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ABSTRACT

This paper is concerned with the application of symmetry principles to the reduction
of terms in Fourier synthesis. For this purpose two theorems are first given, the reciprocal
symmetry theorem and the additivity theorem. To illustrate the use of these in performing
summations for symmetrical crystals, the form of the electron density function is derived
for Fourier syntheses of projections corresponding to the 17 plane groups. The extension
of the method to three-dimensional syntheses is also discussed in sufficient detail so that it
can be applied to any space group.

INTRODUCTION

In performing Fourier summations, it appears to be a common practice
to disregard the symmetry of the crystal and fit the summation into the
classical case of centrosymmetry [1] if possible, otherwise into the non-
symmetrical case. Failure to make use of the symmetry of the crystal
requires the summation to be made for a great number of unnecessary
terms, and thus increases the labor of performing the summation. It also
produces a summation in which the errors accumulate in an unsymmetri-
cal way. When symmetry-equivalent segments are selected from such a
synthesis, their edges usually do not match, and in order to make the
segments fit together, an adjustment of the values in the neighborhood of
the edges is necessary.

In this paper, some general devices for utilizing symmetry in perform-
ing the summation for symmetrical crystals are discussed. Specific forms
for the Fourier summations for the symmetries of the various projections
are derived, and the extension of the methods to three-dimensional sum-
mations is outlined.

GENERAL FORM OF THE FOURIER SUMMATION
The Fourier summation for electron density has the following form:

1 0
plxys) = 7 3.3 Y Py tritathviin, N
"ok 1
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Since this form involves phases, it is convenient for computational pur-
poses to recast it in such a way that the real and imaginary parts are
separated. The decomposition of the complex terms into real and imagi-
nary components is as follows:

Frg = Apa 4 iBu 2)
€% = cos ¢ — 4 sin ¢. 3)

Making this substitution in (1), it becomes

1 L]
playz) = = hZ kz IZ {4 + By} {cos 2w (hx + ky +15) — dsin 2o (hx + by +12) }. (4)

—
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D Asas cos 2x(hx + by + I5)
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— 1A sin 27 (hx + ky + Iz)
~+ B cos 2x(hix + ky + lz)
— % By sin 27 (hx + ky + I2). (3)

This summation is made over all indices from — = to «. If reflections
hkl and hkl are considered in pairs, then Friedel’s law can be applied to
the members of the pairs. Friedel’s law can be stated in the following
form:

Frei = A + B

Figy = Awwt — iBpe. (6)

TFrom this statement of the law it is obvious that
Amr = Aim
By = — Big. @

Furthermore, for pairs of reflections %kl and kkl, the following relations
hold in the trigonometric parts of (3):

cos 2m(hx + ky + 1) =  cos 2x(hx + ky + Iz)

sin 2w (hx 4 ky -+ Iz) = — sin 2x(hx + by + i2). (8)

In (5), the second line involves the sine, and according to (8) every term
in the summation for a particular %kl is exactly cancelled by a similar
term for the corresponding %%/ Similarly, the third line involves a B, and
according to (7) every term in the summation for a particular %kl is
exactly cancelled by a similar term for the corresponding k#l. The last
line does not cancel for %kl and %kl, because two sign changes are in-
volved in the relation between A&l and %kl

These considerations leave a comparatively simple form for Fourier
summation in terms of the real and imaginary components:

1 o
playz) = 7 ; Zk) ; Apir cos 2w(hx + ky + Iz) + Buusin 2n(hx + by +15).  (9)
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Basic PRINCIPLES FOR COMBINATION

Introduction. In performing a Fourier summation, it should be possi-
ble to limit the actual summation to a representative section of the data
and then derive the rest of the summation by principles of symmetry.
This derivation, or combination, can be carried on either in reciprocal
space or in direct space. If it is carried out in reciprocal space, it is neces-
sary to know the effect of crystal symmetry in reciprocal space. If it is
carried out in direct space, it is necessary to know how to make the
combination. For these two situations, the following two theorems, re-
spectively, are very useful and are stated without proof [5].

Theorem of Reciprocal Symmetry. The symmelry of reciprocal space
is the same as the isomorphous poini-group symmetry of direct space, except
that every symmetry element containing the origin produces a phase change
in ils equivalent space fields of e**/». Here a/n is the translation com-
ponent of the symmetry operation. Note that the phase shift becomes
zero for n=0, i.e., for pure reflections and pure rotations.

This theorem makes it unnecessary to derive phase relations between
F’s by the tedious method of using structure factors [2]. All possible re-
lations for any given space group can be written down by inspection
with the aid of the theorem.

