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ABSTRACT

This paper is concerned with the application of symmetry principles to the reduction

of terms in Fourier synthesis. For this purpose two theorems are first given, the reciprocal

symmetry theorem and the additivity theorem. To illustrate the use of these in performing

summations for symmetrical crystals, the form of the electron density function is derived

for Fourier syntheses of projections corresponding to the 17 plane groups' The extension

of the method to three-d.imensional syntheses is also discussed in sufficient detail so that it

can be applied to any space group.

hqtnotucrroN

In performing Fourier summations, it appears to be a common practice

to disregard the symmetry of the crystal and fi.t the summation into the

classical case of centrosymmetry [1] if possible, otherwise into the non-

symmetrical case. Failure to make use of the symmetry of the crystal

requires the summation to be made for a great number of unnecessary

terms, and thus increases the Iabor of performing the summation. It also

produces a summation in which the errors accumulate in an unsymmetri-

cal way. When symmetry-equivalent segments are selected from such a

synthesis, their edges usually do not match, and in order to make the

segments fit together, an adjustment of the values in the neighborhood of

the edges is necessary.
In this paper, some general devices for utilizing symmetry in perform-

ing the summation for symmetrical crystals are discussed. Specific forms

for the Fourier summations for the symmetries of the various projections

are derived, and the extension of the methods to three-dimensional sum-

mations is outlined.

Gnrqpnrlr- Fonu or rrrE FouRrER SUMMATToN

The Fourier summation for electron density has the following form:

p(ryz):lf i  LFhkp-tti(ta+kv+tz1- (1)
v 7 T 7  
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772 M. J. BUERGER

Since this form involves phases, it is convenient for computational pur-
poses to recast it in such a way that the real and imaginary parts are
separated. The decomposition of the complex terms into real and imagi-
nary components is as follows:

Fnu: Ann I iBn*t
e - d 6 : c o s q - i s i n e .

Making this substi tut ion in (1), i t  becomes

l _ : _ .
p ( . r 1 z )  :  

"  
L  1 L  | A * t + i B k i l l l c o s 2 r ( h x I k y 1 - t z )  - i s i n 2 n ( h r + k y + t z ) l . @ )

v h k l

, - :
: ; I LL ,qou cos 2r(hr * ky t tz),  o  

1 ,
- iAnn stn 2r(hr I fu -f lz)
I iBnw cos 2r(hr -f ky * lz)
- i2Bnn sin 2r(hr I ky * Iz). (5)

This summation is made over all indices from - co to oo. rf reflections
hkl and hkl are considered in pairs, then Friedel's law can be applied to
the members of the pairs. Friedel's law can be stated in the following
f  orm:

F n w : A a L l i B * ,

F n * - : A n m - i B u a .

From this statement of the law it is obvious that

Aata: Anr"t
B n n : - B n a ,  ( 7 )

Furthermore, for pairs of reflections hkl and hkl, the following relations
hold in the trigonometric parts of (5):

cos 2r(hr. -l ky -f lz) : cos 2r(Itx -f iy -l7r)
sin 2r(hx I b + lz) : - stn 2r(ilx -f iy -l Iz). (8)

In (5), the second line involves the sine, and according to (8) every term
in the summation for a particular hkl is exactly cancelled by a similar
term for the corresponding hH. similarly, the third line involves a B, and
according to (7) every term in the summation for a part\uiar hkl is
exactly cancelled by a similar term for the corresponding-hkl. The last
line does not cancel for hkl and h{r, because two sign changes are in-
volved in the relation between hkl and hH.

These considerations leave a comparatively simple form for Fourier
summation in terms of the real and imaginary components:

p (xyz ) : l f  i  I , 4ae ,cos  2 r (hx *ky  I t z ) f  B7 ,y ,3s in  2 r (h r l ky l t z ) .  ( 9 )Y T 7 7 " '

(2)
(3)

(6)
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Bnsrc PnTNcTPLES loR CoMsrNarroN

Introduction. In performing a Fourier summation, it should be possi-

ble to limit the actual summation to a representative section of the data

and then derive the rest of the summation by principles of symmetry.

This derivation, or combination, can be carried on either in reciprocal

space or in direct space. If it is carried out in reciprocal space, it is neces-

sary to know the effect of crystal symmetry in reciprocal space. If it is

carried out in direct space, it is necessary to know how to make the

combination. For these two situations, the following two theorems, re-

spectively, are very useful and are stated without proof [5].
Theorem of Reciprocal Symmetry. The symmetry of reciprocal space

i,s lhe same as the isomorphous point-group synxmetry of direct space, except

that eaery symmetry element containing the origin proiluces a phase change

d,n il,s equilalent space fields of s2rihtn. Here af n is the translation com-

ponent of the symmetry operation. Note that the phase shift becomes

zero for n:0, i.e., for pure reflections and pure rotations.
This theorem makes it unnecessary to derive phase relations between

