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Assrnecr

A brief review is given of the use of the composite piezoelectric oscillator for determina-
tion of the elastic constants of small samples. A few preliminary results for single crystals
have been obtained, for comparison with older measurements.

INrnonucrtoN

Of some hundreds of important crystals, the elastic constants are
known for about forty, including artificially-grown metals and alkali
halides (Birch, et al., 1942, pp.66-70). Many of the measurements on
natural crystals of low symmetry were made by Voigt in an arduous
study of the static bending and twisting of crystalline bars or plates.
Voigt probably accomplished nearly all that is possible with natural
crystals by these methods, for which fairly large samples are required.
Recent advances have been possible partly because of the production of
relatively large synthetic crystals, partly because of the development of
new methods which permit the use of smaller samples. It is the purpose
of this note to draw attention to the existence of a method applicable to
many minerals which rarely occur in large sizes. Mineralogists, who have
first access to mineral specimens and are familiar with problems of crystal
orientation and crystal symmetry, may be encouraged by the simplicity
of the experimental arrangements to undertake further studies in this
relatively neglected field.

In recent years, a number of dynamic methods of measuring elasticity
have come into use; the one to be described is the method of the compos-
ite piezoelectric oscillator which has been employed in a number of impor-
tant investigations by Quimby (1925), Balamuth (1934) and others
(Cady 1946,p.484). In this technique, a small sample in the form of a
prism of uniform cross-section, is cemented to a piezoelectric crystal, usu-
ally quartz, whose natural resonant frequencies are known. Under suita-
ble restrictions, determination of the resonant frequency of the composite
oscillator then leads to a value for the resonant frequency of the sample
alone, from which, together with the dimensions and the density, one
elastic constant or one combination of elastic constants, may be com-
puted.

There is no way of avoiding the inherent complexity of crystal elas-
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ticity; in order to determine all of the elastic constants, there must be

at least as many measurements, for rods of difierent orientations and for

vibrations in difierent modes, as there are independent elastic constants.
The other remaining difficulties are those of cutting and orienting the

sample bars. In preliminary studies, samples as short as about 7 mm.

have been used. but there seems to be no reason to take this as a lower

limit. Samples several millimeters long should be obtainable from a

considerable number of hitherto unstudied crystalline varieties.

TnBonv

A theory of two- and three-part composite oscillators may be found in

the papers by Balamuth (1934) and Rose (1936). Consider two rods of
the same, uniform, cross-section, and let rod 1 be the sample, rod 2 the
piezoelectric crystal. Let the masses of the two rods be nt4 and rfl2, tESpQC-
tively, their individual frequencies, /r and /2. The frequency/ of the com-
posite oscillator formed by cementing these rods end to end is given by
(Rose,  1936):

(l) mjr tan r f /frlmzJz tan r f /fz:0.

Thus if / and /z can be determined experimentally, fi may be found by
(1). This relation is much simplified it f, fi and fz are all nearly equal.
If. fi and Jz are within about lO/6 of I then the following equation is valid
to within a per cent or so:

(2) J':f+(f-J,)m,fm'
This convenient approximation to (1) is often sufficiently exact.

The piezoelectric crystal may be cut so that it will be excited in
extensional vibrations or in torsional vibrations. For extensional vibra-
tions of thin bars, the lowest frequency of the sample alone, /l, is related
to its length I and density p by the relation, 2[tl: { E/ p, where E is the

"Young's modulus" in the direction of the axis of the rod. For bars
having a length less than three or four times the diameter, a correction
is required, which has been worked out for isotropic materials by Ban-
croft (1941). Assuming that this theory is approximately valid for crys-
tals, we may conclude that the correction is less than 1/6 so long as the
length is greater than twice the diameter, and "Poisson's ratio" is less
than 0.3. There is no correction of this kind for torsional vibrations of
rods of circular cross-section, for which the lowest frequency is related
to the modulus of rigidity or torsion G about the axis of the rod according
to 2Jl:lG/p.Equations (1) or (2) wil l hold approximately even if the
cross-sections of sample and piezoelectric crystals are not exactly equal,
except that for torsional vibrations the moments of inertia of the sections
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about the axis should be substituted for the masses. The shape of the
cross-section is not of consequence for thin bars in extensional vibration,
but the theory of torsional vrbration becomes more complicated for sec-
tions of other than circular shape (Cady, p. 113). Consequently the most
useful shape for samples is the circular cylinder, preferably having its
length several times its diameter.

Equations (1) and (2) are not restricted to the lowest or fundamental
modes, and it is often more convenient to excite the driving crystal in an
overtone than to employ a smaller crystal for which the same frequency
would be the fundamentall on the other hand a large ratio of masses,
,nz//h, exaggerates the effect of the frequency difierenceJ-Jr.