Theorem of Additivity. It is convenient to regard the process of
Fourier synthesis as a transformation from a space to its reciprocal. For
combinations occurring in the new space, the theorem of additivity can
be employed. In the present application, the transformation is from re-
ciprocal space to direct space. The following theorem, of course, is valid
for either direction of transformation:

The transform of a sum is the sum of the transforms, i.e.,

sz/z(M + N) = zyz(M) + szz(N)- (10)

In the present problem, this can be applied in the following way: If
reciprocal space is divided into blocks in any desired way, and if the
synthesis is carried out for each block, the complete synthesis is equal to
the sum of the separate syntheses of the blocks. In particular, each block
of reciprocal space may be one of the unsymmetrical fields related by the
several symmetry elements. Actually, since all fields are the same except
for orientation, the synthesis need be carried on for only one field. If the
resulting transform for this single field is then displaced in accordance
with the requirements of the operations of crystal symmetry, and the
several results at xyz added, the sum is the complete transform at xyz.
An equivalent way of performing the final summation is to start with
the transform of a single data field, then add together the value of the
transform at xyz and all symmetry-equivalent points, recording the sum
at xyz.
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This scheme provides a perfectly general way of performing the
Fourier synthesis for a symmetrical crystal. If it is pursued blindly, how-
ever, it sometimes involves unnecessary labor because in the process of
combining, some of the components of symmetrically related fields can-
cel. For this reason, it is important to first study the consequences of the
first theorem, which often reveals the manner in which certain compo-
nents of the unsymmetrical fields cancel when combined in symmetrical
manners.

Additional Aids to Synthesis. By the aid of the two theorems just
mentioned, the appropriate form of the synthesis for any plane group
or space group can be written down by inspection. If this is to be done
in a systematic way for a large number of groups, extensive use may be
made of generating operations. Thus, in deriving space groups, a group
may be derived from any of its subgroups by adding a generating opera-
tion to the subgroup. Similarly, in reciprocal space, a symmetry combi-
nation can be derived from a subgroup symmetry by adding a generating
operation. This involves an additional phase relation. Therefore, the
form for symmetrical Fourier synthesis may be derived from the form
appropriate to a subgroup by imposing upon it the appropriate additional
phase relationship of the added generating operation.

When the symmetry operations of the crystal transform each axis into
itself, then it is also possible to make the form of the synthesis more
compact by making use of the symmetrical properties of the trigono-
metric functions for positive and negative indices with respect to the
same axes. For brevity this property is called “interchange symmetry.”
This kind of compaction is not possible when the symmetry operation
does not cause this particular type of transformation. It does not occur,
therefore, for trigonal or hexagonal crystals, nor for diagonal reflections.

SYMMETRICAL SYNTHESES FOR THE PLANE PROJECTIONS

Introduction. Since the most common Fourier synthesis is probably
the plane projection, the derivation of symmetrical syntheses will be
illustrated by deriving the appropriate forms of the summations for
plane projections of the several possible plane symmetries. The form of
the summation corresponding to the electron density projected on a plane
normal to some rational axis is the two-dimensional equivalent of (9).
For clearness, suppose specifically that the electron density is desired as
projected on a plane normal to the ¢ axis. The form of the summation is
then

1 @

plxy) = = > 2 A cos 2r(hx + ky) + B sin 2x(hx + ky). (11)
h k

Here S is the area of the section of the cell perpendicular to the direction
of the projection, in this case normal to the ¢ axis.
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To recast this in a form more convenient for computational pro-
cedures, the trigonometric functions of sums of angles are expressed as
products, as first suggested by Beevers and Lipson [3] by the use of the
identities

cos (@ 4+ B) = cos a cos B — sin a sin 8
sin (¢ + B8) = sin a cos 8 + cos « sin B. (12)

Making these substitutions in (11) it takes the form

1 o
pxy) = 5 > 3" Ao cos 2xhx cos 2wky
hok
= Ahko sin Zvrhx sin 27rky
+ Bpio sin 2whx cos 2mky
-+ Bjxo cos 2whx sin 2wky. (13)

