.02 \text{ Å}$, space group P6₃/mmc or D⁶₆h, number of formula units in the unit cell is 2. X-ray crystallographic data for calkinsite: $a_0 = 9.57 \text{ Å} \pm 0.02 \text{ Å}$, $b_0 = 12.65 \text{ Å} \pm 0.08 \text{ Å}$, $c_0 = 8.94 \text{ Å} \pm 0.02 \text{ Å}$, space group P2₁ 22₁ or D³₂, number of formula units in the unit cell is 4; a:b:c=0.757 :1:0.707. Morphological crystallography for calkinsite: $p_0:q_0:r_0=0.934:0.707:1$; forms c {001}, b {010}, a {100}, d {102}, q {122}, r {132}; twinning plane {101}; crystal class, probably P 2/m 2/m 2/m.

Burbankite occurs with intimately intergrown ancylite as irregular masses or veinlets younger than calcite, and as separate crystals in calcite, in hydrothermal deposits composed essentially of silicates, carbonates, and sulfides. Calkinsite is a late mineral associated with barite in vugs and associated with lanthanite, barite, and goethite in porous areas of weathered burbankite and ancylite.

The minerals are named after W. S. Burbank and F. C. Calkins, of the U. S. Geological Survey.

INTRODUCTION

A number of rare-earth-bearing carbonates have been identified during the study of a group of silicate-carbonate-sulfide deposits in the Bearpaw Mountains of Montana. Two among them are recognized as new minerals and their description is the purpose of this paper. The deposits themselves will be described in a later publication as another of a series developing from current geological investigations in the Bearpaw Mountains. The two new minerals, *burbankile* and *calkinsile*, are named after W. S. Burbank and F. C. Calkins, geologists of the U. S. Geological Survey, in recognition of their contributions to the geology of mineral deposits of the Western States.

Both burbankite and calkinsite are well-defined minerals for which the

* Publication authorized by the Director, U. S. Geological Survey.

[†] Deceased Sept. 11, 1953, while on field duty.

W. T. PECORA AND JOE H. KERR

optical and x-ray data that have been determined have a high order of reliability. Very fine grained intergrowths with other minerals, unfortunately, have not permitted satisfactory purification of samples for an equally reliable interpretation of chemical analysis. The type material has been deposited in the U. S. National Museum, Washington, D. C.

LOCATION

The deposits containing burbankite and calkinsite are located in southeastern Hill County, Montana, at the head of Big Sandy Creek in sec. 19, T. 28 N., R. 16 E. The group of prospects, locally known as "Vermiculite Prospects," are in the Rocky Boy's Indian Reservation and can be reached from the town of Boxelder on U. S. Highway 87 by traveling eastward about 24 miles, and from the city of Havre on U. S. Highway 2 by traveling southward about 30 miles.

GEOLOGICAL OCCURRENCE

The mineral deposits at the Vermiculite Prospects occur in shonkinite, mafic monzonite, and syenite that are a part of the Rocky Boy composite stock, briefly described by Pecora (1942, p. 398) and correlated with

FIG. 1. Sketch map of the Vermiculite Prospects on Big Sandy Creek.

BURBANKITE AND CALKINSITE, NEW CARBONATE MINERALS 1171

volcanic rocks of Eocene age (Brown and Pecora, 1950). Six minerals in varying abundance essentially make up these deposits; they are sanidine, biotite, aegirite, calcite, pyrite, and pyrrhotite. The two most easterly prospects on Big Sandy Creek, numbered 6 and 7 in Figure 1, have more burbankite and calkinsite than any of the others.

Specimens from prospect number 6 provided the material prepared for chemical analysis. At this locality, shonkinite is irregularly fractured and is host to a random network of interconnecting veins that define a fracture zone about 12 feet wide. The veins range in thickness from a fraction of an inch to 8 inches. Calcite is the dominant mineral of the vein material; and the other minerals, in addition to burbankite and calkinsite,

FIG. 2. Sketch of carbonate vein in shonkinite showing distribution of the principal minerals associated with burbankite.

include sanidine, biotite, aegirite, pyrrhotite, pyrite, chalcopyrite, galena, tetrahedrite, ilmenite, barite, ancylite, lanthanite, and a number of unidentified alteration products. A crude zoning is apparent in some of the veins, with sanidine and aegirite concentrated at their margins; and a streaked or banded feature is apparent in others and is suggestive of reopened fractures.

