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ABSTRACT

The standard equation for computing the value of the optic axial angle, 2V, of a biaxial
crystal from its three principal refractive indices, a, 8, 7, is: tan?Vy=(1 Ja—1/32)/(1/82
—1/4%). This equation is not in convenient form for use in computation. However, an ap-
proximate equation, cos 2Vy = (e— 8)/(e-+8) —6€5/(e48) (v+a), in which e=y—B, 6=8—a,
can be derived from it which is satisfactory and yields values accurate, in general, to 1 of
arc for 2Vy, if the birefringence, v —a, does not exceed 0.030; and to 3’ of arc in casey—a
is between 0.050 and 0.100. The simplified formula shows clearly that the optic axial angle
is primarily dependent on the difference between the partial birefringences, v—8, and
f—a, divided by the maximum birefringence, v —e, rather than upon the actual values of
@, B, v. The size of the index ellipsoid itself depends upon the values of the principal re-
fractive indices; its shape, on the other hand, depends upon relations between the principal
birefringences.

The optical properties of non-opaque biaxial crystals are most readily
deduced from the index ellipsoid in which the three principal axes are
the refractive indices, e, 8, v, in ascending order of magnitude. In any
triaxial ellipsoid there are two diametral plane sections of radius 8 whose
intersections with the ellipsoid are circles. Waves of light propagated
along the normals to these sections behave as they would in isotropic
substances. These directions are called the optic axes or optic binormals.
To find the angle between the two circular sections, note that on the
principal a, v plane of the ellipsoid their traces are the straight lines of
radius 8. The general equation of the index ellipsoid referred to rec-
tangular axes reads:

Xty oz
aTEtE=t

For the ay principal section of the ellipsoid, y=0 and the equation
becomes

X gZ2

This equation defines all points of the ellipse on the ay plane of the
ellipsoid. For the points at the outer ends of the radius 8 we have
X7 o |z
& + 5 =1 @

Subtract equation (2) from equation (1) and obtain
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The angle between the normals to the 8 traces on the ay plane is the
optic axial angle 2V, and is the supplement to Q. Therefore

1 1
¥ 2

tan? V, = _‘:__B{“ O (3)
Bz o 72

This is the standard equation given in text books. Other expressions
derived from equation (3) hre:

1 1 1 1
2 2 2 2

sin? Vy = —L; Bl— and cos? V,, = ﬂl %— . (3a)
o =5 o "

These three equations are not in a form adapted for computation.
Each one expresses an equality between the square of a trigonometric
function of half the desired angle and the ratio between differences of the
reciprocal squares of the principal refractive indices. A more convenient

expression is:
2 1 1
p ety

cos 2Vy = cos? V, — sin? Vy = ————————— . 4

This equation can be simplified with slight loss in accuracy and still
vield values of 2V, accurate, in general, to one minute of arc for values
of the maximum birefringence (y—a) up to 0.050; and to three minutes
of arc for values of (y —a) up to 0.100; and for all values of the refractive
index « from 1.400 to 2.000.

Let

p—a=8 v—B=¢ and y—a=€¢+38; or a=—6, y=8+e
On substituting in equations (3a) and (4) for « and v the equivalent
values 8—& and S-e, and neglecting the higher order terms, 2¢26? and

—4B(e—b)ed, which are, in general, so small that for (y—a) <0.050 they
do not influence the result, we obtain the equations.
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[ 3¢

2V = — 4 5

sin e+6+72—a2 (5a)
€ 3ed

1Y, = o 22 5b

cos T @ (5b)
— 6ed

cos 2V, = = =y (5¢)

These approximate equations may be used directly if the principal re-
fractive indices are given for a specified wave length of light. Each one
consists of two parts, of which the first in (5¢), (e—6)/(e+3), expresses
the ratio of the difference between the two partial principal birefrin-
gences to their sum. It should be noted that this ratio alone yields values
of the optic axial angle correct, in general, to 125 or less, for refractive
index « between 1.400 and 2.000 and for values of the maximum bire-
fringence, vy —a, from 0 to 0.050.