F's by the tedious method of using structure factors [2]. All possible re-

Iations for any given space group can be written down by inspection

with the aid of the theorem.
Theorem of Additivity. It is convenient to regard the process of

Fourier synthesis as a transformation from a space to its reciprocal. For

combinations occurring in the new space, the theorem of additivity can

be employed. In the present application, the transformation is from re-

ciprocal space to direct space. The following theorem, of course, is valid

for either direction of transformation:
The transform oJ a sum is the sum oJ the transforms, i.e.,

7","(M I N) : T"a"(M) + T"a"@). (10)

In the present problem, this can be applied in the following way: If

reciprocal space is divided into blocks in any desired way, and if the

synthesis is carried out for each block, the complete synthesis is equal to

the sum of the separate syntheses of the blocks. In particular, each block

of reciprocal space may be one of the unsymmetrical fields related by the

several symmetry elements. Actually, since all fields are the same except

for orientation, the synthesis need be carried on for only one field. If the

resulting transform for this single field is then displaced in accordance

with the requirements of the operations of crystal symmetry, and the

several results at ryz added, the sum is the complete transform at ryz.

An equivalent way of performing the final summation is to start with

the transform of a single data field, then add together the value of the

transform at ryz and all symmetry-equivalent points, recording the sum

at Jcyz.
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774 M. J. BUERGER

This scheme provides a perfectly general way of performing the
Fourier synthesis for a symmetrical crystal. If it is pursued blindly, how-
ever, it sometimes involves unnecessary labor because in the process of
combining, some of the components of symmetrically related fields can-
cel. For this reason, it is important to first study the consequences of the
first theorem, which often reveals the manner in which certain compo-
nents of the unsymmetrical fields cancel when combined in symmetrical
manners.

Additional Aids to Synthesis. By the aid of the two theorems just
mentioned, the appropriate form of the synthesis for any plane group
or space group can be written down by inspection. If this is to be done
in a systematic way for a large number of groups, extensive use may be
made of generating operations. Thus, in deriving space groups, a group
may be derived from any of its subgroups by adding a generating opera-
tion to the subgroup. Similarly, in reciprocal space, a symmetry combi-
nation can be derived from a subgroup symmetry by adding a generating
operation. This involves an additional phase relation. Therefore, the
form for symmetrical Fourier synthesis may be derived from the form
appropriate to a subgroup by imposing upon it the appropriate additional
phase relationship of the added generating operation.

When the symmetry operations of the crystal transform each axis into
itself, then it is also possible to make the form of the synthesis more
compact by making use of the symmetrical properties of the trigono-
metric functions for positive and negative indices with respect to the
same axes. For brevity this property is called ,,interchange symmetry.,'
This kind of compaction is not possible when the symmetry operation
does not cause this particular type of transformation. It does not occur,
therefore, for trigonal or hexagonal crystals, nor for diagonal reflections.

Svulrnrnrcar, SyNrnBsns r,oR THE PreNn Pno;.ocrroNs

Introduction. Since the most common Fourier synthesis is probably
the plane projection, the derivation of symmetrical syntheses will be
illustrated by deriving the appropriate forms of the summations for
plane projections of the several possible plane symmetries. The form of
the summation corresponding to the electron density projected on a plane
normal to some rational axis is the two-dimensional equivalent of (g).
For clearness, suppose specifically that the electron density is desired as
projected on a plane normal to the c axis. The form of the summation is
then

1 4

p(*y) :: I I A7,p6cos2r(hr, * ky) I Bn*osin2r(hr I ky). (11)r tr
Here S is the area of the section of the cell perpendicular to the direction
of the projection, in this case normal to the c axis.
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To recast this in a form more convenient for computational pro-

cedures, the trigonometric functions of sums of angles are expressed. as
products, as first suggested by Beevers and Lipson [3] by the use of the

identities

cos (a f  0)  :  cosa cos P -  s in a s inB

sin (a f 0) : sin a cos 0 * cosa sin P'

Making these substitutions in (11) it takes the form

1 €
p(ry) : + I I ,4;p6 cos Zrhx cos 2nhy

t  o - - *

- .4r,m sin Zrhr sin 2rkY

f Bltosin Zrhrcos2rky
f B*o cos 2rhr sin 2nkY. (13)

Symmetry p1. Friedel's law provides the relation between the phases

of any two halves of reciprocal space. For symmetry 21, therefore, re-

ciprocal space may be divided into any two halves and the Fourier sum-

mation may be expressed in terms of either one. Furthermore' since the

symmetry operation 1 transforms each axis into itself, there is a second

relation between the indices with respect to positive and negative ends

of the same axis which arises due to the symmetrical properties of the

trigonometric functions. To take advantage of these two symmetries,

divide reciprocal space into four segments along the_reciprocal axes. The

four segments now contain F's having indices hk), hk), hk}, and hkl, re-

spectively. Now, the summation (13) extends over all reciprocal space.