Symmetry pl. Friedel’s law provides the relation between the phases
of any two halves of reciprocal space. For symmetry p1, therefore, re-
ciprocal space may be divided into any two halves and the Fourier sum-
mation may be expressed in terms of either one. Furthermore, since the
symmetry operation 1 transforms each axis into itself, there is a second
relation between the indices with respect to positive and negative ends
of the same axis which arises due to the symmetrical properties of the
trigonometric functions. To take advantage of these two symmetries,
divide reciprocal space into four segments along the reciprocal axes. The
four segments now contain F’s having indices #%0, #£0, kO, and hEO, Te-
spectively. Now, the summation (13) extends over all reciprocal space.
It can be rewritten in terms of the summations over these four segments
of reciprocal space. In doing this a precaution should be observed: the
division lines of the reciprocal space into four segments occur through
the lines %00, 0%0, 200, and 0%0. Each of these lines, therefore, belong to
its two adjoining sectors equally, while the origin point belongs to all
four segments. The lines %00, 0k0, 200, and 0%0 should be counted only at
half value for each segment, and the origin point only at quarter value.
The special nature of the multiplicity of the edges and point of each
segment is indicated by adding a prime to the summation, thus: DL
With this convention, the expansion of (12) into separate summations
for each of the four sectors is

1 0
(xy) = EZh Zk:
0

Ao cos 2mha cos 2mky 4+ Ao cos 2ahx cos 2nky + Ao cos 2whx cos 2wky + Anko cos 2mhx cos 2xky

— Ao sin 2rhx sin 2wky — Ao sin 2akx sin 2zky — Aigo sin 2whx sin 2mky — Agio sin 2mhx sin 2rky
~+ By sin 2whx cos 2wky -+ By sin 2wk cos 2xky + Bgo sin 2ahx cos 2wky + Biio sin 2whx cos 2xky
+ Buo cos 2whx sin 2wky 4+ Birg cos 2wha sin 2nky 4+ Biko cos 2whx sin 2nky + Bigo cos 2mwhax sin 2rky.
(19
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Friedel’s law provides symmetry relations between alternate columns.
According to (7) the A’s of alternate columns have the same sign, but
the B’s have opposite signs. Furthermore, the cosines in alternate
columns are equal and have the same signs, while the sines are equal but
with opposite signs. Note, now, that alternate columns are related by
zero or two sign changes in the trigonometric functions if the coefficient
is an A, whereas if the coefficient is a B, they are related by one sign
change in the trigonometric part. Since B also contributes a sign change
according to (7), alternate columns are related by an even number of
sign changes, and are, therefore, identical. As a consequence, (14) can be
more compactly expressed as twice the sum of the first two columns,
namely

2

plxy) = 3 ! " Ang 08 2mhax cos 2wky + Ao cos 2mha cos 2aky
P

— Ao sin 27hx sin 2wky — Ao sin 2wk sin 2wky
+ Bhio sin 2wk cos 2wky + Big sin 2ok cos 2xky
+ Bhxo cos 2mhx sin 2wky + Bugg cos 2ahx sin 2rky. (15)

‘The reduction of terms just discussed makes use of Friedel symmetry
only. Interchange symmetry is also present in p1. To take advantage of
this, express cos 27hx as cos 2whx and express sin 2rhx as —sin 2whx.
This expresses (15) in terms of functions of positive angles only:

plxy) = % ;’wzk:’A wko €08 2ahix cos 2wky + Arko cos 2whx cos 2rky
0
— Ao sin 2whx sin 2xky — Agwe(—sin 2whx) sin 2wky
+ Bio sin 2whx cos 2aky + Buio(—sin 2mhx) cos 2rky
-+ Bio cos 2mhx sin 2wky -+ Bio cos 2nhx sin 2wky. (16)

Interchange symmetry provides no relations among A’s or among B’s.
Therefore, although the first and second columns have similar trigono-
metric forms, they have different coefficients. Nevertheless, a more com-
pact expression, which represents a great reduction in the labor of the
synthesis, can be had by combining the trigonometric parts as follows:

2 0
play) = 5 S 3 " Amo + Amo) cos 2l cos 2wky
n Y

- (A B0 — Aiko) sin 27hx sin 27r/ey
+ (Buwro — Biro) sin 2whx cos 2wky
+ (Brko + Bio) cos 2wha sin 2wky. an
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Symmetry p2. Symmetry* p2 may be derived from symmetry p1 by
adding to it the generating operation 2. According to the reciprocal sym-
metry theorem, this operation causes the symmetry

Fro = Fiko
Awro + tBro = Amo — 2Bio,
Biw = Biwo = 0,
and Awro = Furo.

(18)

Evidently the appropriate form of the symmetrical summation for sym-
metry 2 can be derived from that of symmetry p1 by applying the last
two conditions of (18) to (17). This provides the following form for p2:

2 @
p(xy) = 5 D1 > (Fuwo + Fiao) cos 2whx cos 2aky
%
o
— (Fuo — Fro) sin 2wha sin 2wky. (19)

This is equivalent to the classical form of Beevers and Lipson [1] for
projections with centro-symmetry.