The ratio (e—8)/(e+6) is simply the difference between the two
partial principal birefringences expressed in terms of the maximum
birefringence, y—«, and is clearly independent of the actual values
of the principal refractive indices, , 8, v. Thus if a1, 81, v1 refer to one
crystal and asy, B2, v2to a second, then ¢;=7y1—B1,61=PF1— a1 and ee=v2— By,
8y=PBs— . If now (e1—61)/(ex+81) and (e2—8s)/(e2+62) have the same
ratio value, (e1—81)/(e1481) = (e3—82)/(e2+82), then e/e1=8/8:=C,
wherein C is a constant. For a given value of cos 2Vy, therefore, the
actual refractive indices a, 8, ¥ may vary within a wide range, but only
in such manner that the proportion e/e;==48:/81=C is maintained and
so that the proportionality factor C cancels out in the homogeneous
expression. Similar relations obtain for the correction term, — 6e3/(e+0)
(v+@a), and for equations (3¢) and (4).

If a table of the angle values of cos 2V, extending over the range 0
to 1.0 in steps of 0.01 be prepared, the angle corresponding to a given
ratio value of cos 2V, = (e—6)/(e+6) can be read off directly. The angle
2V, refers to that obtained from the first term of equation (5¢) alone and
without the second term. In table 1, these values are listed in degrees
and thousandths of a degree rather than in degrees and minutes of arc.
The differences between the angular values for successive steps of 0.01
are also included, so that the actual values of 2V, can be obtained by
linear interpolation. For example, let (e—8)/(e+8)=0.5463. In table 1
we find 2V, =57°316 for the ratio 0.54; and 2V,=56°633 for the ratio
0.55; the difference between these angles is 0°683. Therefore the desired
value for (e—8)/(e+8) =0.5463 is 57°316 minus 0°.683X0.63=02430 or
56°886. Since 1°=60, the value in minutes of 0°.886 is 60X0.886=53"
and 56°.886 =56°53". Approximate values of 2V, may be read off directly
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from figure 1 which is a nomograph of the equation cos 2V, = (e—3§)/
(e+96). The scales for the variables, (e448), (e—8), and cos 2V, are
given on the diagram. For example, let e+6=0.033; e—6=0.013. To
find 2V, pass a straight line through the two points and find at its inter-
section with the 2V, scale, 2V, =67°. It should be noted that in this
nomogram the cos 2V scale is widely spaced for values near 90°, but
very closely spaced near 0°. In other words, the scale is not uniform and
more accurate results are obtainable directly from table 1, or from a
large scale plot based on this table. This effect of change of scale in

TaBLE 1. VALUES OF THE ANGLE 2V, FOR A SERIES OF VALUES OF cos 2V, = (¢—38)/(e+d)
RaNGING 1§ STEPS OF 0.01 FROM 0 TO 1.0

e—38
e+8

.00
.01
.02
.03
.04
.05

.06
.07
.08
.09
.10

1
12
.13
.14
.15

.16
17
.18
.19
.20

21
.22
.23
.24
25

2V,

902000
89°427
88°854
882281
872708
87°134

862560
85°986
85%411
847836
84°261

837685
832108
827530
81°952
812373

80°793
80°212
792630
792047
782463

772878
77°291
762703
762113
752522

Diff.

573
.573
573
.573
574
574

.574
<575
.575
575

.576

577
.578
.578
.579

.580

.581
.582
.583
.584

.585

.587
.588
.590
591

e—d
e+8

.25
.26
27
28
.29
.30

S
.32
.33
.34
.35

.36
.37
.38
.39
.40

A1
42

.43 |

.44
.45

.46
.47
.48
.49

2V,

752522
742930
742336
732740
732142
72°542

712941
712337
702731
702123
69°513

682900
68°280
672666
672046
66°422

652795
652165
64°532
632896
632256

62°613
61°966
612315
602659

.50 | 60°000

Diff.

