NEW MINERAL NAMES

Belyankinite—a new mineral

V. I. GERASIMOVSKY AND M. E. KAZAKOVA

Doklady Akad. Nauk. SSSR, 71, No. 5, 925–927 (1950); from a translation kindly made by Mr. V. L. Skitsky.

CHEMICAL PROPERTIES: Two analyses gave (1. by T. A. Burova, 2. by M. E. Kazakova):

	SiO_2	ZrO_2	TiO_2	(Nb, Ta) ₂ O ₅	$\mathrm{Al}_{2}\mathrm{O}_{3}$	Fe ₂ O ₃	MnO
1.	3.96	6.64	48.76	7.16	0.46		none
2.	2.80	6.56	48.19	7.51	0.24	1.85	0.04
	MgO	CaO	Na_2O	K_2O	H_2O^+	H_2O^-	Sum
1.	none	6.72	0.55	trace	8.35	17.21	99.81ª
2.	0.14	6.40	0.23	0.20	7.20	18.50	99.86 ^b

* Also reported SrO none, rare earths none.

^b Also reported CO₂, Cl, F none.

Spectrographic analysis showed the presence of small amounts of Hf and Pb and a trace of Cu, and showed that Nb predominates considerably over Ta.

This gives the empirical formula: $2\text{CaO} \cdot 12\text{TiO}_2 \cdot 0.5\text{Nb}_2\text{O}_5 \cdot 2\text{rO}_2 \cdot 28\text{H}_2\text{O}$. [Another form of calculation gives Ca(Ti, Zr, Si, Nb)₆O₁₃ · 14H₂O. M. F.]

The method of analysis is given in detail. The mineral is decomposed completely by hot HCl.

Infusible before the blowpipe. Thermal analysis gave two endothermic effects, at 150° and $400-450^{\circ}$, and an exothermic reaction at 750° .

PHYSICAL AND OPTICAL PROPERTIES: Occurs in masses up to $20 \times 12 \times 0.5$ cm. Orthorhombic or monoclinic, from the optical data.

Color light yellow to brownish-yellow. Luster glassy to oily, pearly on the cleavage surface. Cleavage perfect, in one direction, fractures uneven. Hardness=2-3, G.=2.32 to 2.40.

Optically biaxial negative, with indices of refraction nX = 1.740, nY = 1.775 to 1.780; nZ - nY = 0.002 to 0.003. Pleochroism distinct; X=brown to dark brown, Y and Z=light brown to yellow brown.

X-ray powder photographs (Cu and Fe radiation) gave no lines, but the Laue diagram indicated some crystallinity.

OCCURRENCE: Belyankinite occurs in nepheline syenite pegmatite composed mainly of microcline, nepheline, and aegirite; the nepheline replaced in part by zeolites. Belyankinite occurs in aegirite and sometimes in microcline; it was formed simultaneously with fluorite, but prior to aegirite. The outer parts of the pegmatite contain eudialyte, ramsayite, and lamphrophyllite. The locality is not given (Kola Peninsula?).

NAME: For D. S. Belyankin, Russian mineralogist and petrographer. Not to be confused with the fluoride belyankite, see p. 785.

M. F.