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In choosing axes for a crystal often the first selection is later found to
be unsatisfactory and a new set must be chosen. For example, the first
chosen cell may turn out to be larger than necessary and simplification
will follow adoption of the smaller cell. In dealing with the most general
crystal system—the triclinic—it becomes obvious that the crystal axes
a b ¢ are not the axes of immediate reference. X-ray measurements de-
termine doo; for example, not ¢, and the relation between doy; and ¢ is not
simple. An optical goniometer measures the angle between normals to
the faces (001) and (100) which is not 8 nor related simply to 8. Both
these types of measurements are related simply to a set of axes which are
perpendicular to the cell faces—the so called reciprocal cell axes. We find
that, in dealing with triclinic crystals we must have two systems of axes,
the direct system and the reciprocal system. This dual axial system is a
great convenience in computations for all crystal systems. Hence we seek
ways of converting information gathered and expressed in one system
into its proper expression in another system.

On a set of axes, a, b, ¢ called the a basis we define a new set a’, b’, ¢
called the &' basis by means of the vector expressions:

a’'=dpa+dnb+Puc
b’=®1a+ b+ Ppc | - (0
¢’=®pa+ Spb+ Py

’

A vector V can be written on the a’ basis as
Var=Vi'a’+V,'b’+V,'¢’. (2)
We can convert this back to the @ basis by substituting fcra’, b’ and ¢’ their equivalents
on the a basis (eq. (1)):
(V)a=Vy'(®na+ $sb-+&s10)
+V,' (rza+ Pob -+ ®s5¢)
+V5'(®ua+ Pub-+ Psc)
which can be rearranged as:
(Vo= (@uVi' 4+ ®1,Vo' +213V5 )a
F( @V + &pVe'+ 22 Vy')b
+ (Ve + PpVy' + P55V ) 3)
Let us adopt a short hand notation. The vector (V)or=TV,’a’+Ve'b’+Vy'c’ will be written
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) Vi)
V»!| . In this notation (V)a=|V:| . But by eq. (3) this is
L\GIJa' Vi)a

f¢11V1'+¢’12V2'+‘1’xaBaq
| V1! + @2V’ +BnVy' | -
L‘I)MVI "BV + @5V ’J o

The last array can be obtained by a purely mechanical manipulation of the arrays

@114’12@131 (Vi)
= |Dydr®y| and (V)= LVz't . We write
¢31¢32¢33J \'/Y J a’

(V)a=B(V)ar @)
which is equivalent to:

f Vi f‘Pu‘Plz‘i’m\
= | Do PosPa;

\%N (<I:HV1’ 4@V, +¢’13V3/1
th
Vi)a L‘I)n‘i’szq’za

Vo' =“1’21V1'+‘I>22V2'+‘1>23V3’| . 4"
Villar |\ @aVi/+@uVe' +@uVy'a

The first term of the resultant vector is formed by the first row of the
prefactor (@ in this case) and the first column of the post factor (V’,
which has but one column, in this case). This first term of the resultant
vector is the sum of the products taken in order. Likewise the second
term of the resultant is formed from the second row of the prefactor and
the first column of the post factor, similarly for the third term of the re-
sultant, as can be seen by studying eq. (4’). If the post factor had more
than one column we could consider each column as a separate vector,
and get a resultant with the same number of columns as has the post
factor. This manipulation is “matrix multiplication.” It is merely a me-
chanical method of handling equations.
As an example we take:

(1] [ o ( u]
=;o‘ b= I,»"Z[ ,e'=|—1/2
(0/s L;z @ L 12
.I\
what does a vector | 2| become on the a basis? By eq. (4)
Ls}n'
[1 0 l
(Ve=|0 1/2 —1/2 |2 —|—|/?
0172 172) (3. | 5/2).

We now examine the converse case, that is, convert a given (V), to
the ¢’ basis. We imagine a matrix ®~! such that multiplying equation
(4) through by &! as a prefactor we get V)= d1d(V),' =(V). .
Our problem now is to find such a matrix. We can solve eq. (1) by deter-
minants and find &, b, ¢, in terms of a’, b’y and ¢’. In terms of the new
functions of the ®,;’s we could now go through the previous analysis and
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reach the answer. The actions necessary to solve this problem by deter-
minants can be made into a mechanical manipulation.