The relations between E and G, the orientation and the individual
elastic constants of the sample are given by Voigt, Cady, and for certain
cases, by Wooster,

ExppnrupNrar, AnraNcrMENTS

The detection of the resonant vibration of a piezoelectric crystal de-
pends upon the fact that at resonance, the impedance of the crystal
undergoes a marked reduction which may be recognized by a variety of
methods. The resonance curves for qtaftz and for most single crystals
are extremely narrow, so that the first requirement is a source of variable
frequency with fine frequency control through the correct range. The
oscillator should supply a voltage of the order of l0 or more volts across
the crystal and the series resistor R, of perhaps 0.5 megohm (Fig. 1).

OUARTZ

O S C I L TER

SAMPLE

VOLTMEL A T O R

Frc. 1. Schematic circuit for detection of resonance of the composite oscillator.
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A vacuum-tube voltmeter, with a short-period meter, or a cathode-ray
oscilloscope, is connected across R. As the frequency of the voltage is
varied, resonance is indicated by a sharp swing of the meter or a rapid
modulation of the pattern on the oscilloscope screen. The voltage across
R, small for frequerlcies away from resonance, may rise as much as sev-
eral volts at resonance.

There are various methods of calibrating the frequency scale, which
depend upon the available equipment. A number of standard frequencies
are broadcast from the Bureau of Standards. Crystals which resonate at
accurately-determined frequencies may be obtained from a number of
manufacturers. Unless the dimensions are unusually well-determined, it
ip not worth while to measure the frequency more accurately than to
about 1/1000; other uncertainties are l ikely to approach l/s.In the pres-
ent work, the 1000-cycle standard frequency signal of the Cruft Labora-
tory ip used as the reference frequency, and applied to the horizontal
axis of an oscilloscope. The signal from the variable frequency source is
applied to the vertical axis. Observation of the Lissajous figures produced
by this arrangement gives a great number of fixed points on the fre-
quency scale, at 1000-, 500-, or even 100-cycle intervals. A precision
capacitor is used for interpolation between these fixed frequencies.

For the minimum disturbance of the resonant frequency, the oscillator
should be supported at displacement modes. fn the fundamental exten-
sional mode, the plane normal to the axis through the center of the rod
is a node for longitudinal displacement, but the lateral displacement is a
maximum in this plane. The lateral motion is small for quartz, however,
and support by a spring clip at this position has a negligibly small effect
on the frequency. It is not even essential to place the clip at the exact
center, though the amplitude of resonance is reduced if the departure
from the central position is marked. The two leaves of the clip are sepa-
rately fastened to an insulating strip, and are used as the electrical con-
nections to the quartz oscil lator.

For extensional vibrations, X-cut qvartz bars of square cross-section
are convenient. The faces normal to the electric axis are coated with a
thin conducting film: sputtered gold surfaces are most durable, but serv-
iceable electrodes may be made either by pasting on thin metal foil or
by painting with a conducting paint such as silver paste or even Aquadd.g.
Rose (1936) has described a quartz oscillator of circular cross section
which may be excited in torsional modes. This oscillator has four elec-
trodes, connected in pairs, for which foil is well adapted. The crystal
may be supported by clips at its central plane without disturbance of
the frequency.

The composite oscillator is formed by cementing the sample of

il7
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unknown frequency to a quartz oscillator. A number of cements will

serve, such as DeKhotinsky wax or shellac flakes, and probably many

others. The shellac is softened on an electric plate, and applied sparingly

to the two ends to be joined, which are also warmed' The two rods are

then pressed together and allowed to cool. A strong joint is not required,

since, if the frequencies are properly matched, the interlace is a plane of

zero stress, but there should be a minimum of space between the rods,

and a minimum of foreign material. Soft waxes or cements having high

internal friction are undesi.rable. The composite oscillator is placed in

the spring clip with the qu.aftz oscillator centered on the clip (for the

fundamental modes), just as for the quartz alone.

Rnsurrs

No systematic investigation has as yet been completed, but the method

has been tested upon a set of samples of single crystals originally selected

by Professor Charles Palache for use in investigations of compressibility

by Professor P. W. Bridgman, in whose papers (1925, t928, 1949) btief

descriptions may be found. These samples ranged in length from about

1 inch down to 0.5 inch; some were ground to a uniform cross-section,

others were bounded by natural prism faces' A few were too irregular

for the present purpose. In no case were there enough samples for the

determination of all of the elastic constants, but comparison with meas-

urements by other observers is possible in a number of instances'