It can be rewritten in terms of the summations over these four segments

of reciprocal space. In doing this a precaution should be observed: the

division lines of the reciprocal space into four segments occur through

the l ines h00,0k0,000, and 080. Each of these lines, therefore, belong to

its two adjoining sectors equally, while the origin point belongs to all

four segments. The Iines ft00, 0k0, i l00, and 080 should be counted only at

half value for each segment, and the origin point only at quarter value'

The special nature of the multiplicity of the edges and point of each

,.g-"ot is indicated by adding a prime to the summation' thus: f 
'.

With this convention, the expansion of (12) into separate summations
for each of the four sectors is

1 6
( * y ) :  ̂  I ' I '

"  
o o o

A*s cos 2rhr cos 2rky * Aixo cos 2nilr cos 2rky i,4r,ro cos 2rits, cos 2oLy * ,4r,ro cos 2rhx cos 2rky

- li,*o sin 2rhr sin 2rky - Air"o sin 2ril* sin 2rky - ,4aro sin 2nilr sit:I 2o,y -,4r,[o sin Zthr sin 2rky

f 8146 sin 2rhx cos 2rk y I 81,6 sin 2rilx cos 2nky I Br,*o sin 2rix cos 2"Ey f- Br,ro sin 2rh* cos 2rky

f  Bi ,6cos 2rhxsin2nky *  Btrocos 2r i lxs in2rky I  Br i locos Zr-hxsin 2"Ey I  Ba;ocos 2nhxsin2nky.

(r4)

I  t 5

(r2)
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Friedel's law provides symmetry relations between alternate columns.
According to (7) the,4's of alternate columns have the same sign, but
the B's have opposite signs. Furthermore, the cosines in alternate
columns are equal and have the same signs, while the sines are equal but
with opposite signs. Note, now, that alternate columns are related by
zero or two sign changes in the trigonometric functions if the coefficient
is an ,:1, whereas if the coefficient is a B, they are related by one sign
change in the trigonometric part. Since B also contributes a sign change
according to (7), alternate columns are related by an even number of
sign changes, and are, therefore, identical. As a consequence, (14) can be
more compactly expressed as twice the sum of the first two columns,
namely

) @

p(xy) :  : l '  \ 'Aorocos 2rht  cos 2nky *  .4r tocos 2rhx cos 2oky
J i r k

- .4*o sin 2rhx sin 2rky - A nro sin 2rlx sin 2rky

* Bm,o sin 2rhx cos 2rhy * B;a6 sin 2rix cos 2rky

* B*o cos 2rhr sin 2rky I Bnkg cos 2r|x sin Zrhy. (15)

The reduction of terms just discussed rnakes use of Friedel symmetry
only. Interchange symmetry is also present in pl. To take advantage of
this, express cos 2ril,r as cos 2rhx and express sin 2trh* as -sin 2rhx,.
This expresses (15) in terms of functions of positive angles only:

, 6

p(*y) : 1 l' l 'Anxo cos 2rhx cos 2rhy t ,4aro cos 2rhx cos 2rky
J h k

0

- ,41,6 sin 2nhx sin 2rhy - A n*o(-sin 2rhr) sin 2rhy

f Bs6 sin 2rhx cos2rky I 81,16(-sin 2rhtc) cos2rky

f -866 cos 2rhr stn 2rky -f Bt&o cos 2rh* sin 2rhy. (16)

Interchange symmetry provides no re lat ions among ,4 's or  among B's.
Therefore, although the first and second columns have similar trigono-
metric forms, they have difierent coefficients. Nevertheless, a more com-
pact expression, which represents a great reduction in the labor of the
synthesis, can be had by combining the trigonometric parts as follows:

P(aY)  :  L ' i ' " 0 " ^  r  z r ; ' ^ \  nn- L '  L ' (Aa' ,0 *  .4rm) cos2rhx cos2nky

- (Aw"o - Aw"o) sin 2rhx sin 2rhy

* (Bw"o - Bnr"d iin 2rhr. cos 2rhy

* (Bnm I Br,r"o) cos 2rhr sin 2rky. (17)
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Symmetry p2. Symmetry* P2 may be derived from symmetry pI by

adding to it the generating operation 2. According to the reciprocal sym-

metry theorem, this operation causes the symmetry

Fw"o: Fffio

Anno * iBn*o: Aa"o - iBn*0, (1g)
Bhvs :  shkn :Q ,

and Aw"o:  Fw"o.

Evidently the appropriate form of the symmetrical summation for sym-

metry p2 can be derived from that of symmetry 11 by applying the last

two conditions of (18) to (17). This provides the following form for p2:

p(*y) : L 2i 2'g*o 1 F;m) cosZrhr cos2rky

"  
o  

n o
- (Fn*o - Fn*o) sin 2rhr sin 2rhy. (19)

This is equivalent to the classical form of Beevers and Lipson [1] for

projections with centro-symmetry.
Symmetries pml and crnl. Both of the symmetties pml and cml have

identical symmetries in reciprocal space; these plane groups difier only

in the locations of points where the value of the transform does not

vanish. These symmetries can be derived from symmetries pI and cl,

respectively, by the addition of the generating operation m patallel to D.