By the determinant of a square matrix ® we mean the same array of
values but considered as a determinant instead of as a matrix, it is com-
monly written | ®|; when we mean the value of the determinant rather
than the array we will use A, By the (;;) minor of the determinant we
mean the determinant left after striking out the ith row and jth column.
For example the (21) minor of | fI)[ is:

Py Prs

Ayj=
. ’ Byy Py3

A determinant of but four tetms can be immediately evaluated as the
major diagonal product less the other diagonal product:

Py Pyy
Ay = 1

= P3Py — P33,
i Py Py

The 9 term determinant can be evaluated in terms of the minors of any
row or column. For example to develop the determinant of & in terms of
the minors of the first row:

A= @A) — PrAp+ PiAs.

The expression for development in terms of any other row or column is

obvious, except for the matter of signs. The signs must be taken from the
| +—+]

scheme | — 4+ —| which gives to each 4j minor the sign (—1)#/.

| +—+|
We define the “transposed” matrix ® which is merely & with columns
P y )
written as rows and rows as columns.*
_ (‘I’uq’z@sﬂ
P= [‘1’12%2@32 g (3)
L‘Pla‘l’zs‘i’sa
If A is the value of the determinant of ® in these terms we bave:
Au(—l)lﬂ A12(—1)1+2 AIS(_1)1+1
m=_ Ao (— 1)1 Ap(—1)2t2 Ap(—1)2t2],
Ap(— D13 Ag(—1)#2 Ag(—1)3+3

Since (&) = (#)™! we can omit the parentheses and immediately write @' from (5). As an

1 0 0
example, for®=|0 1/2 —1/2|. A=1/2 (A is the relative cell size. If A is negative one
01/2 172

system is right handed, the cther left handed.)

* This transposed matrix is identical to Barker’s matrix:
(
fu v w \(
wo/u'v'w fu' v w = v w

i
Lu/lv//%HJ
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(172 © 0] (10 0} 1
a1=2l 0 1/2 —1/2| =01 —1] or@1=|0 11|
lo 172 172) o1 14 lo —11
In terms of our new matrix 7! we now write
Vo =2HV)a. (6)

Now &1 is so related to ® that ®1=d"1d=], where I is a matrix with ones on the
major diagonal and zeros everywhere else:

100
=lo10 -
LO 01
In multiplying one square matrix by another we can consider the second
one as three single column matrices (vectors) and multiply them out to
give three vectors (single column matrices) which are written side by side
in proper order. This array is then considered to be the resultant matrix.
Trial proves that VI =IV =V hence we can consider eq. (6) as derived
from eq. (4) by multiplying eq. (4) through by the prefactor &%

It is a fact that only square matrices have reciprocals and that not

every square matrix has a reciprocal.
As an example of the use of a reciprocal matrix we solve for the com-

1
ponents of | —1/2| when written on the ¢’ basis. By eq. (6);
5/2],
1 0 0 1 [1
V=0 1(V)e=10 1 —12| =02
0 -1 1 5/2)a ‘3 a’

We notice in this equation that the three columns of ! are the com-
ponents of a, b, and ¢ respectively on the o’ basis. If we call (V). the
“combined vector,” since it is multiplied by the matrix prefactor &7,
and (V). the “uncombined vector,” since it is multiplied by no matrix
prefactor; we can write this observation in the form of the following
transformation theorem which is a useful memory aid for vector trans-
formation equations.

Transformation Theorem.

In a vector transformation equation the three columns of the matrix
prefactor are the components of the three base vectors of the ‘“combined
vector” on the reference system of the “uncombined vector.”

Applying this memory aid to Eq. (4), that is to the converse relation
(V)o =®(V)or we would say that the three columns of & are the three
components of the a’ base vectors on the ¢ basis. This is actually the case.