.592
.594
596
.598
L 600

.601

.604
.606
.608
.610

.613

.616
.618
.620
.624

.627

.630
.633
.636
.640

.643
.647
.651
.656
.659

e—d
e+d

.61
.62
.63
.64
.65

.66
.67
.68
.69
.70

71

.72
13

.74
.75

602000
592336
582668
572995
57°316
562633

552944
552250
542549
532843
532130

529410
51°684
502950
502208
492458

482700
472933
472156
462370
452573

44°765
43°946 |
43°114
422269
41°410

.664
668
673
679
683

.689

.694
.701
.706
713

.720

.726
734
742
750

758

767
171
.786
797

.808

.819
.832
.845
.859

79
.80

.81
.82
.83
.84
.85

.86
.87
.88
.89
.90

91
.92
.93

.94
.95

.96
.97
.98
.99
1.00

2V, | Diff.
41°410
40°536 'Zgg
39°646 | oo
38°739 |
: .925
370814 | oi
36°870 |
.966
352004 | oo
34°915
1.014
33°001
e 1.041
329860 | |0
310788 |
1.105
30683 | )
29°541
: 1.183
28°358
1.231
Rl e
25°842 |
1.347
242495 | o
23°074
1.500
21°565
1.617
192048 | "3
18°195 |
1.935
162260 | , 100
14°070
2.592
11°478
| “gorqo | 3368
: 8.110

| 02000
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different parts of a nomogram is common to many nomographs and
should be recognized by the user.

In case the refractive indices a, v are given, and only 8 is allowed
to vary, the maximum birefringence, y—a, remains constant, while
the partial principal birefringences, e=y—8 and §=f—a, vary in op-
posite directions, such that when =0, y=4, the crystal is uniaxial and
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0090+ [
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Fic. 1. Nomogram solution of the equation cos 2V = (e—8)/(e+8). The scale for (e—8)
is the ordinate on the right side of the diagram; that for (e43), on the left side, while that
for cos 2V is on the diagonal line of the diagram.

optically negative with « the optical axis; when §=0, 8=q, the crystal
is uniaxial and optically positive with v the optical axis. In all other
cases the crystal is biaxial. When e=8§, e—8=0, the crystal is biaxial
and cos 2V, =0 or 2V, =90°.

The second term of equation (5¢), —6ed/(a-7v)(e-+38), is of the nature
of a correction term (C.T.) by means of which the value of 2V, can in
general be determined to 1’ of arc when (y—a) does not exceed 0.050.
In case the value of cos 2V, is extremely small (0.05 to 0), the error may
be greater, because the angle 2V, changes rapidly for slight changes in
the value of cos 2V, as it approaches zero and linear interpolation in
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that region is inexact. The correction term itself consists of a constant,
6/(a+7v), multiplied by the ratio e5/(e4-8) in which the numerator is
the product €5 and the denominator, the sum {(e+46). It was proved in
a preceding paragraph that for a definite value of (e—38)/(e+6) various
partial principal birefringences are possible; but that, to maintain the
ratio constant, both ¢ and § must increase or decrease in the same
proportion; and also that (e+0s)=C(e;+61). Therefore, exbs/(eat59)
= C2%:6,/C(e1+61) = Ces81/(e1+61) ; in other words, the value of the ratio
is proportional to the increase of (e;+8,) over (e;+6:). It follows that if,
for a given value of (e;—48:)/(e1+81), we plot the change in the value of
the fraction efy/(eo+02) against the change in the maximum principal
birefringence, e;8:=vs—as, the result will be a straight line passing
through the point, €61/(e;+81). It is possible, therefore, to compute the
values of the correction term for one maximum principal birefringence,
such as y1—a1=€+6;=0.010 and from them to obtain the values for
any other maximum birefringence and for a given refractive index a
by multiplication by the factor (ys—a;)/0.010=C.

In table 2, the results of the computation are listed for each change of
0.1 in the ratio (e—8)/(e+4); in this table the values listed are given
directly in terms of the angle value of 2V, corresponding to the change
in the decimal value of cos 2V,. This is permissible because, for the simall
changes under consideration, the rates of change in the decimal values
of cos 2V, are, as a rule, proportional to the changes in the values of
2V, itself.

