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Arsrucr

Triangles, tetrahedra, and hypertetrahedra may be used as reference frames for charting

variables whose sums equal unity. The number of variables that may theoretically be

charted equals the number of vertices in the figure.
Hypertetrahedra of z dimensions are bounded by vertices, edges, triangular faces,

tetrahedra, and hypertetrahedra oI n-l and fewer dimensions. Direct geometric charting
with regard to hypertetrahedra is impossible, as such figures can not be envisaged or con-
structed; but the variables rray be plotted in groups in relation to the bounding triangles

and tetrahedra.
Methods were recently presented by the writer for charting five, six, and seven variables

on the bounding faces of hypertetrahedra of four, f.ve, and six dimensions. Methods are now
presented for charting five and six variables in relation to the bounding tetrahedra of

hypertetrahedra of four and five dimensions. For seven variables, these methods have no

advantage over charting on the bounding triangular faces. The plotting of variables in re-

lation to the bounding tetrahedra produces surfaces or space curves, of which contour maps
or calibrated plane curves are made. Charts are given for the proper presentation of such

figures.
Another method is given for projecting directly the quintets of a hypertetrahedron of

four dimensions into reliationship with one of its bounding tetrahedra. This results in the
production of surface contour maps, which ordinarily are best presented as models, photo-
graphs, or perspectives. This method is also generalized into five dimensions, but the results

are regarded as impracticable.
Trilinear and quadriplanar coordinates are used in this presentationl and data are given

for the use of negative coordinates, and for magnificaticn of scale.

INrnonucrroN

Variables or components, whose sums total 100 per cent, may be
charted on the boundaries of hypertetrahedra of z dimensions. Such
boundaries comprise vertices, edges, triangular faces, tetrahedra, and
hypertetrahedra of less than rz dimensions. The boundaries that are useful
in practical charting are the triangular faces and the tetrahedra. fn a
paper recently published, the writert showed how the bounding triangu-

* Published by permission of the Director, U. S. Geological Survey.

t Mertie, John B., Jr., Charting fir'e, six, and seven variables on hypertetrahedral faces:
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lar faces may be utilized in charting five, six, and seven variables. The
present paper, which is a continuation and completion of this topic, pre-
sents methods for charting five and six variables in reference to the
bounding tetrahedra.

Tnrr-rNB.ln Coonlrn atrs

The graphic utilization of positive trilinear and quadriplanar coordi-
nates is almost universal among research workers in the physical sciences,
so that this usage need not be described. The analytic applications of
these coordinates are not at all well known, but inasmuch as this topic is
not a part of this paper, it will likewise be omitted. Certain graphic appli-
cations, however, that are not well known, are worthy of mention.

Frc. 1. Positive and negative trilinear coordinates.

An equilateral triangle of reference, ABC,known as a trigon, is shown
in Fig. 1. Apoint P, having the tri l inear coordinates (o,A,'y), or specifi-
cally (25, 35, 40), is also shown. Draw the line BP and extend it to meet
the side AC.The intersection, Py, defines the point that will result from
charting the components,4 and C, if these are recomputed to 100 per cent.
Similar points are indicated, though not lettered, on the sides ,48 and
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BC. The point Pe is the orthogonal projection of P on AC. The bilinear
coordinates of Ps on the l ine AC arc found to be (alB/2), (t+p/2), or
specifically (42+,57+). The orthogonal projections of P on the sides ,4,B
and BC will define two other points similar to Ps, whose "y and a coordi-
nates are respectively eliminated. This simple projective relationship may
be generalized to three and four dimensions.

Negative trilinear coordinates may also be charted. One example of
their application was given in the paper cited above, and others might be
mentioned. Trilinear coordinates may comprise three positive values,
two positive and one negative values, or one positive and two negative
values. Three negative coordinates are not possible. A set of coordinates
with one negative value will define a point outside the trigon, and op-
posite the side from which the negative coordinate is measured. A set
having two negative coordinates will define a point within the exterior
angle formed by extending the sides from which the negative coordinates
are measured. Examples in Fig. 1 are the points p and R, having re-
spectively the coordinates (90, -20, 30) and (-10, -15, 125). The
point pr is defined exactly as was the point P1;and giving due regard to
the negative value of B, the point Qo becomes the orthogonal projection
of Q on the side ,4C. Using the negative values of a and B, of the point R,
the points Rr and R6 are similarly located.