Vector Products: By definition the vector product of two vectors r and
s is a vector, perpendicular to both r and s and of length s sin (rs). It is
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apparent that it is the area of a parallelogram defined by r and s, hence
its vector nature. It is an absolute quantity, independent of the basis on
which it is expressed. From its definition we see that rXs=—sXr and
that rXr=0. The cross Xearmarks this product as a vector product to
distinguish it from other kinds of products.

If we express both r and s on the @ basis, then write the vector product,
rXs we have:

s=s;a+s:b+s3¢
r= 1'13.—|—I‘2b+1'3€
X 8= (Tasg—I382) b X €+ (135, —1183) € X @+ (152 —ras1)a X b.

This is in terms of three new vectors, each of which is perpendicular to a
pair of the original set. We define these new ones as #A =b X¢, uB=cXa,
#C =aXDb. We call this new set the 4 basis and say that it is a set recipro-
cal to the set a.

In terms of these new base vectors we may write a vector product
mechanically by writing each vector twice in one column, striking out
the top and bottom member and “cross multiplying’’ as:

I S1
T3
>< T45;— T35
(r)sX(s) nxss——-ru ri81—T5: N
— 51— 1153
L] a rl Sl [
I1Sa—Ta51 )4
I
I3 Sz

Since 4 is perpendicular to b and ¢, and B is perpendicular to ¢ and a,
then ¢ is perpendicular to A and B. Similarly a is perpendicular to B
and C, and b to C and A. Hence, if the A basis is reciprocal to the ¢ basis,
then the a basis can be made reciprocal to the A basis and the reciprocity
is mutual. We can hence form vector products of two vectors written
on the 4 basis and get an answer written on the ¢ basis but involving an
as yet undetermined scalar constant U’.

Plane Normals: A plane (hEl) has axial intercepts a/k, b/k, ¢/l. A
vector (—a/h+b/k)X(—a/kh+c/l) is perpendicular to this plane. Ex-
panding the cross product we have:

bXc cXa aXb

Np=—m o222
MRk

If we multiply through by the scalar 4%l/u and substitute A for I/ub Xc,
B for l/ucXa, C for I/uaXb we have, as a normal to the plane (%kl)
i
Nir= . (8)
I)a
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()

That is, a line from the origin to the point kj is perpendicular to the
A

plane (hkl).

Scalar Products: By definition, the scalar product r-s of two vectors
r and s is a scalar of magnitude s cos (rs). It is an absolute quantity, in-
dependent of the basis on which it is written. It is the length of one of
the vectors multiplied by the component of the other vector on the first.
It is earmarked by the dot to distinguish it from the vector product.

The Scalar Triple Product: Combining the definition of vector product
and scalar product we have the scalar triple product of three vectorr, s,
and t as rXs-t. (The cross product is to be taken first.) Tt is easily seen
to be the volume of the parallelepiped defined by r, s and t. It is also
an absolute quantity, independent of the basis on which it is written.

The scalar product can be formed rather simply by mixing the bases,
since A is perpendicular to b and ¢ it has no component on them similarly
for B and C, hence we find:

r=ra-+rb+rc
S=S5A+S5:B+S5,C
r-S=nSia-A+rS:b-B+riSic-C

b
o for C we have:

bXc
substituting—" for A, X2 for B and
u Uu

a-bXc
r-S=(rS1+725:47:S3) —~

Hence if we take u equal to the volume of the unit cell:
u=axXb-¢c--- )
We can simplify the expressicn of the scalar product to any one of the following:
(Do (8)a= (R)a- (8)e=nS1+nS2+7S;, a scalar
= Ris1+ Rasa+ Rssy
=R)4(8)e=Ea(R)a= D)a(S)a=(S)at)a- (10)
If the @ basis has a reciprocal basis A, the ¢’ basis must have a re-
ciprocal basis A’. The scalar product of two vectors is an absolute quan-

tity, independent of the basis of expression. Hence (S)a(r)a— (S)a®(r).’
since (V),=®(V),-.