To compute the value of the correction term for a given refractive
index o', and for a given birefringence, (y'—a’), when the value of the
term is known for another refractive index, «, and for the same birefring-
ence, (y—a), multiply the known value by the factor of proportionality
1/C=a/a’. For example, let «=1.400, y=1.410, and y—a=0.010;
for (e—6)/(e+6)=0.80, the value of the correction term is found to be
0.0019217=102300. For the refractive index, a’=2.000, we have o/a’
=1.400/2.000=0.7, and find for the correction term the value,
0.7X0.0019217 =0.0013452=0°210. The computed value is that of the
exact equation (4) minus the value of the first part of equation (5¢)
and is 07212.

In principle this method is similar to that advocated by E. S. Larsen,
Jr. (1921) who prepared a correction chart based on the refractive index
1.500 to serve in finding the correction to be applied to the value of 2V,
or 2V, obtained by use of the approximate formula of Mallard (1884,
p. 413).

By use of tables 1 and 2, it is thus possible to read off directly the
approximate value of 2V, (subscript ¢ signifies ‘computed’) for any values
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of the principal refractive indices which are likely to occur. Experience
has shown that in certain cases time is saved by disregarding the tables
and by using equation (5¢) directly, either together with a table of
logarithms or with a calculating machine and a table of natural trigono-
metric functions.

In connection with the usefulness of the above method, the relative
frequency of the occurrence of maximum principal birefringences, v —«,
in various minerals and in crystals prepared in the laboratory is im-
portant. Thus, of 887 biaxial minerals listed by Larsen and Berman
(1934) and of 154 inorganic crystallized salts listed by Fry (1922) the
total number for which (y —a) is between 0.001 and 0.010 is 178: between
0.011 and 0.020 it is 245, and so on.

In table 3 the distribution is shown of the numbers of minerals and
of inorganic salts which have a given range in principal birefringence,
v—o; under each heading the percentage distribution is listed also. The
last two columns give the total number, minerals plus inorganic salts,
and the cumulative percentages. The table shows that more than three
fourths of the biaxial crystals (positive and negative) have a maximum
birefringence, y—a, between 0.001 and 0.050. For roughly 14 per cent
of the crystals, the birefringence, y—a, is between 0.051 and 0.100;
while, for values of (y—a) exceeding 0.100, the percentage is about 11.
It follows, therefore, that the use of equations Sa, 56, 5¢ is justified in
about three-fourths of biaxial minerals and inorganic crystals whose
birefringence, y—a, ranges between 0.001 and 0.050. The accuracy in
the value of 2V is then about 1’ of arc; and for roughly nine-tenths of
biaxial crystals for which (y—a) is between 0.001 and 0.100, it may
reach 3" or 4’ of arc.

Equation (5¢) shows that in case e=6 or (e—0)/(e+8)=0, cos 2V, =0
and 2V, =90° but the second term (C.T.) is negative and hence 2V,
is greater than 90°; « is then the acute bisectrix and the crystal is op-
tically negative. In general, biaxial crystals for which the partial bire-
fringence, f—a, is greater than the partial birefringence, y—p8, or
8>¢, are optically negative and « is the acute bisectrix. Biaxial crystals
for which (y—g) is greater than (8—«), or €>§, are, as a rule, optically
positive with y the acute bisectrix.

In this connection it is of interest to ascertain how much the midway
value of 8= (a4+)/2 may depart from equality to convert the crystal
from one of optically negative character to one of positive character. To
find the refractive index 8 for which cos 2V =0 when « and 7 are given,
we observe from equation (4) that then

D=t ©
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TABLE 3. RELATIVE FREQUENCY OF BIaXIAL CRYSTALS (MINERALS AND INORGANIC SALTS)
FOR VARIOUS PRINCIPAL BIREFRINGENCES (y—a) IN INTERVALS OF 0.010 FrROM 0 TO
0.100, AND FOR LARGER INTERVALS IN CRYSTALS OF STRONGER BIREFRINGENCE.