According to the reciprocal symmetry theorem, this imposes the addi

tional relation

and

Fhas: Fi*01

An r "o :  A *0 ,

Bn*o : B7*0.

Under these conditions, the second and third rows of (17) vanish, leaving

the simpler form

+ The nomenclature of the plane groups used here difiers somewhat from that given

inside the covers of the writer's book X-RayCrystallography. The correspondence table is

as follows:

This paper This paper

(20)

x. R. c. X. R. C.

pr Pl
?ml PI
Psl Pb
cml Cl
p2 P2
p2mm Pll
lZss Pbo
!2sm Pbl
c2mm Cll

p3 c3
p3ml C3Il
p3lm C31l
p4 P4
p4mm P4ll

24gg (origin on 4) P4bl
p6 P6
p6mm C6lI
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p(ry) : * I; I' .4 rm cos Zrhx cos 2rky
t  t o T

+ 87,6 cos 2rhr sin 2nky (Zl)

:1 r  F-  - r
S T'L l 'O*ocos2rkx 

* .Ba*o sin 2rkl 
)cos2rhx. 

(22)

The latter form implies a considerable saving in labor. rt indicates that
for each available value of z, a summation over fr can be made for &
constant. This first summation requires both a cosine and a sine summa-
tion. But once this preliminary summation is complete; the resurting
coefficient requires only a cosine summation over the available values
oI h.

Symmetry pgl. Symmet ry pgI can be derived f.rom pl by the addition
of a generating operation g parallel to b. According to the reciprocal sym-
metry theorem, this symmetry element gives rise to the additional rela-
tion

Fpo6 : szrdhlz P7oo. (23)

Therefore, the reflections can be grouped into two classes:

for & even: Fn*o : Fi*n 
t,)n\

for  A odd:  Fn*o:  -  F ino.

This circumstance requires the summation to be split into two summa-
tions, one with ft even and the other with i odd. For ft even, the conditions
are exactly the same as in the last section, and consequently (22) holds
for this half of the summation. For fr odd, substitution of the real and
imaginary parts of the second half of (24) into (12) causes the first and
last rows to vanish, leaving

p(*y) : 1Li L,-.4r,rc sin 2rhtc sin 2nky
i ' 'a i '  s  7 k

0

f .8166 sin 2rhr cos2rky

: 11 ,F  -  -  -  ' ' l
S T L 4'- 

Oooo sin 2rky * B*o cos 2rkl 
)sin 

2rh*. (25)

The entire ,rr--ourion 

oi.r.tua.. 

summation over both E even and i
odd, namely an expressionlike (22) for fr even, plus (25) for fr odd. The
complete form is

p(*y) :+ 
?' I ri":^ 

cos2rky* B,,msin 2rkt]cos2rhtc

- 

[jr".rrt 

sin Zrkv - Bpss cos 2rkt]sin 2*hr. (26)
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This form looks somewhat formidable, but by appropriate selection of

masks for the Patterson-Tunell method [4], or Beevers-Lipson method

[1], it is no more difficult than (22).It merely requires difierent treatment

of even and odd terms.
For computations of projections having this symmetry, the preferred

form of the summation is (26). For the subsequent derivation of p2gg,

however, it is desirable to have the origin of the plane group chosen half-

way between neighboring glide-lines, the glides remaining parallel to b.

It can be easily shown [5] that a change of origin of a reflection parallel to b

by amount af m produces a phase change sf t2ri2hlm. For the new origin

shifted a/4ftom the first origin, (23) is, therefore, replaced by

F17,s : gztihl2 azt;kl2 Fhko

: e2ri(k+k\12 Fh*,. Q7)

By imposing this condition on (17) in exactly the same way it was done

for the first origin, the following form of the synthesis results:

p(*y) : + tt ' f f, 'o*ocos2rkv f Bi,*o sin 2nkvlcos2nhx' t l l l  J

- 
?i?'r" 

ssin2nhv- B,mcoS z'nt]'i^z'n.') Q8)

i+ft odd

Symmetries pTrnrn and cTtntn. These symmetries have subgroups 12
and, pml, or c2 and, cml, respectively. They can, therefore, be derived

from the first subgroup by adding m patallel to D, or from the second by

adding the operation 2. Either derivation may be used to find the ap-

propriate form of the Fourier summation. In the first derivation, condi-

tions (20) are imposed on (19), which causes the vanishing of the second

line;in the second derivation, conditions (18) are imposed on (22), which

causes the B parts to vanish. By either route, the Fourier summation

reduces to the very simple form

p(*y) : !2i } 'no*ocos2rlrr cos2rky. Qg)
t  ' o *

Symmetry pL{nr. This symmetry can be derived from its subgroup

pcl by adding the generating operation 2. This imposes conditions (18)