Here (5) 4® must equal (5) a» whence
Ma=3(V)a. (11
Conversely
V=27 (V)a. (1)
We see then that the columns of & are the A base vectors expressed on
the A’ basis and that the columns of & are the 4’ base vectors expressed
on the 4 basis.
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Transformation of Plane Indices: By eq. 8, a plane of indices (k&) has

Ji k)
a normal |k| and conversely, a line L’a defines a plane (hkl). Hence
V)4 l

It)a
by eq. (11) a transformation from the basis ¢ to the basis a’ by means of
(V)o=®(V), implies a transformation from indices (/kl) to (k'k’l"y where

(WE'V) = (hkl) ®. (12)

For example, using the previous value of ®, a plane (111), becomes, on
the ¢’ basis:

10 0
(hkl)gr = (111),{0 1/2 —1/2| =(110)a *
01/2 1/2
[k
Zonal Relations: Since the plane (4kl) has a normal N= ‘k and the
)a
(b
plane (4'k’l’) has a normal N’= |%’| the line that is common to both
N

planes is perpendicular to both normals. It is given by the vector product
N XN’. Since cross multipying of two vectors in the reciprocal system
gives the resultant vector in the direct system, we see that the vector

(k' —R'L)
Z=|Il' —I'k| lies in both planes and is hence their intersection. Z is
k' —h'k),

called the zone axis. It is generally given as a zone symbol [uvw] in square
brackets and if #, v, w have a common factor it is divided out. It is
emphasized that the zone symbol gives the components on the a basis of
a line parallel to all planes belonging to that zone.

Any plane (A"’k""'") belonging to the zone Z has its normal perpendicu-
lar to the vector Z. Hence the scalar product must vanish, and by eq.
(10) we have the zonal equation:

[ )
(1vw)al kb
\z

=uh+vk+wl=0- (13)

A

Rectangular Axes: We now introduce a special set of rectangular axes,
xyz. They are of unit length, mutually perpendicular and chosen so that
z lies along ¢ and x lies in the plane of a and ¢. We have a transformation
which changes vectors from one basis to the other as:

(v)x=1'1’1(v)a (14)

and conversely
Va=m™(V)x (14"
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where by the transformation theorem:

[ 1 —Vi ]

0
@ sin 3 vib 0 ) asin 8 ave sin g8 |
m=| 0 vib 0, mi=| 0 1/(vab) 0 ‘ |
acosfl becose ¢ J .l —1 vicot f—cos & ’
| = 1/¢

¢ tan 8 Vaé J

Here we do not assume that b is necessarily unity. If we are interested
in x-ray problems we use the true translations ao, o, co as in eq. (18”).
If we are interested only in interfacial angles, etc., we can use the axial
ratio values with =1 in which case m becomes M. Since %, y and z are
mutually perpendicular and of unit length the volume of this cell is
unity and the « basis is self reciprocal. Since the columns of m are the
components of a, b and ¢ on the x basis, we can write the scalar product
ofaandbas:a-b=ab cos y=ab vy sin +ab cos a cos 8
whence

COS y—COoS a cos 3
- sin 8

as 222 +-9,%%4-b2 cos? a=b? we find that:

_ /142 cos a cos B cos y—(cos? a+cos? f+cos? v)

» sin 3 (15)
As
V)ar=d"1(V), and (V)e=m(V)x then
V)er=2m V), and conversely
V)x=m®(V)o. (16)
(1
Derivation of New Crystallographic Data: On the o’ basis, a’= ,L((;j ,

whence we can compute its components on the % basis by (16). Its true
length is the square root of the sum of the squares of its components on
the « basis. Similarly we compute b’ and ¢’ and can then find a new axial
ratio ¢’:8':¢’.

Having computed (a’)x and (b’). we normalize* them and take their
scalar product. This is cos v'. Similarly for o’ and 8.

