## METAMICT PITCHBLENDE FROM GOLDFIELDS, SASKATCHEWAN AND OBSERVATIONS ON SOME IGNITED PITCHBLENDES

## C. E. B. CONYBEARE\* AND R. B. FERGUSON<sup>†</sup> University of Manitoba, Winnipeg, Canada.

#### Abstract

Seven metamict pitchblendes, apparently the first to be reported, are described from three localities in the Goldfields area of Saskatchewan. The changes in x-ray powder pattern and color of the powder after ignition are tabulated for these and two other pitchblendes; the principal changes are the restoration of the structure of metamict specimens and the occasional development of  $U_3O_8$  with, or in place of  $UO_2$ . On the basis of these changes the nine pitchblendes examined are classified into five distinct types.

During the summers of 1947 and 1948, while employed by the Crown Company, Eldorado Mining and Refining (1944) Ltd., the first author collected a suite of pitcheblende specimens from the Ace and Christie Lake localities in the Goldfields area of northern Saskatchewan, mapped by Christie & Kesten (1949). With a view to determining roughly the U: Th ratio, the writers took x-ray powder photographs of two representative specimens of this suite, and were surprised to find that the patterns were very weak, suggesting that the uraninite is to a considerable degree metamict. As metamict uraninite has not, as far as the writers know, been previously described, it was decided to investigate these and other specimens further.

### LABORATORY PROCEDURE

Small chips were broken from those portions of the pitchblende samples which showed the least amount of impurities, and the purest pieces selected under a binocular microscope. In some cases it was impossible to separate pieces entirely free from the associated carbonate, hematite, pyrite, and pyrrhotite. The selected pieces were then crushed and powdered in a mullite mortar, and the powder was divided into two portions. One portion was heated for five minutes in a covered crucible over a Bunsen flame (roughly 800° C.), and parts of each portion were then mounted on separate glass rods and photographed using Cu radiation and a Ni filter (Cu  $K\alpha_1 = 1.5405$  A). Pitchblendes treated in this way included not only those from Ace and Christie Lakes, but also one from adjacent Beaverlodge Lake (all in the Goldfields area), one from Black Lake (Saskatchewan) situated approximately 100 miles east of Goldfields, and one from Great Bear Lake, Northwest Territories. Dr.

\* Assistant Professor of Geology.

† Assistant Professor of Mineralogy.

G. M. Brownell Chairman of the Department of Geology, University of Manitoba, kindly provided the specimens from Beaverlodge and Black Lakes.

#### **OBSERVATIONS AND CONCLUSIONS**

The results of this investigation appear in the accompanying table. The most striking observations are first, that certain specimens give a weak UO<sub>2</sub> pattern before ignition and a strong UO<sub>2</sub> pattern after, and second, that other specimens give a weak or a strong UO<sub>2</sub> pattern before ignition but a combination of a UO<sub>2</sub> and a U<sub>3</sub>O<sub>8</sub> pattern after, these two patterns varying in relative strength with different specimens. From chemical analyses it is well known that pitchblende consists of a mixture of variable amounts of UO<sub>2</sub>, U<sub>3</sub>O<sub>8</sub>, and UO<sub>3</sub>, and Goldschmidt & Thomassen (1923) have related the degree of oxidation with the *x*-ray powder pattern. Their conclusions, which offer an explanation for the present results, are summarized in Palache, Berman & Frondel (1944, p. 619):

"Natural uraninite containing much UO<sub>3</sub> through oxidation is apparently structurally identical with UO<sub>2</sub>, . . . but on ignition out of contact with oxygen it may recrystallize in part or entirely to U<sub>3</sub>O<sub>8</sub>, while pure UO<sub>2</sub> remains unchanged. The excess O in the oxidized uraninites may be in solid solution in the structure. Since UO<sub>3</sub> is apparently amorphous the x-ray evidence for excess O in the structure is not conclusive. Pitchblende is structurally identical with uraninite, but has a very small particle size (10<sup>-4</sup> to 10<sup>-7</sup> cm.) and somewhat smaller cell dimensions ( $a_0 = 5.42 - 5.45$ [kX])."

On the basis of Goldschmidt & Thomassen's work, and taking into account the observed metamict character of most of our specimens, it is convenient to classify them according to the x-ray patterns of the unheated and of the ignited powders. An extension of such a classification might well prove useful in describing the character of uraninites and pitchblendes in general. Following is our classification with the sample numbers which exemplify each type:

1. Crystalline  $UO_2$ , not oxidized; strong  $UO_2$  pattern before and after ignition; sample 9 (Figs. 1a, 1b).

2A. Metamict UO<sub>2</sub>, not oxidized; faint UO<sub>2</sub> pattern before ignition, strong UO<sub>2</sub> pattern after; samples 1 (Figs. 2a, 2b), 3, and 6.