Irregular stringers and patches, as much as 5 cm. wide, within the calcite-rich vein material (Fig. 2) are composed almost entirely of rareearth-bearing minerals or their weathering products. In unweathered specimens these portions of the veins are essentially burbankite that is intricately veined by very fine grained ancylite and subordinate amounts of calcite and biotite. The largest burbankite crystals are 3 cm. across. Burbankite is also disseminated in calcite as anhedral crystals commonly less than 0.02 mm. in largest dimension,

W. T. PECORA AND JOE H. KERR

As a result of weathering, the burbankite-ancylite intergrowth is altered to a porous, flaky, powdery material containing plates of calkinsite and lanthanite, fine-grained barite, goethite, and some other unidentified, fine-grained minerals. Calkinsite is most abundant in the partly altered area adjacent to unweathered burbankite; and lanthanite and barite are most abundant in completely altered material. Both calkinsite and barite are present also in rare vugs that show no evidence of weathering. The plates of calkinsite are less than 1 mm. in maximum dimension and their average maximum dimension is is about 0.2 mm.

BURBANKITE

Physical Properties

Powdered burbankite has a grayish-yellow color. In freshly broken hand specimens, the burbankite-rich material has a pale-yellow color. Burbankite effervesces strongly in cold dilute (1:5) HCl, has a hardness of about $3\frac{1}{2}$, and a specific gravity (pycnometer method) of 3.50. Its cleavage is prismatic, {100}, distinct to imperfect. Its optical properties, compared with those of associated ancylite, are given in Table 1.

	Burbankite	Ancylite
Indices of refraction	$\omega = 1.627$ Na	$\alpha = 1.615$
	$\epsilon = 1.615 \pm 0.001$	$\beta = 1.695$ Na
		$\gamma = 1.730 \int \pm 0.003$
Birefringence	0.012	0 115
Optical character	(-)	(-)
Optic angle	· · /	$70^{\circ} + 5^{\circ}$
Dispersion		r< v
Crystal system	Hexagonal	Orthorhombic

TABLE 1. OPTICAL PROPERTIES OF BURBANKITE AND ANCYLITE FROM THE BEARPAW MOUNTAINS

The very low birefringence (0.012) for burbankite is noteworthy in view of its composition. Winchell (1931, p. 204) records a birefringence as low as 0.050 for some synthetic carbonates of the alkalies and alkaline earths. No carbonate is known analogous to burbankite in composition that has so low a birefringence.

Chemical Composition

Purity of the analyzed sample: The sample of powdered burbankite prepared for chemical analysis was determined by grain counts in immersion to contain about 96 per cent burbankite, **3** per cent ancylite, and one per

BURBANKITE AND CALKINSITE, NEW CARBONATE MINERALS 1173

cent biotite, sulfides, and other minerals. It was prepared from 30 grams of hand-picked fragments that were crushed, sieved, washed, and purified by means of methylene iodide and the Frantz isodynamic separator. This method removed most of the impurities but unfortunately also concentrated admixed ancylite. Despite repeated heavy liquid separations and some 400 passes in the Frantz separator, at different settings, it was impossible to improve the purity of the final sample in the size range of 200-400 mesh beyond 96 per cent burbankite.

Chemical analysis: The chemical analysis of the original sample of burbankite by M. K. Carron is given in Table 2, column 1, and a recalcu-