Symmetries pm1 and cm1. Both of the symmetries pm1and cm1 have
identical symmetries in reciprocal space; these plane groups differ only
in the locations of points where the value of the transform does not
vanish. These symmetries can be derived from symmetries p1 and cl,
respectively, by the addition of the generating operation m parallel to b.
According to the reciprocal symmetry theorem, this imposes the addi-
tional relation

Firo = Fhio,
A = Arro,
and Bhko = Biko. (20)

Under these conditions, the second and third rows of (17) vanish, leaving
the simpler form

* The nomenclature of the plane groups used here differs somewhat from that given
inside the covers of the writer’s book X-Ray Crystallography. The correspondence table is
as follows:

This paper X.R.C. This paper X.R.C
pl P1 »3 C3
pml P] p3mi Cc3i1
24! Pb p3lm c3u
cml Cl p4 P4
2 P2 phmm P4ll
p2mm Pl pdgg (origin on 4) P4bl
p2gg Pba 6 P6
p2gm Pbl pOmm coll

2mm cil
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4 ©
plxy) = 5 2.7 2.7 A cos 2whz cos 2uky
v
+ B cos 2wha sin 2nky 21
4 @
=5 DLl [ 2/ Anag cos 2rkx + Bio sin 2xky :l cos 2rhz. (22)
k k
0

The latter form implies a considerable saving in labor. It indicates that
for each available value of %, a summation over & can be made for %
constant. This first summation requires both a cosine and a sine summa-
tion. But once this preliminary summation is complete; the resulting
coefficient requires only a cosine summation over the available values
of h.

Symmetry pgl. Symmetry pgl can be derived from p1 by the addition
of a generating operation g parallel to b. According to the reciprocal sym-
metry theorem, this symmetry element gives rise to the additional rela-
tion

Frg = €22 Fiy. (23)
Therefore, the reflections can be grouped into two classes:

for keven: Fuy = Fino

24
for k odd:  Fu = — Fixo. @)

This circumstance requires the summation to be split into two summa-
tions, one with % even and the other with % odd. For % even, the conditions
are exactly the same as in the last section, and consequently (22) holds
for this half of the summation. For £ odd, substitution of the real and
imaginary parts of the second half of (24) into (17) causes the first and
last rows to vanish, leaving

4 w©
plxy) = —= 27 D°'— Ayq sin 2zha sin 2rky
k odd h k

0

+ Bho sin 27hx cos 27ky
4 o
=3 PES [ D/ — Ao sin 27ky + Biug cos Zrky] sin 2rhx. (25)
h k
0 0

The entire summation includes summation over both % even and %
odd, namely an expression like (22) for k even, plus (25) for k£ odd. The
complete form is

4 -] o0
plxy) = 5 Z’ l: Z’Ahk@ cos 2mky + Big sin 27rky:| cos 2mwhx
[ 0
A

k even

— l: D’ A o sin 2rky — Big cOS 27rky:| sin 2rhy. (26)
0
% odd
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This form looks somewhat formidable, but by appropriate selection of
masks for the Patterson-Tunell method [4], or Beevers-Lipson method
[1], it is no more difficult than (22). It merely requires different treatment
of even and odd terms.

For computations of projections having this symmetry, the preferred
form of the summation is (26). For the subsequent derivation of p2gg,
however, it is desirable to have the origin of the plane group chosen hali-
way between neighboring glide-lines, the glides remaining parallel to b.
It can be easily shown [5] that a change of origin of a reflection parallel to b
by amount a/m produces a phase change of ¢**#*/™. For the new origin
shifted ¢/4 from the first origin, (23) is, therefore, replaced by

Frro = 2Tk 2 g2kl 2 Fino

= 2Ttk 2 Py, 27)

By imposing this condition on (17) in exactly the same way it was done
for the first origin, the following form of the synthesis results:

0 0
h k
htk even

— Z l: zlAhkO sin 27ky — Bixo cOs 21rky:| sin 27rhx.} (28)
h L

h+k odd

4 @ L
o(y) = E{ P [ 37 Ao cos 2wky + Bhio sin 21rky:| cos 2rhx

Symmetries p2mm and c2mm. These symmetries have subgroups 2
and pml, or ¢2 and c¢ml, respectively. They can, therefore, be derived
from the first subgroup by adding m parallel to b, or from the second by
adding the operation 2. Either derivation may be used to find the ap-
propriate form of the Fourier summation. In the first derlvatlon condi-
tions (20) are imposed on (19), which causes the vanishing of the second
line; in the second derivation, conditions (18) are imposed on (22), which
causes the B parts to vanish. By either route, the Fourier summation
reduces to the very simple form