As an example we consider a monoclinic crystal for which a:b:c=

1.6:1:1.5, 8=95° This was found to be body centered when indexed on
100

this cell. A transformation ¢=| 010
—-101

cell. We wish to find the new a:b:¢ ratio and the new 8 angle. Since

is used to give a base centered

* Normalizing is reducing a vector te unit length by dividing each component by the
true length of the vector.
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1.5939 0 0 ) 1 1.5939}
M=| 0 10 |,@)= M<I>0 o |,
 Jwson 5) —1.6395)
0 0} 0 0
(b )x=md|1 , (€)x=m&{0|=| 0 | -
0o 0 5 1 1.5

This new @ axis has a length a’—+/1.59392+1.63952=2.2866, while
5 =1.00 and ¢'=1.500. Hence a:b:¢=2.2866:1:1.500. Also since (a’)x
and (¢’)x normalize to
.69706) [0}
0 and |0} respectively a-c=—.717, =cos 8’, whence 8’ =135°49".
[—.71700x 1
Just as the transformation from the ¢ basis to the a’ basis by means of
(V)ar=®1(V), leads to the transformation from the 4 basis to the 4’
basis by means of (V)4 =®(V)4 so the transformation from the e basis
to the x basis by means of (V),=m(V), leads to the transformation from
the 4 basis to the x basis by means of:
(V)x=m™ (V)4 an
(because the x basis is self reciprocal). We can now write an equation
relating the A basis directly to the a basis by combining (14) and (17):
V)e=mtm(V) 4 (18)

and conversely:
V) a=mm(V),. (18"
On expanding (18) we find:

f ag? aobo COS v @gCo COS B]
(V)Ao= ! (lobu Ccosy bu2 boCo cecs Ol| (V)a. (18”)
Laoco cos B boco oS & Co?

Here we have used the true translation vectors a,, be, €o in order to de-
rive the standard equations (21) and (22). The subscript zero of A,
indicates the fact that this basis is reciprocal to the ao basis instead of the
a basis. Actually just asa, is by times as long as is a so Ao is 1/b times as
long as is A. If the axial angles of the reciprocal system are o*, 8* and
v* an expression similar to eq. (18") must hold.

Ag? AoBg cos v*  AgCo cos §*
(V)a=|AgBo cos v* Bg? BoCo cos a*| (V)a. (19)
AgCocos B* ByCo cos a* Cy?

Hence the 3X3 matrix in equation (18”') must be identical to the re-
ciprocal of the 3 X3 matrix in eq. (19). This reciprocal is:
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. 1 (cos a* cos g* 1 (cos v* cos & |
sin? o* |
Ap? AoBy —cos v*) ACy —cos %) !
1 i1 (cos a* cos g* i » 1 (cos B* cos v* |
= [—— —— sin? §* — |
V2 sin? v* ’AOBO —cos v*) Bg? ByCy —cos a*) |
1 (cos v* cos a* 1 (cos B* cos v* B
l~—— — —— sin? +*
AeCo —cos 3*) ByCy —cos a*) C¢?
i - Vo= /142 cos a* cos §* cos 'yi"— (cos? a*+cos? f*+cos? v*) ) 20)
sin v*
Equating corresponding major diagonal terms of (18”) and u:
sin? o*
agt= 4,
Va2A,2
sin? g*
pla=—— T 21
=B (21)
sin? v*
Col= .
V22Cy2

Equating the other corresponding terms and making use of eqs. (21)
we obtain

cos fB* cos v*—cos o*

cos a= —
sin B* sin v*
cos B=—— SRR (22)
sin v* sin &
cos o* cos *—cos v* |

o8 Y= .
sin a* sin B*

If the unstarred terms become starred and the starred terms lose their
stars the resulting equations are also true.