In THE Last Two CoLuMNs OF THIS TABLE THE RELATIVE FREQUENCY IN
THE SAME SET OF MINERALS Is L1STED WITH REFERENCE TO THE
LEAST PRINCIPAL REFRACTIVE INDEX «

y—a Minerals
No. Per
Cent
0.001-.010 | 146 16.5
.011-.020 | 201 22.7
.021-.030 | 167 18.8
.031-.040 89 10.0
.041-.050 63 P 1.
666 75.1

|

.051-.060 37 4.2
.061-.070 29 3.3
.071-.080 26 2.9
.081-.090 24 2.7
.091-.100 14 1.6
130 14.7
.101-.150 47 5.3
.151-.200 21 2.4
.201-.250 9 1.0
.251-.300 4 0.5
.301-.400 7 0.8
.401-.500 1 0.1
.501~.600 1 0.1
.601-1.20 1 0.1
91 10.3
Total 887 100.1

Inorganic
Salts
No. Per

Cent

32 20.8
4  28.6
25 16.2
7 4.5
12 7.8
120 779
4 2.6
1 0.6
5 312
8 1.9
3 1.9
16 10.2
8 5.2
4 2.6
3 1.9
1 0.6
2 1.3
0 0.0
0 0.0
0 0.0
18 11.6
154 99.7

Total
Cumu-
lative
No. Per

Cent

178  17.1

245  40.6

192 59.1

9 68.3

75 75.5
786

41 79.4

30 82.3

31 85.3

27 87.9

17 89.5
146

55 94.8

25 97.2

12 98.4

5 98.8

9 99.7

1 99.8

1 99.9

1 100.0
109

1041

300-399
400-499
500-599
600-699
700-799

800-899
900-999
2. 2.

000-099
100-199

200-299
300-399
400-499
500-749
750-999
Bty Sl

000-999

Minerals
Cumu-
lative
No. Per
Cent
7 0.1
100 11.8
236 37.9
281 69.0
153 86.0
777
37 90.0
20 92.3
16 94.0
19 96.1
92
12 97.5
10 98.6
5 99.1
4 99.6
1 99.7
3 100.0
35
904

TFor a=1.500 and for y—a=0.010, 0.020, 0.030, 0.040, 0.050, and
0.100 respectively, we find from equation (6) the values to be:
B=1.504975, 1.509901, 1.514777, 1.519605, 1.524385, and 1.547582. In
these cases the differences between the values listed and the midway
values of B are, respectively: 0.000025, (0.08"), 0.000099 (0.30"),
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0.000223 (0.78") 0.000395 (1.36') 0.000615 (2.11'), 0.002418 (8.327).
For «=2.000, the corresponding differences are, respectively: 0.000019
(0.077), 0.000075 (0.26"), 0.000167 (0.58"), 0.000297 (1.02'), 0.000463
(1.59'), 0.001829 (6.29'). These figures prove that with increase in (y—a),
the departure of 2V from 90° increases appreciably, but that the total
departure does not exceed 10’ of arc. If vy —a=0.100, the actual change
in 8 may exceed 0.002, a quantity which is easily measurable and which
might cause trouble were the above rule on the optical character of a
biaxial crystal followed literally. However, the chance of error from this
source is slight and is likely to occur only in biaxial crystals of strong
birefringence.

The data of tables 1 and 2 together with the linear relations between
the birefringence, y—a, and the second term of equation (5¢) can be
represented by three simple charts. Experience has proved, however,
that the degree of accuracy obtainable by their use is appreciably less
than that from equation (5¢) or from the tables. In many cases the ac-
curacy attainable from the first term alone of equation (5¢) is quite
adequate, especially in crystals of low birefringence and for which the
principal refractive indices are given only to the third decimal place.
In these cases a shift of only one unit in the third decimal place may
produce a change in the value of the optic axial angle of 10° or 20° or
even 30° For this reason it is not surprising in tables of the optical
properties of biaxial crystals to note a wide discrepancy between the
measured optic axial angle, 2V, listed and that computed from either the
exact equation (3) or (4) or from the approximate equation (5) given
above. In general and for many purposes, the value 2V, computed from
the first term of equation (5¢) suffices. This term alone shows that the
value of the optic axial angle depends chiefly on the difference of the two
partial principal birefringences, (y—8)—(8—a), divided by the maxi-
mum principal birefringence (y—a). As a result, the value of 2V is ex-
tremely sensitive to slight changes in the values of the principal refractive
indices, especially of 8. Tt is, therefore, not advisable to use the optic
axial angle in conjunction with any two principal refractive indices to
find the third refractive index. If «, v, and 2V are given, the chances of
ascertaining § with fair accuracy are better than when a, 8, 2V, or
B, v, 2V are given to find v or «, respectively.