on (26), causing the B terms to vanish. The summation then assumes the

simpler form

p(r'y) : 1 \ Lf L'onm Cos Znh* cos ZrkY
S {  7* i l "  " -

0

- 
T *-I"o*, 

sinLrhtsioz*ktl- (30)
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Symmetryp2EE. II the origin of this group is placed at a 2-fold rotor,
with glide lines parallel to o and 6, the glides are located at a/ 4 and b /4.
A subgroup of this is pgl. The form of the Fourier summation for this
subgroup with the glide line removed from the origin by an amotnt a/4
was given in (28). The appropriate form lor p2gg can be derived from (28)
by imposing the conditions of the generating operation 2 on (28). These
conditions are given in (18). They cause the B terms in (28) to vanish,
leaving the simpler form

Symmetry p4. According to the reciprocal symmetry theorem, the re-
ciprocal to a crystal of symmetry p4 also has 4-fold symmetry. Therefore,
the following relations hold

Fnxo: F*no:  Fnr"o:  Fnio. (32)

Since alternate terms of (32) correspond to symmetry 2, conditions (1g)
can be imposed at once on the general form of the Fourier summation
(13) causing the last two lines involving B components to vanish. The
summation then involves only ,4 components, but the summation
Iimits extend over all reciprocal space. To take advantage of the 4-fold
symmetry, reciprocal space is divided along the h and k axes into four
equivalent parts and the entire summation split into four summations,
one for each of these quadrants. The summation then has a somewhat
similarform to (14), but with the B terms eliminated and.4's replaced
by the first two coefficients ol (32). using the arguments outlined f ollow-
ing equation (14), the summations of opposite quadrants can be added,
giving a form somewhat similar to (15), specifically

) 6

p(*y) : 1L' L'Fooocos2nhx cos2rky * Fuo cos Zrix cos Znlty. t 7  k

- Fr,ro sin 2rhx sin 2rky - F;1,6 sin 2rir sin Zrhy. (33)

All the F's in this summation are equal, according to (32). The trigono-
metric functions can also be changed into functions of positive angles, as
follows:

) q

p(*y) : lL' D'Fu*o cos Zrhx cos 2rky * Fr,*o cos 2rkr cos 2rhyS - i . *
0

- F7,a6 sin Zrhr sin Zrky t Fh7,s srn 2rfur sin 2nky. (34)

p(*y) :  * !  L: >'ohko cos zrhx cos 2rky
" l o n o

i+* ei.en

- Li L'ruoo sin 2rh:t sin 2oly\ .
" h k f

0
n+k odd

(31)
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The summation is now expressed in terms of the positive quadrant of
reciprocal space. Because of the equivalence of the or and az axes, it is
possible to reduce the number of terms in this summation still further. To
accomplish this, each column of (3a) is split into two columns, one for
each half-quadrant. The two halves of the quadrant are related by inter-
change of iz and ft indices. The limits of the original summation were
from 0 16 oo, but with the split summation, the lower l imit becomes the
diagonai (labelled D) of the positive quadrant. This effectively reduces
the number of terms in the summation by half. Let this summation be

represented by i'. Then the Fourier expression is
D

J 6

p(,y)  :  +L'L '
t  o r *

F7,16 cos 2rhr. cos 2rky -f 167,6 coS 2nhr cos 2nhy ! F7,6 cos 2nkr cos 2nhy * F*lo cos 2nhr cos 2rky

- Fi.ro sin Znhx sin 2nk! - F*no sin 2rkr sin 2rhy * Fmo sin Znkx sir' 2rhy * Pu,o sin Zrhx sin 2rky.

(3s)

It will be observed that, although the F's are of two kinds, the trigono-
metric parts of columns 1 and 4 are the same, and that the trigonometric
parts of columns 2 and 3 are the same. The summation can, therefore, be
more compactly expressed as

' . >
p(ry) : 1-l '  

l '(Fnno * Fmo) cos}rlrrcos2rhy ! (Fn*o* Fp,o) cos Zrhycos2rkr
t  o o o

(Fono - Fmo) sin2rhx sir.2rhy * (Fmo - F67,6) sin 2rhy sin2rkx. (36)

The form of (36) looks rather formidable. Actually the summation is
easy to perform. Since the parts of first and second columns are identical
except for interchange of r and y, (and the sign of the second row) only
the summations of the first column need be performed. The summations
of the second column can then be derived from them by interchanging
the axes of r and y. The entire summation consists of adding the results
of the two summations and recording them at coordinates 11.