The Reciprocal Lattice:The volume of the tetrahedron defined by the
vectorsa/k, b/k, c/lis alternatively;

Vol=i ix—bi-i and Vol=-1— d}zle(i_R) : (i-—i>
6 L kI 6 ok o1

where dur is the perpendicular from the origin to the plane (%kl). Equat-
ing these values of the volume and simplifying we have:

h
diz- | k| =1, (23)
1),
h
Since di; and || are both perpendicular to the plane (4kl) we may
)4,

write their absolute values:

(24)
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Hence we see that the space lattice formed from the base vectors Ay, By
and C, by giving 4, k£ and [ all integral values is not only a three dimen-
sional plot of the normals of all planes (4%) but is also a three dimen-
sional plot of the reciprocals of distances between atomic planes. It is
called a reciprocal lattice.

h)
Since the absolute value of m= k| is the square root of the sum of
l.l JAo
the squares of its components on the x basis and this, by Eq. (17) is:
(h
ﬁl“ltk we can use the m™ matrix as a means of computing interplanar
l

spacings. This is especially convenient for triclinic crystals.

1 .
Formally. — A/ D2+ D2+ D;? (25}
Rkl

where

DJ h
Dy| =m™&| - (20)
Ds 1z

By means of the transformation theorem we can set up the m—! matrix

in terms of reciprocal cell constants. By Eq. (17), the columns of m™!
must be the vectors Ao, By, Co, on the x basis. Hence

(Aosiny* 0 Gy )
ml= [Ao ccs v* By Cocos a*[ 27)
0 0 CV: |
where

cos B*—cos o cos v*

Vi (28)

sin v*
and Vs is given by Eq. (20).
Applying the above we see that, indeed

A 1 B 1 C 1
=, = =g
’ dIOO ° dOlO 2 dOOl
Hence we can evaluate the constants of (27) by x-ray measurements alone
since:
«_ Gorodon < 1 1 1 > —do1edon ( 1 1 1 )
Cos ™ = =] = —,
2 d()ll2 d0102 dﬂOI2 2 dﬂﬁz d0102 dOOl2
" dondioo < 1 1 1 ) —dondioo 1 1 1 )
cos 3*= = —_—
2 din®  dio?  dom? 2 diii®  digo®  don?
and finally

«_ Groodono 1 1 1 —dipedoro 1 1 1
oL L Ly delen 1L Ly g
2 due®  dioe?  doe? 2 diie*  die®* dao®
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As an example let us assume that
dug=5.000, d010=6.667, d001=4.000

d011=3.091, d101=2.889, d110=4.178.

From this data, Eqs. (29) give a*=74°49", *=80°2", v*=85°1". Also V;=0.1510, V,
=0.9532. So that:

[.1992 0 .0378
m=|.0174 .1500 .0655].
0 0 .2383

From this matrix we can compute the d spacing and vector normal of any plane. Let us do
this for the plane (123).

1 .0858
Here D=mT| 2|= .1209] .
-3 —.7149

So that

1
d—j= 1/.08582+.120924.71492= 7301
123

whence dizs=1.370. Finally the unit normal of the plane (123) is

{ .0858} .1175]
1.370| .1209|=| .1655|,
—.7149) | —.9792)

that is, the factor that normalizes the vector perpendicular of the face (%4/) on the x basis
is dhkl-

SUMMARY

1. (V)a= ®(V), transforms vectors (V),’ on the @’ basis to the proper
expression on the ¢ basis. Here the columns of ® are the ¢’ base vectors
expressed on the ¢ basis.

2. (V)g=91(V), transforms V from the ¢ basis to the &’ basis, the
columns of ! are the ¢ base vectors written on the ¢’ basis.

3. The vector product of two vectors r and s written in the same sys-
tem is expressed on the reciprocal system as

7283 — 1’352]
U 73S —rlsal
182 — 7 251/l A

where % is the volume of the direct space unit cell.
4. The scalar product of two vectors r and s one of which is expressed
on the direct system, the other on the reciprocal system is: r;s;+r2se

+r353.
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(] 1
5. A plane (kkl) has a normal {k and this vector is of length ——
l)a it

where dji; is the distance of this plane from the origin. Hence it is the
distance between such planes.

6. The vector product of the normals of two planes (k%) and (W'k’'l')
is a vector parallel to the line of intersection of the two planes. It is called
the zone axis. The vector, written in transposed form is the zone symbol.

7. The vector product of two vectors formed from zone symbols is a
vector in reciprocal space and hence represents a plane in direct space.