	1	2	3	4	5
	Original sample	Recalculated to 100% pure	Moles	Cation ratios	Atoms based on 5CO ₃ and 6 cations
CO_2	32.55	33.39	0.7587	0.7587	
CaO	13.46	13.68	0.2439	0.2439	1.611 Ca
SrO	19.42	19.70	0.1901	0.1901	1.255 Sr
BaO	13.56	14.02	0.0914	0.0914	0.603 Ba
La_2O_3		2.34	0.0072	0.0144	0.095 La
Ce ₂ O ₃		4.65	0.0142	0.0284	0.188 Ce
Pr ₂ O ₃		0.37	0.0011	0.0022 0.09086	0.015 Pr
Nd_2O_3	9.48	1.409.04	0.0042	0.0084	0.055 Nd
Sm ₂ O ₃		0.10	0.0003	0.0006	0.004 Sm
Gd ₂ O ₃		0.08	0.0002	0.0004	0.003 Gd
Y_2O_3		0.10	0.0004	0.0008	0.005 Y
Na ₂ O	9.69	10.17	0.1640	0.3280	2.166 Na
K ₂ O	0.15	100.00			6.000
SiO ₂	0.16	100100			
AloO	0.25				
Fe ₂ O ₂	0.03				
MgO	0.14				
P ₂ O ₅	0.12				
H_{0} +	0.18				
S	0.24				
	99.43				
Less $O = S$	0.12				
	-				
	99.31				

TABLE 2. CHEMICAL ANALYSIS OF BURBANKITE

M. K. Carron, Analyst

 Na_2O and K_2O by flame photometer by E. A. Nygaard. Rare-earth distribution by spectrograph by H. J. Rose. lation to 100 per cent purity by allowance for the impurities is given in column 2. The alkalis were determined by E. A. Nygaard on a part of the original sample and the distribution of the rare-earth elements was determined by H. J. Rose on the precipitate of the total rare earths. The mean index of refraction calculated from the chemical composition and density after the Law of Gladstone and Dale is 1.632. This is in close agreement with the mean index of 1.625 calculated from the measured indices of refraction.

Formula of burbankite: As shown by the data listed in Table 2, columns 3, 4, and 5, the ratio of cations to CO_3 is 6:5 and the calculated cation formula is $(Na_{2.17}Ca_{1.61}Sr_{1.26}Ba_{0.60}RE_{0.36})(CO_3)_5$, where RE is the total of the rare earths. The general formula may be thus expressed as Q_6 $(CO_3)_5$, where Q is the summation of the cations. The corresponding chemical formula weight is 658, or about one-half the unit cell weight (1310) that is calculated from cell dimensions and density.

The total positive charge of the cations, as stated above, slightly exceeds the negative charge of the CO_3 . If, as is possible, the given amount of rare earths is too high and sodium too low, the general formula could be expressed as $Na_2R_4(CO_3)_5$, where R is Ca, Sr, Ba, and rare earths, and an amount of Na equal to the amount of rare earths.

X-ray Crystallography

Powder pattern: X-ray powder data for burbankite are given in Table 3. The calculated interplanar spacings are based on cell dimensions: $a_0 = 10.53 \text{ Å} \pm 0.05$ and $c_0 = 6.47 \text{ Å} \pm 0.02$, which were determined from the indexing of an x-ray powder photograph taken with Fe radiation and an Mn filter. These values are in close agreement with those determined in the later single crystal work, and they are probably more accurate because the powder photographs were corrected for film shrinkage by use of the back reflections. The cell volume calculated from the above cell dimensions is 621 Å³. If two or more planes contribute to a line on the powder photograph, all are listed in Table 3.

Single crystal data: An anhedral crystal of burbankite measuring 0.5 $\times 0.3 \times 0.3$ mm. was oriented with the *c* crystal axis (*c*=E vibration direction) parallel to the goniometer axis. Orientation was completed by taking *x*-ray oscillation photographs. A rotation photograph and Weissenberg photographs (zero, first, and second layers) were then taken in this orientation. The rotation photograph permitted the determination of a c₀ cell dimension of 6.48 Å ± 0.03 ; and an a₀ cell dimension of 10.46 Å ± 0.08 was determined from the zero layer Weissenberg photograph. A primitive hexagonal lattice is indicated by these photographs.

