NEW MINERAL NAMES

The most valuable part of the book to prospectors will probably be Chapter 7, which answers, in clear, non-technical language 17 basic questions that beginners are likely to ask.

E. WM. HEINRICH

University of Michigan

NEW MINERAL NAMES

Cymrite

W. CAMPBELL SMITH, F. A. BANNISTER AND MAX H. HEV, Cymrite, a new barium mineral from the Benallt manganese mine, Rhiw, Carnarvonshire: *Mineral. Mag.*, **28**, 676-681 (1949).

CHEMICAL PROPERTIES: Analyses were made by Hey, No. 1 below on 7 mg., almost free from impurities; No. 2 on 20 mg. that contained some reddish-brown oxide minerals. No. 3 is the theoretical composition for BaAlSi₃O₈(OH).

	SiO_2	Al_2O_3	BaO	H_2O	Fe ₂ O ₃	MnO	Sum
1.	44.8	10.5	[38.5]	3.1	2.8	0.3	[100]
2.	37.65	14.94	31.50	5.31	9.26	0.86	99.52
3.	45.79	12.95	38.97	2.29	_	_	100.00

Heated in a closed tube, the mineral decrepitates, gives off water, and becomes pearly, white, and opaque.

CRYSTALLOGRAPHY: Rotation and Laue photographs show the mineral to be hexaganal. There is a pseudo-cell with a' 5.33, c 7.67 Å.U., containing Ba₂AlSi₃O₈(OH); the true cell has a=8a'=42.6 Å.U. Cleavage basal, perfect. Prismatic cleavage noted in thin section. Flakes heated to bright redness had a 5.29, c 7.78 Å.U., but the index of refraction had dropped to 1.523. X-ray powder data are given.

PHYSICAL AND OPTICAL PROPERTIES: Colorless, in plates up to 7 mm. across and about $\frac{1}{2}$ mm. thick. Also in fibrous specimens with satiny luster. Optically uniaxial, negative; two samples gave (Na light):

	ω	é	Birefringence
1.	$1.6225 \pm .001$	$1.6125\pm.001$	$0.0094 \pm .0004$
2.	1.6195	1.6115 to 1.6140	0.008 (white light)
	For No. 2, ω (Hg-green)		

 D_4 ^{163.413 ±.005 by suspension in Clerici solution on four carefully selected fragments. OCCURRENCE: Associated with ganophyllite at the Benallt mine.}

NAME: From the Welsh name for Wales, Cymru (pronounced kumry).

MICHAEL FLEISCHER

Llallagualite

MARK C. BANDY, Mineralogia de Llallagua, Bolivia. La Paz, 1946, 69 pp.; through Mineral. Mag., 28, 732 (1949).

Provisional name for rhombohedral phosphate, which has perhaps the composition of monazite, named for the locality.

M. F.

Patiñoite

M. C. BANDY, op. cit.; through Mineral. Mag., 28, 735 (1949). "Provisional name for yellow tetragonal crystals, probably a phosphate or arsenate. Named for Simon Iturbi Patiño, who was the first to work the Llallagua mines."

DISCUSSION: Names such as these, published without descriptions, have no standing. M. F.

DISCREDITED MINERALS

Franquenite = Slavikite

RENÉ VAN TASSEL, L'identité entre slavikite et franquenite: Bull. inst. roy. sci. nat. Belg., 25, No. 7, 15 pp. (1949).

Comparison of franquenite (see Am. Mineral., 31, 327 (1946)) with slavikite from Valachov, Mandat, and Troja, Czechoslovakia, and Alcaparossa, Argentina, shows their identity. Analyses, optical data, and x-ray data are given.

M. F.

Renierite

J. F. VAES, La Reniérite (Anciennement appelée "Bornite orange"). Un sulfure germanifère provenant de la Mine Prince-Leopold, Kipushi (Congo belge): Ann. soc. belge géol., Bull. 72, Nos. 1-2, 19-32 (1948).

Re-examination of a mineral previously identified by various workers as orange bornite, cubanite, luzonite, and valleriite showed it to contain germanium.

CHEMICAL PROPERTIES: Analyses of four samples gave

	1	2	3	4
Cu	41.35	41.63	42.05	41.10
Fe	13.84	13.73	13.78	13.73
Ge	6.80	7.75	6.37	6.80
Zn	3.53	3.53	3.94	3.70
As	0.95	0,87	0.79	1.00
S	31.83	31.51	31.69	31.65
Pb	tr.	tr.	tr.	tr.
		3 <u></u>		
Sum	98.30	99.02	98.62	98.37ª

^a Also Ga tr., Sn 0.16, Insol. 0.20.

Spectrographic analysis showed no element present that would account for the low summations. Soluble in HNO_3 .

CRYSTALLOGRAPHIC AND PHYSICAL PROPERTIES: Occurs in idiomorphic grains and in crystals up to 1.5 mm. in geodes. Isometric hextetrahedral, but shows anisotropism in reflected light. Color orange bronze. Hardness $4\frac{1}{2}$, G. higher than that of malachite, lower than that of barite hence about 4.4. An impure sample had G. 4.31. Magnetic and has polarity.

OCCURRENCE: Occurs as inclusions in chalcopyrite, sphalerite, galena, and tennantite, and contains inclusions of tennantite.

NAME: For A. Renier, director of the Geological Survey of Belgium.

DISCUSSION: A comparison is given of renierite and germanite with the conclusion that the differences in chemical composition and physical properties are too great to consider renierite a variety of germanite. The differences are 13.8% Fe, (7.8% in germanite), bronze in color (germanite is reddish-gray), magnetism (not stated whether germanite is magnetic), anisotropy, (but it is stated that this may be an anomaly and that x-ray study is needed).

It seems to me that until further evidence is provided, the name reinierite is unjustified for what appears to be ferroan germanite.

M. F.