Symmetry p4rnrn, Plane group p4mm can be derived from p4 by the
addition of the generating operation mparallel to a diagonal and through
the origin. According to the reciprocal symmetry theorem, this entails the
condition

Fnn : F*no. (37)

If this is applied to (36), it causes the sine terms to vanish, leaving only

p(xy) : !2i 2'n*ocos2rhx cos2rhyf Fi,76scos 2rhy cosZnhr. (38)
S l n ' ' *

D

To perform the summation, only the first term need be summed. The
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second term is derived from it by interchange ol x and y. The entire sum-
mation is the sum of these two summations.

Symmetry p4EE.Plane group p4ggcan be derived ftom p4 by the addi-
tion of glide through the origin and diagonal to the axes. The glide com-
ponent is a/2*b/2. According to the reciprocal symmetry theorem, this
gives rise to the reciprocal symmetry

F N.o : ezr i (h+k, / 2 F kho. (3e)

There are, therefore, two classes of reflections:

I o rh *keven :  Fw"o :F * r , o  
r 4o l

fot lz * ft odd: Fn*o: - Fxn.o.

For the first class of reflections, the second line of (36) vanishes, and for
the second class of reflections, the first line vanishes. Therefore, the entire
summation for p4gg is

l - /
p(ry) : + ) L' I /Fnrq cos Zrhx cos Zrky I F*o cos 2rlty cos 2rhx

t  
t  o r *

[+i eyen

+ I; t ' -  F6"nsin2rhrsin 2rky* &m sin Zrhy sin 2,k*\ .  (41)
h k l

D /
h+k odd

As before, Fourier summations need be made only for the parts of the
first column of (41). The summations of the second column are derived
from the first by interchanging the axes of r and y. The summation is
completed by adding together the separate summations.

Symmetry p3. The symmetry of trigonal crystals is best displayed by
choosing o.xe"s ay az, and ar at l20o intervals. With respect to these axes
the indices are h, k, and i, such that h*kli:0. According to the re-
ciprocal symmetry theorem, the relations between F's is

F1,pn:  Fp ;n :  F ;1 ,n . (42)

According to the additivity theorem, the Fourier synthesis can be written
as the sum of three syntheses, one for each of the symmetrically equiva-
Ient sectors of the trigonally symmetrical reciprocal structure. Since each
sector is nonsymmetrical, the summation for a sector has the form of (13)
but with summation l imits 0 to "c. The entire summation is

l 6

p ( * y ) : = I ' I '
t  o  

o *

.4;1s Cos 2nhr cos 2rky -f ,4766s Cos 2rkr cos 2ri,y I Atno cos Zrix cos 2rhy
- -4aro sin 2rhr sin 2nky - ,4r,ro sin 2rhr sin 2ri,y - A*o sin 2rir sin Zrhy

f 87,1,6 sin 2rhx cos 2nhy I Buo sin 2rhr cos 2ri.y I Bil,s sin 2nir cos 2rhy

f B;4 cos 2rhr sin 2rky -f Brro cos 2rkt sin 2riy I Btno cos 2rix sin 2rhy. (43)
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The symmetry of this summation is not appropriate for utilizing inter-
change symmetry of the trigonometric parts, so (a3) is the final form of
the summation for trigonal crystals. It has a formidable appearance.
Actually, however, only the summation represented by the first column
need be carried out. The summations represented by the other two col-
umns are identical with that of the first column except for rotation of
axes by 120o and 240o respectively. To perform the summation repre-
sented by (43), therefore, it is only necessary to make a Fourier summa-
tion of the first column, then add values for symmetrically equivalent
points, recording the sum of the values at xy.

Symmetry p3tm. Plane group p3Im can be derived fuom p3 by the
addition of a symmetry line diagonally between the axes. According to
the reciprocal symmetry theorem, this causes the additional relation

Fnro: Fnno. @)

To take advantage of this in reducing the number of terms involved in
the summation, reciprocal space is divided into the three sectors of the
summation (43), then each sector is divided into two segments along the
diagonal. The appearance of the summation is twice as large as (43),
since each column has a corresponding column with interchanged indices.
The summation has a formidable appearance. Actually, the Fourier part
of the summation need be performed on only one of these six columns.
The final part of the summation consists of recording at coordinate ry,
the sum of the results for this one summation which appear at the six
sets of coordinates related to *.y by the symmetry of the projection,
namely 3lrn.