The only systematic omission noted is h h l, where l is odd. This makes

Cu/N U.S.G.S	i Radiation 5. Film #9105	Fe/M1 U.S.G.S	n Radiation 5. Film #3943	d Å Calculated	Probable
I	d Å	I	d Å	Calculated	πκι
2 5	9.10 5.26	2 7	9.16 5.28	9.12 5.28 5.27	100 101 110
1 5	4.55 3.719	1 6	4.56 3.729	4.56 3.728	200 201 210
1 2 6	3.431 3.240 3.034	3 8	3.442 3.246 3.041	3.237 3.043	002 211 200
3	2.748	3	2.758	2.758	112
10	2.630	10	2.639	2.640	202
$\frac{1}{2}$ 1	$\begin{array}{c} 2.524 \\ 2.350 \end{array}$	1	2.358	2.033 2.530 2.360 2.356	310 212 311
1 1 5	2.272 2.213 2.145	12127	2.281 2.218 2.150	2.280 2.216 2.151	400 302 401
1	2.100	1	2.107	2.158 2.100	003 103
2 2	$2.040 \\ 1.986$	2 2	$2.045 \\ 1.990$	2.093 2.043 1.990	320 222 410 221
2	1.951	2	1.956	1.991	203 411
2 1 1 2	1.893 1.860 1.827	1	1.864	1.864	402 303
3	1.754	2	1.757	1.757	322 412
12 3 12	1.662 1.640	2	1.664	1.666	421 510 313
1211121	$\begin{array}{c} 1.619 \\ 1.585 \\ 1.566 \\ 1.525 \\ 1.518 \\ 1.499 \\ 1.458 \\ 1.422 \\ 1.320 \end{array}$	1212121	$ \begin{array}{r} 1.588 \\ 1.569 \\ 1.530 \\ 1.519 \end{array} $	$ \begin{array}{c} 1.041\\ 1.618\\ 1.588\\ 1.567\\ 1.525\\ 1.520 \end{array} $	004 511
(31/3 1 1/31/31/31/31/31/2 1 1/31/31/31/3	$\begin{array}{c} 1.380\\ 1.376\\ 1.346\\ 1.314\\ 1.282\\ 1.277\\ 1.248\\ 1.238\\ 1.231\\ 1.217\\ 1.208\\ 1.178\\ 1.166\\ 1.128\\ 1.121\end{array}$				

 TABLE 3. INDEXED X-RAY POWDER LINES WITH OBSERVED AND CALCULATED

 INTERPLANAR SPACINGS FOR BURBANKITE

the space group P6₃/mmc or D_6^4h . The symmetry requirements of this space group do not allow all the CO₃ groups to occupy similar positions. The low birefringence of burbankite, moreover, would suggest that the CO₃ groups are not coplanar.

CALKINSITE

Physical Properties

Calkinsite is pale yellow and has a typical platy habit parallel to $\{010\}$. The plates are commonly twinned, compound, and elongate parallel to the *a* axis (Figs. 3 and 4). The mineral effervesces strongly in cold dilute (1:5) HCl. Its hardness is about $2\frac{1}{2}$, and its specific gravity (pycnometer method) is 3.28 ± 0.01 . The optical and cleavage data for calkinsite are given in Table 4. Lanthanite, which occurs with calkinsite, has many similar physical properties but can be readily distinguished from it by the indices of refraction obtainable on the cleavage plates (see Table 4), as well as by its powder pattern. Lanthanite also has a lower specific gravity and higher water content than calkinsite.

FIG. 3. Photomicrograph $(\times 110)$ of calkinsite crystals in immersion, showing variation in crystal habit.

FIG. 4. Clinographic projection of twinned (left) and untwinned (right) crystals of calkinsite.

_			
		Calkinsite	Lanthanite
	Indices of refraction	$\alpha = 1.569$	
		$\beta = 1.657$	1.587
	$(na \pm 0.002)$	$\gamma = 1.686$	
	2V (Universal stage)	54°, (—)	
	(Calculated)	$57.2^{\circ}, (-)$	5
	(Estimated)		60°, (—)
	Dispersion	r < v, perceptible	r < v, perceptible
	Crystal system	Orthorhombic	Orthorhombic
	Cleavage	{010}, perfect	{010}, perfect
		{101}, distinct	{101}, distinct
		{001}, parting (?)	
	Twin plane	{101}	{101}
	I thin plane	()	
	Orientation and pleochroism	X = b (yellow)	X = b
	Provense	Y = c (colorless)	Y = c
		Z = a (colorless)	Z=a