QuannrlleNAR CooRDTNATES

A regular tetrahedron of reference ABCD, with the front f.ace ADC
removed, is shown in perspective in Fig. 2. The bounding faces are lined
for trilinear coordinates, so that ABC, ABD, and BCD are triangles of
reference, or trigons, similar to the one shown in Fig. 1. The point P has
the quadriplanar coordinates (a, 8,,y,6), or specifically (I5,20,30, 35).
Draw the line DP and extend it to intersect the face ABC. The resulting
point, P1, has the trilinear coordinates that will be obtained by recomput-
ing to 100 per cent the components A, B, and C. The point P6, which is
the orthogonal projection of P onto the side ABC, will be found to have
the tri l inear coordinates (al6/3), (p+6/3), 616/3), or specifically
(263,3I3,41f). Points similar to Pr and Psmay be located on each of the
other three faces of the tetrahedron, and are in fact shown as unlettered
small circles. It is thus feasible to project readily a surface, defined by sets
of quadriplanar coordinates, onto any face of a tetrahedron, though ordi-
narily one such projection will suffice. A line contour map may then be
made by drawing curved lines through or between the projected points,
at intervals corresponding to selected values of d, the eliminated coordi-
nate.
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Negative quadriplanar coordinates may also be charted, and one ex-
ample of this application was given in the preceding paper. A set of
quadriplanar coordinates may comprise four positive values, three posi-
tive and one negative values, two positive and two negative values, or
one positive and three negative values. Four negative values are not
possible. A set with one negative value will define a point outside the

Frc. 2. Quadriplanar coordinates within a tetrahedron.

tetrahedron of reference, and opposite the face from which the negative
coordinate is measured. A set with two negative values will define a point
within the exterior dihedral angle formed by producing the two faces
from which the negative coordinates are measured. A set with three nega-
tive values will define a point within the exterior trihedral angle formed
by producing the three faces from which the negative coordinates are
measured. Giving due regard to the negative values of the coordinates,
points similar to Pr and Pn maf be located on all of the bounding faces,
or on their extensions bevond the tetrahedron of reference. Surfaces
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lying inside or outside the tetrahedron of reference may then be shown
as line contour maps, either on the faces of the tetrahedron or on their
extensions.

Quartets that are plotted as points in relation to a tetrahedron of ref-
erence theoretically define a surface, of which a line contour map may be
made. But if such points tend to have a linear disposition, they may be
better treated by joining them together as a space curve, and by project-
ing the space curve orthogonally as a plane curve onto one face of the
tetrahedron. The altitudes, or values of the eliminated coordinate, may
then be used for calibrating the plane curve, so that it will finally have the
appearance of a calibrated curved scale in a nomogram. If some meaning
is attached to the sequence ofpoints that l ie on the space curve, an arrow
may be used on the projected plane curve to indicate this sequencel and
if the space curve is numerically related to some physical property, such
as grain size, specific gravity, or magnetic susceptibility, the projected
plane curve may be doubly calibrated. Thus one calibration will refer to
the eliminated coordinate, and the other will give the values of the
physical property that is to be shown. Physical properties may similarly
be represented on the contour map of a surface, producing thereby a grid
pattern. Surfaces and space curves on such surfaces may thus be simul-
taneously projected, with the result that one or more lines (calibrated or
uncalibrated) will intersect the contour lines.

' 
MAGNrlrcATroN oF ScALE

The topic of scale, in plotting triads in relation to trigons, was dis-
cussed in the preceding paper.* The methods there given may readily be
applied to three dimensions, for plotting quartets in relation to tetra-
hedra of reference. For magnification of scale, one merely imagines that
the tetrahedron is larger than it really is, so sets of coordinates are
plotted farther from the vertices of reference than they would normally
be. The ratio of the altitude of the imaginary to that of the real tetra-
hedron of reference is the magnification of scale.

The determining factor in the enlargement of scale is the minimum
value of the largest coordinate of a number of sets that are to be charted.
Thus if the smallest value of some one coordinate, say c, that exceeds all
others in a number of sets, is 50, the maximum amplification of scale is
obviously 2. Similarly, if this minimum value of a is 90, the maximum
amplification of scale is 10. The same table of possible magnifications
that was given in the preceding paper therefore holds for tetrahedra of
reference as well as for trigons, as do also the simple formulae earlier

x Mertie, John B., Ir., Op. cit., pp. 332-333.
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given. One statement in the earlier paper, however, needs clarification.
On page 333 it was stated that "it is immaterial whether the largest co-
ordinate in the sets is a, B, or .y , or a mirtwre ol these." f nsofar as any one
trigon is concerned, the italicized clause is incorrect and should be de-
leted. The clause does apply, however, to different trigons in a composite
chart.