4 o0
p(xy) = 5 S 3" "Fug cos 2wk cos 2rky. (29)
vk

0
Symmetry p2gm. This symmetry can be derived from its subgroup
pgl by adding the generating operation 2. This imposes conditions (18)
on (26), causing the B terms to vanish. The summation then assumes the
simpler form

play) = -

S % Z ZIFhko cos 2whx cos 2wky

h keven
a

— 37 3P sin 2wha sin 27rky§ 5 (30)

h  kodd
0
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Symmetry p2gg. If the origin of this group is placed at a 2-fold rotors
with glide lines parallel to a and 4, the glides are located at a/4 and /4.
A subgroup of this is pgl. The form of the Fourier summation for this
subgroup with the glide line removed from the origin by an amount a/4
was given in (28). The appropriate form for p2gg can be derived from (28)
by imposing the conditions of the generating operation 2 on (28). These
conditions are given in (18). They cause the B terms in (28) to vanish,
leaving the simpler form

4 0
plxy) = 5 { Z' > *Fe cos 2nhax cos 2mky
*x

0
h+k even

— 2" 3 'Fup sin 2rhx sin 27rky} y (31)
ok k

h4k odd

Symmetry p4. According to the reciprocal symmetry theorem, the re-
ciprocal to a crystal of symmetry p4 also has 4-fold symmetry. Therefore,
the following relations hold

Fueo = Frno = Figo = Frho. (32)
Since alternate terms of (32) correspond to symmetry 2, conditions (18)
can be imposed at once on the general form of the Fourier summation
(13) causing the last two lines involving B components to vanish. The
summation then involves only 4 components, but the summation
limits extend over all reciprocal space. To take advantage of the 4-fold
symmetry, reciprocal space is divided along the % and % axes into four
equivalent parts and the entire summation split into four summations,
one for each of these quadrants. The summation then has a somewhat
similar form to (14), but with the B terms eliminated and A’s replaced
by the first two coeflicients of (32). Using the arguments outlined follow-
ing equation (14), the summations of opposite quadrants can be added,
giving a form somewhat similar to (15), specifically

2 © ~
olxy) = & D Z/Fhko cos 2mhx cos 2wky + Fino cos 2wkx cos 2rhy
13 k

— Fuo sin 27k sin 2wky — Fipo sin 2wk sin 2rhy. (33)

All the F’s in this summation are equal, according to (32). The trigono-
metric functions can also be changed into functions of positive angles, as
follows:

2 0
plxy) = — Z' Z'F wko €08 2whx cos 2mwky + Furg cos 2wk cos 2rhy
Bk

0
— P sin 2whx sin 2nky -+ Fug sin 2wk« sin 2wky. (34)

95}
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The summation is now expressed in terms of the positive quadrant of
reciprocal space. Because of the equivalence of the ¢; and a, axes, it is
possible to reduce the number of terms in this summation still further. To
accomplish this, each column of (34) is split into two columns, one for
each half-quadrant. The two halves of the quadrant are related by inter-
change of % and % indices. The limits of the original summation were
from O to =, but with the split summation, the lower limit becomes the
diagonal (labelled D) of the positive quadrant. This effectively reduces
the number of terms in the summation by half. Let this summation be

)

represented by Y. Then the Fourier expression is

D
2 o
plwy) = =2/ 2/
S % %
D
Fuko cos 2whx cos 2mky + Fing cos 2wkx cos 2why + Furo cos 2wkx cos 2mhy -+ Fro cos 2whx cos 2wky
— Firo sin 2mwhz sin 27ky — Frpo sin 27kx sin 2mhy + Fheo sin 2wkx sin 2m/ey + Fug sin 2mhx sin 2wky.
(3%

It will be observed that, although the F’s are of two kinds, the trigono-
metric parts of columns 1 and 4 are the same, and that the trigonometric
parts of columns 2 and 3 are the same. The summation can, therefore, be
more compactly expressed as

) )
plxy) = 5 2! D (Fuao + Fino) cos 2mhx cos 2nky + (Fao + Frno) cos 2why cos 2mkx
B E
— (Fuo — Frno) sin 2wha sin 2wky + (Fuwo — Frao) sin 27hy sin 2xkx. (36)

The form of (36) looks rather formidable. Actually the summation is
easy to perform. Since the parts of first and second columns are identical
except for interchange of x and vy, (and the sign of the second row) only
the summations of the first column need be performed. The summations
of the second column can then be derived from them by interchanging
the axes of x and y. The entire summation consists of adding the results
of the two summations and recording them at coordinates xy.