A convenient way of performing the summation is to choose new axes
for the purposes of the summation. Instead of using atand @2 as axes for
the synthesis, the axes @1 and D (the diagonal) are used. The work of the
Fourier summation then consists of surnming over indices h, and k' , wherc
f is the index on D, namely,

4i 
r7'o*'o 

cos 2rh* cos 2rk'Y

- An*'o sin 2rhr sin 2rh'y
* Bn*' o sin Zrhr cos 2rk' y

f ,B7,1,q cos 2rhr sin 2rh'y. (45)

Symmetry p3mL. Plane group p3ml can be derived from p3 by the
addition of a reflection parallel to the long diagonal of the cell. This causes
or and - az to become equivalent. According to the reciprocal symmetry
theorem, the following symmetry arises in reciprocal space:

Fan -- Fiio. (46)
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To reduce the number of terms of the summation, reciprocal space is
divided into the three sectors of (43), then each sector subdivided into
segments along the two long diagonals extending from the origin. A con-
venient way to perform the actual summation is to choose these two
diagonals in reciprocal space as new axes, h' and fr'. The actual Fourier
part of the summation then consists of the single summation

T' 
oE' 

ou'n' o cos Zrh' tc cos 2rk'Y

- An,x'o sln 2rh'r sin 2rk'y
-f Bn' n, o sir' 2rh' r cos 2rk' y

I Bn'*,ocos2rh'x sin2rk'y. (47)

The summation is completed by adding the values of this summation at

the six points related by the symmetry 3ml and recording the sum at ry.
Symmetry p6. Plane group p6 can be derived from p3 by the addition

of the operation 2. Therefore, the appropriate form of the symmetrical
Fourier summation can be found by imposing conditions (18) on the

form of (a3). To take full advantage of the hexagonal symmetry, how-
ever, it is more convenient to rewrite (a3) in six parts, which is equivalent
to dividing reciprocal space into six sectors which are equivalent by
hexagonal symmetry. The edges of each sector are an o axis and a diagonal,
D. These edges may be chosen as axes on which the indices are h and kt.

If the sectors are considered in centrosymmetrical pairs, one member of
the pair has indices like hh\, while the other has the corresponding nega-
tive indices, ZiO. Thus the summation consists of three columns, each
column including opposite sectors, with summation limits 1tot11 - cc to
oo, namely

1 €
p ( *y ) :+ I ' I '

"  
o-*  * '

.  i , rocos 2rhxcos2; iy  + Aknlcos2r l , rcos2r?y f  .4; ;6cos 2nixcos2rEy

- ,4ao sin 2rhr sin 2riy - Anao sin 2nftl sin 2"Ey -- .4;*o sin 2ri* sin 2rhy

* Brio sin 2rhx cos Zrb I B*no sin 2rkr cos 2rE5' * Bar sin 2nix cos ZrEy

* Brzo cos 2rhtc sin 2r-i'y I Btio cos 2rhtc sin 2nEy f 8;6 cos 2rfu sin 2rEy. (48)

The number of terms in this summation may be reduced by a factor of

4 by applying conditions (18) for the two-fold operation. This eliminates
the B terms and doubles up the .4 terms, changing the summation limits
from - co to oo, to 0 to .o. The simplified summation appropriate to p6

is therefore

p(*y) : 1Li L'
t  o  

o  
o '

,4n;0 cos 2rhr cos 2iy I At no cos 2rhr cos Zolry * .4 i[o cos 2rix cos 2oEy

- ,4r,0 sin 2rhr sin 2ri, - A*7o sin Zrhn sin Zoity - ,{tto sin 2ni'x sin ZnEy- (49)
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As in the case of the trigonal summations, only the Fourier summation

for the first column of (49) need be performed. The summation is com-

pleted by adding together the results found for three coordinate positions

separated by 120o and recording the sum at the first of the three points.
-Symmetry 

p6mm, Plane group p6mm can be derived from its sub-

group 26 by the addition of a reflection parallel to an axis' This provides

the additional relation
Fhks : FH"n. (50)

This permits changing the summation Iimits of (a9) from 0 1s o , to D

to -. otherwise the form of the summation is the same. To perform the

summation, the Fourier part consists of summing for the first column

only. The summation is completed by adding together at coordinates *y

the six results found at points related to ry by symmetry 3mm'

Tnnpn DrunNsroNer- Surulrn'rroNs

Introduction. The computation of three-dimensional summations,

one level at a time, can be referred to the pattern established for two-

d.imensional summations. In the following discussion, it is assumed, for

sake of clearness, that it is desired to compute the electron density at

level zr. The value of z is, therefore, constant for the level.

The form of the Fourier summation for the general, non-symmetrical

case was given in (9). Since z1 is constant for the level, it is convenient to

separate the trigonometric parts of (9) into constant and variable por-

tions. This canbe done by uti l izing relations (12). Making these substi-

tutions, (9) becomes
1 -

,(xyz) : + t t I 1,,k, cos 2r(hr' I ky) cos2rl4 - Annsin Zr(hr * hv) sinZrlzr
,  o : . ,

* Br*r sin 2t(hr I kv) cos2tla* Bnrr cos 2r(hr * hy) sin2olzr l5l)

Now, for any selected level, 21, the values oI

Ct,nn : L Ann cos 2olzt

Se,*r : L Anu sin 2olz,

cn,n*t : 
4 

BnH cos 2olzt 
(52)