The magnification of scale in charting triads was shown as a number
at the orthocenter of each trigon. For triangles representing the bases of
tetrahedra, this central position is preempted by another number that
identifies the projected vertex. Some convention must therefore be de-
vised to avoid confusion between these two sets of numbers. It is recom-
mended that the scale factor, both for trigons and for tetrahedra of refer-
ence, be placed inside the figure, at the apex that corresponds to the
maximum coordinate of the sets. With one exception, the scale number
will thus appear in the corners of the triangles. If the largest quadri-
planar coordinate of a number of sets, however, is that of the projected
apex, the scale number and the apex number must appear together. It is
recommended, for this exceptional case, that the scale number be given
as a subscript of the apex number, as for example, 5zo. These placements
of the scale number will serve two purposes: first they will indicate the
degree of magnification, and second, they will show the direction of
elongation of the imaginary trigon (or tetrahedron of reference).

HvpBnrBrn,cHEDRAL CuantrNc

Points that define a surface referred to a tetrahedron may be charted
either in multiple on the bounding faces of the tetrahedron, or directly
by orthogonal projection onto one of these faces. These methods corre-
spond to plotting four variables, either as four sets of triads defined by
points similar to Pr, of Fig.2; or as one set of points similar to P6, from
which a line contour map may be made. The same alternatives exist in
charting points having five coordinates which define a continuum re-
ferred to a hypertetrahedron of four dimensionsl but the latter is bounded
by tetrahedra as well as triangular faces. Therefore, for the hypertetra-
hedron of four dimensions, three kinds of charting may be done;first, the
five variables may be recomputed as triads and charted on or with rela-
tion to the bounding triangular faces; second, the five variables may be
recomputed as quartets and charted in relation to the bounding tetra-
hedra; and third, the four-dimensional points may be projected directly
into or with relation to a single bounding tetrahedron. The first of these
methods was described in the writer's first paper on this subject. The
second, which is also a practical method, is described below. The third,
though rather difficult and less practicable, is also outlined here.
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The most practical methods, either for five or six variables, are to recom-
pute the components as triads and chart them in trilinear coordinates, or
to recompute the components as quartets and chart them in quadri-
planar coordinates. These two methods require a knowledge of the num-
ber of triangles and tetrahedra that bound the various hypertetrahedra.
The number and character of these boundaries, though given in the
preceding paper, are reproduced again for reference.

BouNoenrns ol HvpBnmrnAHEDRA, rnou Founrrr ro Nrxrn Dnmwsrox

Fourth Fifth Sixth Seventh Eishtl Ninth

7
2 l
J J

35
2 l

7
1
0
0
0

In this tabulation, Ha, H5, etc., refer to hypertetrahedra oI the fourth, fifth, and higher

dimensions.

This tabulation shows that 10 triangles or 5 tetrahedra are required for
charting 5 variables; that 20 triangles or 15 tetrahedra are required for
charting 6 variables; and that 35 triangles or the same number of tetra-
hedra are required for charting 7 variables. The charting of quartets re-
ferred to a tetrahedron is superior to that of charting triads referred to a
trigon, because the relationships between four variables are simultane-
ously shown, but the former method is more laborious than the latter.
For five or six variables, however, the additional labor is to some degree
compensated by the fact that fewer tetrahedra than triangles are re-
quired. But for seven variables, no such compensation exists, as the num-
ber of required tetrahedra and triangles are the same, and charting on
the bounding tetrahedra becomes very laborious. Therefore the method
of charting quartets in reference to bounding tetrahedra is utilized only
in plotting five and six variables.

When five or six variables are recomputed as quartets, and are plotted

with reference to bounding tetrahedra, the resulting surfaces may be
shown either as three-dimensional models, as photographs or perspective
drawings, or as line contour maps. Space curves may be similarly shown,
except that one or more calibrated plane curves will result instead of a
line contour map. The method of line contour mapping and of space
curve projection is here utilized. Five tetrahedra are required to chart the

Vertices
Edges
Triangles
Tetrahedra
H4
HE
He
Hz
He
Hg

5 6
10 15
10 20
5 1 5
1 6
0 1
0 0
0 0
0 0
0 0

8 9 1 0
28 36 45
56 84 r20
70 126 2r0
56 126 252
28 84 210
8 36 120
1 9 4 5
0 1 1 0
0 0 r
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five variables, and therefore one face of each tetrahedron needs to be re-
produced in order to show five contour maps or plane curves. This re-
quires a compact arrangement of five triangles. Four such arrangements
are shown in Fig. 3, but obviously the one in the upper left of the drawing
is the most compact and therefore the best. As each of these triangles
represents one face of a tetrahedron, it is necessary also to indicate the
vertex opposite the face bearing the map. Thus the triangle 123, with the
number 4 in its center, refers to the tetrahedron1234, of which an orthog-
onal projection has been made onto the f.ace t23. The complete drawing,
lined for division of the components into 20 parts, is shown in Fig. 4.