Symmetry p4mm. Plane group p4mm can be derived from p4 by the
addition of the generating operation m parallel to a diagonal and through
the origin. According to the reciprocal symmetry theorem, this entails the

condition
Fixg = Frro- (37)
If this is applied to (36), it causes the sine terms to vanish, leaving only
4 ©
p(xy) = 3 D1 > 'Fug cos 2nhx cos 2wky + Fug cos 2why cos 2xkz. (38)
h k
D

To perform the summation, only the first term need be summed. The
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second term is derived from it by interchange of x and y. The entire sum-
mation is the sum of these two summations.

Symmetry p4gg. Plane group pdgg can be derived from p4 by the addi-
tion of glide through the origin and diagonal to the axes. The glide com-
ponent is a/2+5/2. According to the reciprocal symmetry theorem, this
gives rise to the reciprocal symmetry

FhkO = e21ri(h+k)/2Fkh0. (39)

There are, therefore, two classes of reflections:
for i + keven: Firo = Fro
fork+ kodd:  Fuo = — Frno-
For the first class of reflections, the second line of (36) vanishes, and for
the second class of reflections, the first line vanishes. Therefore, the entire
summation for pdgg is

(40)

h
D
kh+k even

4 L3
plxy) = E{ 2" > 'Fug cos 2whx cos 2nky 4 Fixg cos 2xhy cos 2wk
%

I3

+ > ' — Fis sin 2ahz sin 20ky + Fup sin 27ky sin 27rkx} 5 41
%

D
h4k odd

As before, Fourier summations need be made only for the parts of the
first column of (41). The summations of the second column are derived
from the first by interchanging the axes of # and y. The summation is
completed by adding together the separate summations.

Symmetry p3. The symmetry of trigonal crystals is best displayed by
choosing axes @1, @s, and a3 at 120° intervals. With respect to these axes
the indices are k, %, and ¢, such that A+%+i=0. According to the re-
ciprocal symmetry theorem, the relations between F’s is

Eyro = Frio = Fino- (42}

According to the additivity theorem, the Fourier synthesis can be written
as the sum of three syntheses, one for each of the symmetrically equiva-
lent sectors of the trigonally symmetrical reciprocal structure. Since each
sector is nonsymmetrical, the summation for a sector has the form of (13)
but with summation limits 0 to «. The entire summation is

1 ]
play) = —2_" 3’
S W 5
0
Ao cos 2rhx cos 2aky + Arig cos 2ok cos 2mwiy 4+ Ao cos 2wix cos 2why

~ Ao sin 2whx sin 2wky — Apgo sin 2wk sin 2wy — Auno Sin 2wix sin 2why
+ By sin 2wha cos 2mky + Biio sin 2wka cos 2wiy -+ Bing sin 2mix cos 2why
~+ Buo cos 2whx sin 2wky + By cos 2wkx sin 2xiy + Bix c0s 2wix sin 2wky. (43)
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The symmetry of this summation is not appropriate for utilizing inter-
change symmetry of the trigonometric parts, so (43) is the final form of
the summation for trigonal crystals. It has a formidable appearance.
Actually, however, only the summation represented by the first column
need be carried out. The summations represented by the other two col-
umns are identical with that of the first column except for rotation of
axes by 120° and 240° respectively. To perform the summation repre-
sented by (43), therefore, it is only necessary to make a Fourier summa-
tion of the first column, then add values for symmetrically equivalent
points, recording the sum of the values at xy.

Symmetry p31m. Plane group p31m can be derived from $3 by the
addition of a symmetry line diagonally between the axes. According to
the reciprocal symmetry theorem, this causes the additional relation

Furo = Frao. (44)

To take advantage of this in reducing the number of terms involved in
the summation, reciprocal space is divided into the three sectors of the
summation (43), then each sector is divided into two segments along the
diagonal. The appearance of the summation is twice as large as (43),
since each column has a corresponding column with interchanged indices.
The summation has a formidable appearance. Actually, the Fourier part
of the summation need be performed on only one of these six columns.
The final part of the summation consists of recording at coordinate xy,
the sum of the results for this one summation which appear at the six
sets of coordinates related to xy by the symmetry of the projection,
namely 31m.