Historical. Several investigators have sought to simplify the computa-
tions involved in equations (3) and (3a). Mallard (1884) proposed that
in equations (3) and (3a) the principal birefringences, y—a, v—34,
B—a, be substituted for the differences between the reciprocal squares of
the corresponding principal refractive indices. He noted that for biaxial
crystals of medium to weak birefringence the approximation is in general
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sufficiently close to the exact value to be satisfactory. In line with
Mallard’s suggestion the expression in equation (4) may be changed
to read: cos 2V,=cos?V, —sin?V, = (y—8)/(y—a)—(B—a)/(y—a)=
(v+a—28)/(y—a). Computations show that this equation for 2V,
yields values for 2V correct to 1°5 for crystals whose birefringence,
v—a, does not exceed 0.050. With increase in birefringence, v —a, the
degree of accuracy decreases appreciably; thus for a=1.500 and
y—a=0.100 the error is 2°773; for «=2.000 and v—a=0.100, it is
2°096.

In 1911 (Plate 9) Wright published a graphical chart based on the
equation sin?V,=(8—a)/(y—a) from which, having given f—a and
v—a, the value of V, can be read off directly. The chart extends to
values of y—a=0.090 and v'—a’=0.090. It would have been better
had the chart been extended to y—a=0.100 and y'—a'=0.100, and in
the labeling of the optic axial angle, had 2V, been used for V..

In 1912 Boldyrew published three diagrams based on the exact
equation tan  V,=yvF—ad/av/71= @ = (B+VE— (B—)/(6—0)
v/ (B+€)2—p When 8 is known, this equation defines relations between
the partial birefringences e=y—8, 6=f—a, and V,. If V, be known,
then for any value of € a corresponding value of & is given. Let the
values of € be the abscissae and those of & the ordinates. A series of curves
for V, is thus obtained by computation which enables the observer to
read off directly the value of the third variable when the other two
are known. For each diagram one 8 is valid, namely, 8=1.500, 8= 1.650,
and 8=2.000. These charts are interesting, but they have not come
into general use.

In 1913 (Plates VI and VII) F. E. Wright published two charts for
the solution of the equation (3), (Plates V1 and VII); with these a table
of the values of reciprocal squares of refractive indices was included.
In Plate VI the values of 1/a2—1/8? are abscissae, those of 1/82—1/+%
the ordinates, and the series of straight lines radiating from zero, the
values of V,. In Plate VII the values of (1/a?—1/8%/2 are the abscissae,
those of (1/82—1/4%)!2 the ordinates, while the radiating straight lines
denote the values of V,. In Plate VII the distribution of the V, values
is more uniformly spread and for this reason is superior to Plate VI.
It should be noted that both Plates serve equally well for the approxi-
mate equations tan? Va=(y—8)/(8—«) and tan Va= [(y—B)/(B—a)]H

In 1927 Roesch and Sturenburg suggested a modification of the exact
equation (3) and expressed it in the form tan’ V,=(y/a)¥(B/a)?—1)/
(v*/a?—B?/a?) in which the ratios, 8/« and y/a, are given. In order that
this form be useful, the writers computed a series of tables for the two
ratios and presented the solutions of the equation in two graphs of curves
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from which the value of the optic axial angle can be read off directly.
This method, though interesting, has not been used greatly.

In 1937 Smith, on the basis of Plate VI of the above paper by F. E.
Wright and for the approximate equation, tan? V,=8—a)/(v—8),
published a new diagram by which, with the aid of a sliding scale, he
was able to read off directly and without computation the values of
the partial birefringences or of their ratio. In his chart a central vertical
line divides it into a positive and a negative section. On the sliding
scale, which is divided uniformly into convenient units, the value of «
on the scale is placed on the left of the central line; the scale division
for B is placed at the central mark on the base line of the diagram, and
that of vy on the right of 8. The intersection of the N.E. diagonal line
through « on the scale with the N.W. diagonal through y determines the
position of the straight line 8 and thereby the angle V, (labeled 2V, for
convenience), and also the optical character of the crystal, whether
positive or negative. Smith’s chart is convenient, but, as Smith empha-
sizes, its accuracy is not high for weak birefringences because of the
clustering of the lines near their point of intersection.