Sz,n*t : I Bss sin 2rlz

are fixed, and can be computed in advance of making the Fourier summa-

tion proper. Therefore, the summations over I can be eliminated in (51)

and it assumes the simpler form
. l o

p( ryz) : ; t  I  Ce. r ,ucos  2r (h r  *  k1 , )  -  Se .nus in2r (hx l  kv )
V h k

-i 

,",*, cc 2r(hr * kv) I Ca.r,u sin 2n(hx I kv) (53)
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1 4
: 

V L ). (Ce *Sa)aucos 2r(htc I ky) * (Ca - S,a) sin 2r(htc * ky). (54)
Y h k

For compact".rr, ,, one takes

(Ce *  Ss)nH: A'* t

( C s - S t ) a a : B ' n * t

then (54) has the form

p(wz) :-I I A'p61cos2n(hr I ky) I B,nr"rsin2r(hx I hy). (56)V T  *

This is exactly tfr" r"-" form as (11) for the non-symmetrical two-
dimensional summation. obviously, therefore, the three-dimensional
summation can be handled exactly like the two-dimensional one after
the coefficients (55) have been computed from (52). rn practicar summa-
tion, (56) should be recast into product form exactly the same as (13)
except for primes indicating the composite nature of the coefficients
I N  ( J J I .

Sylrlmrnv BnrwBrN Upppn ,q.No Lowpn Recrpnoclr, SpacB

If the upper and lower halves of the crystal are related by any sym-
metry, the upper and lower halves of reciprocal space have a correspond-
ing symmetry according to the reciprocal symmetry theorem. This
specializes the forms of the coefficients in (55). To see how this afiects
(54), split each coefficient into a part pertaining to the upper half of
reciprocal space and another pertaining to the lower half. Then (5a) be-
comes

1 €
p(xvz) : 

;++ 
(Ce+ * c* * sa+ * s6-)61cos 2r(htt * ky)

'+ 
(CB+ I Cn- - Se* - S;-)l,tr sin 2r(htc I ky). (57)

under the following headings, the way in which these coefficients are
related in important cases, according to the reciprocal symmetry theorem,
are tabulated. The simplified form of (57) is also listed:

Inversion cenler:

Fnnt : F**1,

A + :  A -  C + :  C -
and  B+ :  -  B_  S+ :  -S_

Ce+: Ct- ,

Cp*:  -  Ca-,

Sa+ : Sr-,

Se+: - S,r-.

p(tclzt) : 1Z > (Ce+ * Sr-) cos 2r(hx I ky). (58)

(ss)
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Ref,ection:

;.';'.=I:''
and  B+ :  B - .

o(rezt) : 
i++Cl+ 

cos 2r(kc * hY)

* Ca+ sin 2n(hr * kil. (59)

Glide, tr anslation-component' a f 2 :

h eaen h oil.il

Fnm: F*1,  Fnu:  -  Fn* i

Adn :  An f i ,  Ann :  -  An * i

and B*t : Bnnl, Bua: - Bn*t.

1 /

pQ'yzr) : + ) L t ca+ cos 2r(hr I kv) * CB+sin2r(h* * kv)
, l h  h

+"D t ,5a+ cos 2n(hr * kv) - St+ sin 2r(hr+ rr) | ' (60)
h h l

odd

I I
4-JotA rorutxon l la:

)::'-'^::'
and Bnn : Bnni.

,
p(ryzr) : + t I Ce+ cos 2n(hx * kY)

V h k

f C31 sin Zr(hx I ki. (61)

l l  t ^
2-fold, screw lla, translation-component af 2:

h et;en h odd.

Ftn: FnFt, Fw"t : - F*1

Anm:  A *1 ,  Anu :  -  Au "1

and Bnn: B*b Bntt  :  -  B*-
a /

p(rc!z) : + I D I Cr*.ot 2r(h* * kv) * Cn+ sin 2n(hr * kv)
, l h  k

- t t Ss1 cos 2r(hx * ky) - Se+ sin 2n(htc1 lr)I |62)
h h l

Computation. fftJ.o-putation of a three-dimensional *--utio,t

has the symmetry of the section at which the summation is made. This is

usually lower than the symmetry of the projection on a plane parallel to

the section. On the other hand, the trigonometric part of the summation

may have the same symmetry as that of the projection. In any case, when

it is necessary to utilize the symmetry of the section, the same system can

be followed which was discussed in detail for the projections, except that
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the coefficients involved are those shown in detail in (57) instead of
Annt and Bn t.

The additivity theorem suggests a general method of computing which
can be used for three dimensional summations; the Fourier synthesis is
performed at z1 and -21 for data contained in a representative unsvm-
metrical block of the reciprocal structure. (rn this synthesis, terms which
the previous section indicates will cancel on combination may be omitted.)
This gives the Fourier transform at ryzy and ryfu for one block of the
reciprocal structure. The summation is completed by adding together
at tcyzl the results obtained for the several points equivalent by sym-
metry to *yzL.
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