A convenient way of performing the summation is to choose new axes
for the purposes of the summation. Instead of using a; and as as axes for
the synthesis, the axes a; and D (the diagonal) are used. The work of the
Fourier summation then consists of summing over indices % and %', where
k' is the index on D, namely,

@

2" 2" Ao cos 2whx cos 2wk'y
P
0

— Ao sin 2whx sin 2nk’y
-+ Buwo sin 27hx cos 2wk’y
+ Bwo cos 2rhx sin 2wk’y. (45)

Symmetry p3ml. Plane group p3ml can be derived from p3 by the
addition of a reflection parallel to the long diagonal of the cell. This causes
a; and —a; to become equivalent. According to the reciprocal symmetry
theorem, the following symmetry arises in reciprocal space:

Frro = Fiio. (46)
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To reduce the number of terms of the summation, reciprocal space is
divided into the three sectors of (43), then each sector subdivided into
segments along the two long diagonals extending from the origin. A con-
venient way to perform the actual summation is to choose these two
diagonals in reciprocal space as new axes, 4’ and &’. The actual Fourier
part of the summation then consists of the single summation

> > Awrg cos 2ah'x cos 2wk'y

h k*
)

— Apwosin 2ok'x sin 2wk’y
4+ Bwwosin 27h'x cos 2wk'y
+ Buwocos 2wh’x sin 2mk'y. 4n

The summation is completed by adding the values of this summation at
the six points related by the symmetry 3m1 and recording the sum at xy.

Symmetry p6. Plane group p6 can be derived from $3 by the addition
of the operation 2. Therefore, the appropriate form of the symmetrical
Fourier summation can be found by imposing conditions (18) on the
form of (43). To take full advantage of the hexagonal symmetry, how-
ever, it is more convenient to rewrite (43) in six parts, which is equivalent
to dividing reciprocal space into six sectors which are equivalent by
hexagonal symmetry. The edges of each sector are an ¢ axisand a diagonal,
D. These edges may be chosen as axes on which the indices are & and &’
If the sectors are considered in centrosymmetrical pairs, one member of
the pair has indices like %0, while the other has the corresponding nega-
tive indices, 4£0. Thus the summation consists of three columns, each
column including opposite sectors, with summation limits from — % to
o namely

ploy) = = 7 L
S ¥
Anxio cos 2wl cos 273y + Ao cos 2mkx cos 2wky + Ao cos 2wix cos 2wky
— Ajigo sin 2wha sin 2m3y — Agro sin 2wkx sin 2oky — A% sin 2mix sin 2aky
+ Biio sin 2mhax cos 27y + B sin 2mkx cos 2nky + Bk sin 2mix cos 2nky
-+ Biio cos 2ahx sin 2n3y + Buho cos 2akx sin 2mky + Bigo cos 2mix sin 27ky. (48)

The number of terms in this summation may be reduced by a factor of
4 by applying conditions (18) for the two-fold operation. This eliminates
the B terms and doubles up the A terms, changing the summation limits
from — w to o, to 0 to . The simplified summation appropriate to p6
1s therefore

2 ®©
oloy) = <200 2
PR
0
Apdo cos 2rhx cos 27y + Agrg cos 2wk cos 2rhy + Ao cos 2wix cos 2wky
— Axio sin 2wk sin 2m5y — Agio sin 2rka sin 2ahy — Ao sin 2aix sin 27ky. 49)
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As in the case of the trigonal summations, only the Fourier summation
for the first column of (49) need be performed. The summation is com-
pleted by adding together the results found for three coordinate positions
separated by 120° and recording the sum at the first of the three points.
Symmetry p6mm. Plane group pbmm can be derived from its sub-
group p6 by the addition of a reflection parallel to an axis. This provides
the additional relation
Fuwo = Frna. (50)
This permits changing the summation limits of (49) from 0 to =, to D
to . Otherwise the form of the summation is the same. To perform the
summation, the Fourier part consists of summing for the first column
only. The summation is completed by adding together at coordinates xy
the six results found at points related to xy by symmetry 3mm.

THREE DIMENSIONAL SUMMATIONS

Introduction. The computation of three-dimensional summations,
one level at a time, can be referred to the pattern established for two-
dimensional summations. In the following discussion, it is assumed, for
sake of clearness, that it is desired to compute the electron density at
level z;. The value of z is, therefore, constant for the level.