In 1938 Lane and Smith described another chart for the solution of
the approximate equation. This chart requires the use of a sliding scale
but of a different kind. The chart is said to be more satisfactory for
crystals of low birefringence than is the Smith chart. However, neither
chart has been used widely.

In 1942 Mertie described a nomographic chart based on the exact
sine equation (3a). The Mertie chart is self-contained in the sense that
if the three principal refractive indices are known, the optic axial angle
and the optical character can be read off directly by use of a straight
edge or of a straight line and without computation of any kind. In the
nomograph the horizontal scale, which determines the spacing of the
vertical lines, is sin? V,; the vertical scale, which determines the spacing
of the horizontal lines, is 1/#% On the left side of the plot the scale is
1/a* or 1/82 but it is marked « or 8; on the right side the scale is the
same as that on the left (function sin? V,), but it refers to 1/42 or 1/82
and is labeled « or 8. Similarly V, extends on the left side of the diagram
from 0° to 45° and is marked positive; on the right side of the diagram,
Ve extends in the reverse direction from 0° to 45° and is marked nega-
tive. Since the user of the diagram is interested chiefly in 2V, and 2V,
it might have been wise to label on the positive side the angles 2V, as
from 0° to 90°, and similarly on the negative side.

In a second nomograph Mertie solves directly the equation
sin® E/f%=(1/a?—1/82%)/(1/a2—1/4%), thus avoiding the need for a
second nomograph for the equation sin E=4 sin V.
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It is obvious that because of the closer spacing of the horizontal
lines with increase in value of @ and because the scale for sin? V, is more
closely crowded for small values of V,, the degree of accuracy of the
plot varies appreciably in its several sections. For minerals of low
birefringence, say y—a=0.010, the error in determination of 2Vy may
be several degrees because of the acute angle between a horizontal line
and the straight line passed through « on the left side and through ¥
on the right side of the diagram. Under these conditions a very small
error in the spacing of the horizontal lines on the chart produces a sig-
nificant error in the optic axial angle. As the result of a number of test
readings on the chart and a comparison with the values obtained by
direct computation by the exact formula, it may be stated that the
error made by use of the Mertie chart is in general somewhat less than
that obtained by use of the simple chart of figure 1, based on the approxi-
mate Mallard equation. The average error of the readings of 2V from
the Mertie chart for various refractive indices and various birefringences
was one degree. Many of the readings were too high; some were too low,
as might be expected.

In 1945 Waldmann published a nomogram based on equation (3).
By reducing the index ellipsoid to one in which the g-axis is unity and
adopting the ratios, A=a/B and C=+/8, whereby « and v are expressed
in terms of 8, he obtains from equation (3) the form tan? V=(1/A2—1)/
(1—1/C?), in which two independent variables instead of three occur.
To find the values of 1/A? and 1/C? he plots the values of 52 along the
ordinate axis and 1/A? and 1/C? along the abscissa, with the origin of
coordinates on the right. Through the ordinate, #*=0 at abscissa =0,
radiating lines are drawn across the diagram. The intersections of these
lines with the horizontal line through the ordinate at 82 yield the values
of (1/A%2—1) on the left of ordinate at x=1 and of (1—1/C?) on the right.
These values are labeled 4 and C; for convenience, the scale of the x-axis
is made 4-times that of the y-axis. To find the optic axial angle a second
diagram is used which consists of a right angle triangle whose sides in-
clude an angle of +45° and —45° respectively with the ordinate at
x=1. The sides of the triangle are graduated in units of the abscissae of
the first diagram increased in the amount, 1/cos 45°.

Theoretically the nomogram is correct and interesting; but for small
values of V it is unsatisfactory in practice, even when only a portion of
the original diagram is used and a correspondingly larger scale is adopted,
as has been done by Burri (1950, p. 49 and Plate 1). The crowding of the
diagonal lines through the apex of the triangle might be avoided by use
of a nomogram based on equation (4); but experience has proved that
the Mertie nomogram is better suited to the purpose.
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