TABLE 4.	OPTICAL DATA F	OR CALKINSITE	AND	LANTHANITE	FROM
	THE BEARPAN	W MOUNTAINS,	Mon	TANA	

Chemical Composition

Purity of the analyzed sample: A sample of 1.4 grams containing at least 85 per cent calkinsite was submitted for chemical analysis. This was recovered from an original hand-selected sample of 50 grams of powdery material that contained less than 5 per cent of calkinsite; the treatment included gentle crushing, sieving, riffling on sheet stationery, and repeated treatment in the Frantz isodynamic separator. The identified impurities include burbankite, ancylite, lanthanite, barite, biotite, calcite, and some unidentified sulfate mineral. Heavy liquids were not used because of the potential danger of decomposition.

Chemical analysis: The chemical analysis of the impure sample of calkinsite is given in Table 5, column 1, and approximate recalculation to 100 per cent purity by estimating the per cent and composition of the impurities is given in column 2. The alkalies and the rare earths were

	1	2 Recolari	3	4	5
	Original sample	lated to 100% pure	Moles	Mole ratios	Theoretical analysis
$\begin{array}{c c} La_2O_3\\ Ce_2O_3\\ Pr_2O_3\\ Nd_2O_3 \end{array}$	54.42	$ \begin{array}{c} 19.82\\ 32.05\\ 2.89\\ 7.97 \end{array} $	0.608 0.0976 0.0088 0.0237	1	$ \begin{array}{c} 19.48\\ 31.51\\ 2.86\\ 7.84 \end{array} $ 61.69
CO_2	22.40	23.93	0.5437	2.85	24.78
H_2O	12.00	13.34	0.7405	3.88	13.53
					-
MgO	0.96	100.00			100.00
CaO	1.46				
SrO	0.54				
BaO	4.23				
Fe_2O_3	0.47				
MnO	0.08				
Al_2O_3	0.97				
SiO_2	0.92				
Na_2O	0.26				
$K_{2}O$	0.18				
SO_3	1.58				
	100.47				

TABLE 5. CHEMICAL ANALYSIS OF CALKINSITE

M. K. Carron, Analyst.

Na₂O and K₂O by flame photometer by E. A. Nygaard. Rare-earth distribution by spectrograph by H. J. Rose.

Cu/Ni film	radiation 9158	Fe/Mn radiation	Calculated d Å	Probable hkl
I	Measured d Å	Jum 9185	-	
10 broad	6.54	6.52 <i>β</i> 6.57	6.32	020
4	4.78	$4.77\beta 4.76$	4.78	200
4	4.49	$4.47\beta 4.45$	4.47	002
$\frac{1}{2}$	4.24	4.27	4.22	030
			4.22	012
2	3.87	3.87	3.86	112
			3.82	220
2	3.71	3.71	3.65	022
5	3.27	3.27β 3.26	3.27	202
1 broad	3.17	3.16	3.16	040
			3.16	212
			3.16	230
$\frac{1}{2}$		3.02	3.03	140
			3.00	301
3 broad	2.931	2.940	2.981	041
			2.923	311
			2.921	132
2	2.897	2.899	2.902	222
12	2.713	2.708	2.714	321
$\frac{1}{2}$	2.654	2.650	2.638	240
1	2.595	2.596	2.595	123
			2.582	042
			2.582	232
12	2.433		2.434	033
12	2.393	2.393	2.392	400
			2.402	322
12	2.338	2.336	2.359	133
$\frac{1}{2}$	2.281	2.283	2.272	242
			2.273	411
1	2.248	2.245	2.238	420
			2.235	004
			2.246	340
3	2.207		2.201	014
			2.211	332
12	2.179	2.181	2.176	104
			2.178	341
			2.171	421
			2.169	043
			2.169	233
3	2.128	2.127	2.145	114
			2.146	313
3	2.115	2.113	2.109	402
			2.108	060
			2.107	024