The form of the Fourier summation for the general, non-symmetrical
case was given in (9). Since z is constant for the level, it is convenient to
separate the trigonometric parts of (9) into constant and variable por-
tions. This can be done by utilizing relations (12). Making these substi-
tutions, (9) becomes

1 w0
pleyn) = 3 333 Auacos 2a(ha + ky) cos 2xls — Awe sin 2w (hx + ky) sin 2alz
h k I
+ B sin 2m(hx + ky) cos 2xls + Bu cos 2z (hx + ky) sin 2wz (51)
Now, for any selected level, z;, the values of

Cama = 2 A cos 2alz

I
Samr = 2, Aww sin 2ailz

l

52
Crugr = 2, B cos 2wz &2)
7

St = 2 B sin 2wz
are fixed, and can be computed in advance of making the Fourier summa-

tion proper. Therefore, the summations over / can be eliminated in (51)
and it assumes the simpler form

1 o0
ployn) = SO Camg cos 2r(x + ky) — S sin 2w(ix + ky)
h k

+ Sp.wr cos 2r(hx + ky) + Cpoaa sin 2w(hx + ky) (53)
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1 3
= 2 2 (Ca+ Su)ua cos 2w(ha + ky) + (Cp — Sa) sin 2n(hx + ky). (54)
h k

For compactness, if one takes

(Ca+ SB)iwr = A'war
and (Cs — Sa)mr = B'um
then (54) has the form

(35)

plxyz) = % ; § A’ cos 2r(x + ky) + Blua sin 2x(hx + ky). (56)
This is exactly the same form as (11) for the non-symmetrical two-
dimensional summation. Obviously, therefore, the three-dimensional
summation can be handled exactly like the two-dimensional one after
the coefficients (55) have been computed from (52). In practical summa-
tion, (56) should be recast into product form exactly the same as (13)
except for primes indicating the composite nature of the coefficients

in (55).
SYMMETRY BETWEEN UPPER AND LOWER RECIPROCAL SPACE

If the upper and lower halves of the crystal are related by any sym-
metry, the upper and lower halves of reciprocal space have a correspond-
ing symmetry according to the reciprocal symmetry theorem. This
specializes the forms of the coefficients in (55). To see how this affects
(54), split each coefficient into a part pertaining to the upper half of
reciprocal space and another pertaining to the lower half. Then (54) be-
comes

1 -]
pleym) = — 22 2 (Cay + Ca_ + Sy + Sp_)w cos 2r(hx + ky)
h k

+ (Coy + Cp- — Say — Sa)uasin 2a(hx + ky). (57)

Under the following headings, the way in which these coefficients are
related in important cases, according to the reciprocal symmetry theorem,
are tabulated. The simplified form of (57) is also listed:

Inversion center:

Fi = F*i,

Ay =4_ C,.=C._
and B, = — B_ S =—-5_

Cay = Cu.,

Cpy = — Cp,

Sy = Sp,

Say = — Sa_.

2
plxyz) = = ; Zk: (Cay + Sp-) cos 2x(hx + ky). (58)
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Reflection:
Fig = Fral,
A=A
and B,=B_.
2
p(xyz) = 7 Z Z Cay cos 2x(hx + ky)
h Ok
+ Cgy. sin 2x(hx + ky). (59)
Glide, translation-component a/2:
I even h odd
Fiyy = Fxi, Frgq = — Fuui
Apr = A, Apag = — Ami
and By = B, Buy = — Bui.

2
p(xyz) = 7{ Z Z Ca, cos 2x(hx + ky) + Cpy. sin 2x(hx + ky)
P

even

+ >3 Sp.cos 2w(hx + ky) — Say sin 2x(kx + ky)} . (60)
ogd k
2-fold rotation Ha:
Fuu = Fri,
Soo Apa = Awey
and By = Biii.
2
p(xyz) = 7 33" Cay cos 2w(hx + ky)
h k

+ Cgy sin 2x(hx + ky). (61)

2-fold screw Ha, translation-component a/2:

h even h odd
Fury = Frii, Fig = — Friz
Awet = Awwi, Awg = — Awit
and By = Brar, By = — Brii.

2
plxyz) = V{ >3 Caycos 2n(hix + ky) + Cay sin 2w (hx + ky)
bk

even

+ 33 Spycos 2n(hx + ky) — Say sin 2w(hx + ky)} . 62)
13 %
odd

Computation. The computation of a three-dimensional summation
has the symmetry of the section at which the summation is made. This is
usually lower than the symmetry of the projection on a plane parallel to
the section. On the other hand, the trigonometric part of the summation
may have the same symmetry as that of the projection. In any case, when
it is necessary to utilize the symmetry of the section, the same system can
be followed which was discussed in detail for the projections, except that
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the coefficients involved are those shown in detail in (57) instead of
A and By,

The additivity theorem suggests a general method of computing which
can be used for three dimensional summations; the Fourier synthesis is
performed at 3 and —g for data contained in a representative unsym-
metrical block of the reciprocal structure. (In this synthesis, terms which
the previous section indicates will cancel on combination may be omitted.)
This gives the Fourier transform at xyz; and xy2; for one block of the
reciprocal structure. The summation is completed by adding together
at xyz the results obtained for the several points equivalent by sym-
metry to xyz.
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