\*\*\*\*

FIGS. 1-4. X-ray powder photographs with Cu/Ni radiation; camera radius  $360/4\pi$  mm. (1 mm. on film=1° $\theta$ ); full size reproductions of contact prints. FIGS. 1a, b. Pitchblende, Great Bear Lake, Northwest Territories, representing type 1. 1a, before ignition: UO<sub>2</sub>; 1b, after ignition: UO<sub>2</sub>. FIGS. 2a, b. Pitchblende, Ace Lake, Saskatchewan, representing type 2A. 2a, before ignition: metamict UO<sub>2</sub>; 2b, after ignition: crystalline UO<sub>2</sub>. FIGS. 3a, b. Pitchblende, Black Lake, Saskatchewan, representing type 3, 3a, before ignition: UO<sub>2</sub>; 3b, after ignition: U<sub>3</sub>O<sub>8</sub>. FIG. 4. Synthetic U<sub>3</sub>O<sub>8</sub>.

# METAMICT PITCHBLENDE FROM SASKATCHEWAN



2B. Metamict UO<sub>2</sub>, partly oxidized; faint UO<sub>2</sub> pattern before ignition, moderately strong UO<sub>2</sub> and  $U_3O_8$  patterns after; samples 4 and 7.

2C. Metamict UO<sub>2</sub>, largely oxidized; faint UO<sub>2</sub> pattern before ignition, moderately strong  $U_3O_8$  and faint UO<sub>2</sub> pattern after; samples 2 and 5.

3. Crystalline UO<sub>2</sub>, largely oxidized; strong UO<sub>2</sub> pattern before ignition, strong  $U_3O_8$  pattern after with no appreciable UO<sub>2</sub>; sample 8 (Figs. 3a, 3b).

The powder patterns representative of types 1, 2A, 3 are reproduced as Figs. 1, 2, 3 respectively, and for comparison, Fig. 4 shows the pattern of synthetic  $U_3O_8$  prepared by R. J. Arnott by heating  $UO_2(NO_3)_2 \cdot 6H_2O$ and then reducing the product with lampblack. The spacings and intensities of this pattern and those of the pitchblendes which gave  $U_3O_8$  lines, are in substantial agreement with the data for  $U_3O_8$  in the ASTM Card Index (1945, II-585). Some of the photographs which are reproduced show, in addition to the uranium oxide patterns, a few very weak lines due to impurities.

The question arises as to whether the oxidation from  $UO_2$  to  $U_3O_8$  is due to oxygen within the pitchblende, or to the addition of oxygen during heating. As all specimens were heated under uniform conditions it would be expected, if oxygen were added during heating, that all specimens would have changed in part to  $U_3O_8$ . As this is not the case it is inferred that the chemical changes are due to the state of oxidation of the pitchblende itself, prior to heating, or to the presence of oxygen in solid solution.

With the small number of specimens examined, it is difficult to make generalizations relating the degree of oxidation and the metamict character to any one of the cell edge, the locality, or the color of the streak. The cell edges, ranging from 5.39 to 5.45 A, fall a little outside the range given by Goldschmidt & Thomassen, 5.43 to 5.46 A, but almost within the range given by Arnott in a paper elsewhere in this issue, 5.403 to 5.475 A. Regarding locality, all the metamict pitchblendes come from the Goldfields area and show varying degrees of oxidation, whereas the specimens from both Black Lake and Great Bear Lake are crystalline and differ strongly in their degrees of oxidation.

Most of the samples showed a noticeable change in the color of the powder after ignition and, as indicated at the foot of the table, the colors were matched with those in the *Rock Color Chart*. The *Handbook of Chemistry and Physics* (1948, p. 514) gives the following colors for the uranium oxides;  $UO_2$ , brownish-black;  $U_3O_8$ , olive-green; and  $UO_3$ , yellowish-red. Our observed colors show limited correlation with these. The unoxidized pitchblendes (1, 3, 6, and 9) are mainly brownish-gray, most of them turning to a dark gray after ignition. The olive-green color of pure  $U_3O_8$  is suggested by only one of the specimens containing