Frc. 3. Four arrangements of the bases of five bounding tetrahedra.

Exactly the same method is used in charting the quartets of 6 variables,
but 15 instead of 5 triangles are required, on which to project the contour
maps or space curves from the bounding tetrahedra. Only one satisfac-
tory arrangement of these 15 triangles was found. The complete drawing,
lined for division of the components into 20 parts, is shown in Fig. 5.

A method of direct projection from hypertetrahedra of four and five
dimensions has also been mentioned. Consider first the hypertetrahedron
of four dimensions, in which occur sets of points designated as (a, B, y, 6,
e). It is desired to project orthogonally these points into three dimen-
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sions, so that the four-dimensional continuum which they define may be
shown as surfaces. If one of these coordinates, say e, is to be eliminated
by the projection, it will be found that the quadriplanar coordinates of
each of the projected points, referred to one of the bounding tetrahedra,
wil l be (ate/4), (0+11+7, Qlr/4), (6ie/D. A number corresponding
to e will be associated with each of the projected points, just as some
number is associated with every point projected orthogonally from three

Frc. 4. Bases of fve tetrahedra bounding a hypertetrahedron of four dimensions.

into two dimensions. The coordinate eliminated from three dimensions
represents altitude, and its various values constitute the data for drawing
Iine contour maps in two dimensions. The coordinate eliminated from
four dimensions represents a magnitude of the fourth dimension, and its
various values constitute the data for drawing surface contour maps in
three dimensions. Therefore in such orthogonal projections, surfaces in-
stead of l ines must be passed through or between the projected points.
The resulting map is a series of contour surfaces, separated from one
another by numerical values corresponding to the eliminated fourth di-
mension. This surface contour map, by its mode of construction, is auto-
matically referred to one of the tetrahedra that bound the hypertetra-
hedron of four dimensions.



CHARTING VARIABLES ON BOUNDARIES OF HYPERTETRAHEDRA 7I5

Frc. 5. Bases of fifteen tetrahedra bounding a hypertetrahedron of five dimensions.
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This method is difficult of application, not on account of any difficulty
in projecting orthogonally from four to three dimensions, but because the
subparallel contour surfaces tend to obscure one another. A three-dimen-
sional model must first be constructed, after which several photographs
or perspective drawings will be required, in order to see all the contour
surfaces and to visualize their relations to one another. one particular
condition may exist, however, under which this method would be less
troublesome. rf the range in the numerical values of the fourth dimension
were such that only four contour surfaces would be needed to show ad-
vantageously the experimental data, each of these four surfaces could be
projected orthogoirally onto a face of the tetrahedron of reference. A de-
veloped tetrahedron would thus result, showing four line contour maps
that would represent the continuum referred originally to the hyper-
tetrahedron of four dimensions.

A continuum defined by points having six coordinates, and designated
as (a, B,  ̂ t,6, G, t), that is referred to a hypertetrahedron of f ive dimen-
sions, may theoretically be reduced to surface contours in two different
ways. By one method the variables would be recomputed to quintets, and
would be charted in multiple with reference to the six bounding hyper-
tetrahedra of four dimensions. As each hypertetrahedron of 4 dimensions
is bounded by 5 tetrahedra, this technique would result in the preparation
of 30 surface contour maps. A second method would be to make a direct
orthogonal projection from fi.ve to four dimensionsl and to re-project
directly from four to three dimensions. The first step would result in a
series of four-dimensional continua separated from one another by a
magnitude of the fifth dimension; and the second step would result in the
production of an exceedingly complex three-dimensional manifold,
whereon both the fifth and the fourth dimensions would have to be shown
in some manner. The first of these two methods is quite impracticable;
the second is too abstruse for serious consideration.

R6suln6

Methods are given in this paper for charting five or six variables in
relation to the tetrahedra that bound hypertetrahedra of four and fi.ve
dimensions. A method is also given for projecting directly from a hyper-
tetrahedron of four dimensions into a single bounding tetrahedronl and
two methods are outlined for projecting, indirectly and directly, from a
hypertetrahedron of five dimensions into hypertetrahedra of four dimen-
sions, and thence into figures of lower dimensions. The most practicable
methods for charting five or six variables are by recomputing to triads or
quartets, and by plotting these groups in relation to the triangles or
tetrahedra that bound the hypertetrahedra.