A set of X-cut quartz oscillators of square cross-section was prepared,

ranging in length from 1 inch to 0.275 inch, in diameter from about 0'2

inch to 0.125 inch, and in frequency from 100 KC to 370 KC. Successive

oscillators difiered in length and frequency by about 10le. The faces

normal to the X-axis were given a light coating of Aquadag.
Each sample was coupled to different quartz oscillators until a com-

posite oscillator was found whose frequency fell between the frequencies

of two adjacent quartz oscillators. Equation (2) then becomes a formula

for interpolation, and gives the frequency of the sample with an error

usually less than l/6. Greater precision could be obtained by more care-

ful matching of frequencies and of cross-sections.
As an example of the calculation, consider the sample of beryl with

axis normal to "c." Its mass was 1.205 gm., Iength 0.713 inch. The com-

posite oscillator, formed by joining this with a quartz oscillator of mass

0.515 gm., 0.450 inch long, with a natural frequency oI 234,670 cps, had

its resonance at 244,870 cps. Equation (2) then gives 249,240 for the

frequency of the beryl alone. The frequency of the composite oscillator

formed by joining the beryl with a quartz oscillator of mass 0'415 gm.

and frequency 262,630 cps was 253,000 cps. This gives 249,690 cps for the
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frequency of the beryl alone, about |/s difr.erent from the value found
with the other oscillator. The mean value, 249,460, gives the velocity,
2fl:9.03 km/sec.

The measurements are summarized in Table 1. The velocity which is
tabulated is 2 fl, with no correction for finite diameter, but the rato of
length to diameter was always greater than three or four. The modulus
is obtained f.rom 2Jl: 

"/E/p.The 
compliance, given in the last column,

is the reciprocal of the modulus. All of these results are for extensional
vibrations.

T.lnle 1. Er,lsrrc CoNsrnNrs or. ExrnxsroNel VrnnAu<l+s
Dnrnnurnrn lnou Fruqurxcrrs

Crystal Density Modulus, in Compliance, in
10rr dyne/cmz 16-re 6pz/dyne

Velocity
Km/sec

Beryl
par. c-axis 2.668
perp. r-axrs 2 .683

Tourrnaline, par. c-axis
black .i .091
yellow 3.028
pink 3.031

2 r . 8  s n : 4 . 6 0  ( 4 . 7 1 ) 1
21 .9 gn:4.57 (4.42)1

14.6 sa::6.84 (6.24)t (6.0),
16.6 s:a:6.03
16 .9 ssl:  5 .  91

22.9  s l :4 .36  (4 .43) '
29 .5  sz :3 .38  (3 .53) '
25 .6  ss :3 .91  (3 .84)1
37.8 srr:2.65 (2.69)s (2.89)l
38.2 ut:2.62
23 .0lorientation
23.6Jundetermined

25.6
17.9 szz-5.6

9.03
9.03

6 .88
7 . n
7  ^ 1

Topaz
@-axls 3.538 8.05
D-axis 3.545 9.12
,-axrs 3.548 8.49

Pyrite, o-axis (5.018)4 8.68
2nd sample 8.72

Andradite 5.482 g.13
Garnet (pyrope) 4.122 7.SI
Spodumene (3.186)4

o-axis 8.96
b-axis 2.50

Albite-olivine glass, (25/s MCrSiO4)
2 . 5 1 5.65 8.03

I Voigt (1928).
2 Osterberg and Cookson (1935).
3 Birch and Bancroft, unpublished.
a Ilandbook values, after Berman.

Where possible, values obtained by other methods are given in paren-
theses; most of these are by voigt, and show about ttre same amount of
discrepancy as has been found by other observers who have used dynami-
cal methods (cady, chapter vr). A difierence between voigt's isother-
mal values and the present adiabatic ones is to be expected, but this is
of the order of a few parts in a thousand.
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Table 2 shows results for a group of X-cut quartz rods all nearly 1 inch

Iong, and of approximately square cross-section, about 0.15X0.15 inch.

The mean value for 2 Jl is 5'457 km/sec; with p:2'654 we obtain srr
:12.64' 10-13 cm2/dyne, in good agreement with the results of other

investigators (Cady, 1946, pp. 135-138).

Tl:rlrn 2. Lownsr ExrrNsroN.qr FtrQuBltcv or X-cur Quenrz Bens

Length
inches

Frequency
KC

- ,  - a r l

km/sec

1 . 0 8 1
1 . 0 8 5
1 . 0 5 8
1 . 1 4 2
1 . 0 8 6
1 . 0 8 6
1 .080
1 .084
1 . 1 2 3
1 .086
1 : 7 2 2
1 .086

99.31
99.00

1 0 1 . 5 3
94.  35
98 .91
98.82
98 .89
98 .95
9 5 . 5 4
99.O7
95.70
98 .95

5 .453
5 . + J /

5.457
. ) - + / J

5.457
5.452
5 486 (poor)
5 .449
5 .4tJU

5.466
5 .455
5 .458
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