404

| No.      | Locality                                   | *Color of<br>Unheated<br>Powder | *Color of<br>Ignited Powder | Strength of<br>Pattern             | a, A<br>(±0.01)<br>of UO2 | Remarks                                                        |
|----------|--------------------------------------------|---------------------------------|-----------------------------|------------------------------------|---------------------------|----------------------------------------------------------------|
| 1a<br>1b | Ace Lake<br>Ace Lake                       | Brownish-gray                   | Dark gray                   | Faint<br>Moderately<br>strong      | 5.43                      | Metamict UO2<br>UO2 structure restored                         |
| 2a<br>2b | Ace Lake<br>Ace Lake                       | Brownish-gray                   | Dark Yellowish-<br>brown    | Very faint<br>Moderately<br>strong |                           | Metamict UO2<br>Mainly U3O3, some UO2                          |
| 3a<br>3b | Ace Lake<br>Ace Lake                       | Dark greenish-<br>gray          | Dark gray                   | Faint<br>Strong                    | 5.39                      | Metamict UO2<br>UO2 structure restored                         |
| 4a<br>4b | Christie Lake<br>Christie Lake             | Olive-gray                      | Dusky Yellowish-<br>brown   | Very faint<br>Moderately<br>strong | 5.42                      | Metamict UO2<br>UO2 and U3O3                                   |
| 5a<br>5b | Christie Lake<br>Christie Lake             | Brownish-gray                   | Grayish-brown               | Faint<br>Faint                     |                           | UO2<br>Mainly U3O8, some UO                                    |
| 6a<br>6b | Christie Lake<br>Christie Lake             | Brownish-gray                   | Grayish-brown               | Faint<br>Strong                    | 5.41                      | Metamict UO <sub>2</sub><br>UO <sub>2</sub> structure restored |
| 7a<br>7b | Beaverlodge<br>Lake<br>Beaverlodge<br>Lake | Brownish-gray                   | Dusky brown                 | Faint<br>Moderately<br>strong      | 5.42                      | Metamict UO2<br>UO2 and U3O3                                   |
| 8a<br>8b | Black Lake<br>Black Lake                   | Dark greenish-<br>gray          | Dark greenish-<br>gray      | Strong<br>Strong                   | 5.45                      | UO2<br>Mainly U3O3                                             |
| 9a<br>9b | Great Bear<br>Lake<br>Great Bear<br>Lake   | Med. dark<br>gray               | Dark gray                   | Strong<br>Strong                   | 5.45<br>5.41              | UO2<br>UO2                                                     |

TABLE 1

\* Colors of the powders are close to those given in the Rock Color Charl (National Research Council, Washington, D. C.).

it, number 8, although the brownish shade assumed by 2, 4, 5, and 7 after ignition may be due to the development of  $U_3O_8$  in these powders. In general, however, our observations indicate that no definite deductions regarding the state of oxidation of the uranium in a given pitchblende can be made from the color of its powder either before or after ignition.

### SUMMARY

(1) The work of Goldschmidt & Thomassen (1923) and the present study indicate that a convenient way of determining the approximate degree of oxidation of the uranium in a given pitchblende is to make x-ray patterns of the powder before ignition and after ignition in a closed crucible. Specimens not oxidized give a UO<sub>2</sub> pattern in both cases; specimens highly oxidized give a UO<sub>2</sub> pattern before ignition and a  $U_3O_8$  pattern after; and specimens partly oxidized give UO<sub>2</sub> before and both UO<sub>2</sub> and U<sub>3</sub>O<sub>8</sub> after.

(2) Nine specimens of pitchblende studied in this way showed examples representing all stages of oxidation.

(3) Seven pitchblendes from the Goldfields area, Saskatchewan, are shown to be metamict, apparently the first metamict pitchblendes to be described. These varied widely in their degree of oxidation.

(4) On the basis of their crystalline or metamict character, and their degree of oxidation as described under (1), the nine specimens examined have been classified into five types. An extension of this classification might prove useful in describing all uraninites and pitchblendes.

(5) The streak of a given pitchblende does not, in general, give definite evidence concerning the state(s) of oxidation of the constituent, uranium.

#### REFERENCES

- ASTM (1945): X-ray diffraction patterns, first supplementary set of cards—Am. Soc-Test. Mat. (Philadelphia).
- GOLDSCHMIDT, V. M. & THOMASSEN, L. (1923): Die Krystallstruktur natürlicher und synthetischer Oxyde von Uran, Thorium und Cerium—Vidensk. Selsk. Skr., Mat.nat. Kl., 2. [Min. Abs. 2—206.]
- PALACHE, C., BERMAN, H. & FRONDEL, C. (1944): Dana's system of mineralogy, ed 7, 1—New York.
- CHRISTIE, A. M. & KESTEN S. N. (1949): Goldfields and Martin lake map-areas, Saskatchewan—Geol. Surv. Canada, paper 49-17.