TABLE 6. INDEXED X-RAY POWDER LINES (WITH ESTIMATED INTENSITIES AND INTERPLANAR SPACINGS) FOR CALKINSITE

Cu/Ni film	radiation 9158	Fe/Mn radiation	Calculated d Å	Probable hkl
I	Measured d Å	film 9185		
			2.115	143
3	2.074	2.070	2.052	061
			2.059	160
			2.059	323
			2.081	412
			2.081	430
			2.058	124
12	2.029	2.028	2.025	204
			2.027	431
3	2.009	2.008	2.001	422
			2.000	214
			2.006	161
			2.007	342
$\frac{1}{2}$	1.985		1.975	034
			1.975	243
3	1.945	1.944	1.934	134
		20120120000	1.935	333
1	1.925	1,921	1.929	224
2	1.902	1.899	1.908	440
			1.907	062
1 broad	1.840	1.835	1.830	304
			1.846	413
1	1.786	1.785	1.793	144
			1.794	343
			1.789	423
$\frac{1}{2}$		1.762	1.755	442
			1.758	324
			1.759	360
1 broad	1.634	1.634	1.633	404
$\frac{1}{2}$		1.626		
1	1.591	1.591		
$\frac{1}{2}$	1.570	1.568		
$\frac{1}{2}$	1.548	1.550		
$\frac{1}{2}$	1.527	1.531		
1	1.502	1.502		
1	1.466	1.463		
1	1.421	1.422		
1 broad	1.357			
$\frac{1}{2}$	1.319			
1	1.300			
$\frac{1}{2}$	1.262			
12	1:221			
$\frac{1}{2}$	1.176			

TABLE 6-(continued)

determined in the same manner as for burbankite. The mean index of refraction calculated by the Law of Gladstone and Dale is 1.619, and that calculated from the indices of refraction is 1.636.

Formula of calkinsite: As shown by the data in Table 5, column 4, the chemical formula derived from the mole ratios can be expressed as $(RE)_2(CO_3)_3 \cdot 4H_2O$. Recalculating the chemical analysis from theoretically perfect ratios would yield the weight per cents listed in column 5, which, in comparison with those in column 2, lends more credibility to the probable composition of pure calkinsite. The chemical formula can be given as $(La_{0.64}Ce_{1.02}Pr_{0.09}Nd_{0.25})(CO_3)_3 \cdot 4H_2O$. The calculated chemical formula weight is 533, which is almost exactly one-fourth the unit cell weight of 2140. Four formula units per unit cell are thus indicated. Lanthanite is chemically very closely related to calkinsite but is an octahydrate with the formula $(RE)_2(CO_3)_3 \cdot 8H_2O$.

X-ray Crystallography

Single crystal data: Single crystals of calkinsite suitable for x-ray study were initially mounted with the aid of a binocular microscope and oriented by successive oscillation photographs. Unfortunately, none of these crystals exceeds 0.1 mm. in maximum dimension. Rotation photographs were taken about the a and c axes on two different crystals; and zero, first, and second layer Weissenberg photographs were obtained in these orientations. The photographs, although imperfect, showed calkinsite to be orthorhombic. The cell dimensions obtained are: $a_0 = 9.57$ Å ± 0.02 ; $b_0 = 12.65$ Å ± 0.08 ; and $c_0 = 8.94$ Å ± 0.02 . The cell volume is 1083 Å³. The only systematic omissions were h00 and 00l, in which h and l are odd. This indicates the space group P2₁ 22₁ or D³₂.

Powder pattern data: X-ray powder pattern data for calkinsite are given in Table 6. All of the lines on the photographs are indexed by use of the cell dimensions obtained from the single crystal study. The good agreement of the calculated and observed interplanar spacings for $\{030\}$, $\{040\}$, and $\{060\}$ support a satisfactory value for the b₀ cell dimension. The poor agreement shown for $\{020\}$ can perhaps be explained by absorption. Beta lines observed in the x-ray powder photograph taken with Fe radiation are due to a weak Mn filter.

Morphological Crystallography

Goniometric measurements were made on both crystals of calkinsite which were mounted for x-ray study with (001) and (100) polar. A third crystal was mounted with (010) polar and its faces were similarly measured. Because of the small size of the crystals and imperfection of the crystal faces, the signals were poor. Several forms were observed under

Calculated ratios	$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.757:1:0.707 0.757:1.071:1	$p_0:q_0:r_0=0.1$ $r_2:p_2:q_2=1.4$ Calc	934:0.707:1 414:1.321:1 ulated angles			
Form		φ	p=C	φ	$\rho_1 = A$	0 3	$\rho_2 = B$
c {001/1			00	00	000	000	000
b {010}		00	90°	000	000	06	06
a {100} ¹		°06	°06	, I	°°	00	000
d {102} ¹		90°	25°02'	00	64°58′	64°58'	00
q {122}		33°28'	40°18'	35°16′	,60.69	64°58′	570721
r {132}		23°45'	49°14'	46°38'	72°14'	64°58′	46°08′
{101} (cleavage)		00	43°03′	0°	46°57'	46°57′	000
			Mea	tsured angles			
Form (faces)	Quality	φ	đ	φı	τd	ēφ	ρ2
b {010} 2 q {122} 7 r {132} 3 f 101} ² (cleavage	Fair Poor Poor	89°57′-89°55′ 34°54′ (00°)	0° 40°16′ 41°20′	89°54'-90°12' 34°18'-38°40' 44°35'	89°36′-90°00′ 69°11′-71°25′ 72°45′	64°11′-66°43′ 66°24′-68°15′	0°06' 58°37'-60°00' 47°05'-47°45'

1182

W. T. PECORA AND JOE H. KERR

Forms observed on many crystals but not measurable in goniometric work. ² Measured with a petrographic microscope.

BURBANKITE AND CALKINSITE, NEW CARBONATE MINERALS 1183

the microscope which could not be verified by goniometric measurements. Variation in crystal habit is shown in Figure 3 and clinographic projections are shown in Figure 4. The twinning and composition plane is $\{101\}$. The crystallographic data are summarized in Table 7. All the crystals observed appear to have full orthorhombic symmetry belonging to the class P2/m 2/m.

Origin

In the sequence of mineral development, burbankite is younger than most of the calcite. Ancylite was formed locally by a reaction on burbankite by a hydrothermal solution. In this reaction burbankite, an anhydrous complex carbonate, contributed to form a hydrous complex carbonate richer in rare earths. Both of these complex carbonates were decomposed to contribute to the formation of calkinsite and lanthanite, two hydrous simple carbonates richer still in rare earths. This final decomposition most probably was effected by weathering and further resulted in local deposition of barite, goethite, and an unidentified sulfate. Such decomposition by weathering of the vein material could provide sufficient sulfate radical by alteration of the sulfide minerals, particularly pyrrhotite, to lower the pH of the environment and to combine with barium and other cations released by the carbonates or other minerals. The occurrence of coarse barite and calkinsite in isolated vugs may possibly indicate the development of some or all of the calkinsite under late hydrothermal conditions, but the lanthanite certainly resulted from weathering alone.

Acknowledgments

K. J. Murata made several reconnaissance spectrographic analyses early in the study that led to an appreciation of the problem of chemical composition of these minerals, and Fred Hildebrand made several powder photographs for comparison. The junior author, who made the x-ray and morphology studies, acknowledges the guidance given by M. L. Lindberg. Howard Jaffe furnished unpublished k values for the rare earths. Thanks are due M. K. Carron for his determinations of the specific gravity of both minerals by the pycnometer method. The authors are indebted to a number of other colleagues for critical suggestions throughout this investigation, particularly to Howard Evans, D. H. Richter, D. B. Stewart, and Michael Fleischer.

References

BROWN, R. W., AND PECORA, W. T. (1950), Paleocene and Eocene strata in the Bearpaw Mountains, Montana: Science, 109, 487-489.

PECORA, W. T. (1942), Nepheline syenite pegmatites, Rocky Boy stock, Bearpaw Mountains, Montana: Am. Mineral., 27, 398-400.

WINCHELL, A. N. (1931), The microscopic characters of artificial inorganic solid substances, or artificial minerals, 2d ed., John Wiley & Sons, New York.