HEXAGONAL FOUR-INDEX SYMBOLS
J. D. H. DoxnNaY, The Johns Hopkins University, Baltimore, Maryland.

INTRODUCTION

The purpose of this paper is to present a mathematical derivation of
some properties of the four-index notation, for faces and zones, in the
hexagonal system. No such treatment seems to be available in English,
although adequate presentations can be found in other languages.

I. Face SyMBOL

In the hexagonal crystal system, a face is referred to the Bravais axes
(Fig. 1) by means of the four-index symbol (kkil), in which i=h4-E.
Proof —Let a straight line AB intersect the negative gz-axis in a point
C. Let its intercepts be OA=a/k, O©B=a/k, OC=a/i. The equation of
the line AB is
x/(a/l) + 3/(a/k) = 1;

that of the line OC, the bisector of the angle AOB, is
X =1y
The co-ordinates, OM and ON, of the point C are thus x=y=a/(h+k).

Since the triangles OMC and ONC are equiangular, hence equilateral,
the intercept OC is equal to either co-ordinate of the point C,

OC = afi = a/(h + k),
so that i=h-+k.

al &3

E;i}]

¢

/
/&

ayn agx
Ti1c. 1 F1a, 2
52



HEXAGONAL FOUR-INDEX SYMBOLS 53

I1. ZONE SYMBOL

A zone may likewise be expressed, in the four-index notation, by a
symbol [ugjw], in which j=u-+v.

Proof —Let a point P in the (a1:a5)-plane (Fig. 2) be designated by
the co-ordinates m, n, 0 (expressed in terms of the unit length a), which
refer to the axes @i, as, a3, respectively. It is permissible to decrease (or
increase) each of these co-ordinates by one and the same number, since
the sum of the three vectors thus introduced is equal to zero. The point
P can, therefore, be represented by the co-ordinates m—j, n—j, j, in
which j is equal to any number, positive or negative. In particular, j
may be chosen equal to (m+n)/3, so that the sum of the three co-
ordinates

u=m—[m+m)/3, v=n—1[m+n)/3, j=—m+n/3

becomes equal to zero. The zone symbol [mnOw] may, therefore, be
written [uvjw], with j=u-7v.

Remarks—To pass from the four-index notation (axes a, @z, @3 ¢)
to the three-index notation (axes ai; @, ¢):

(1) In the case of a face symbol (kkil), drop the third index and ob-
tain (kkl);

(2) In the case of a zone symbol [uzjw], add j to the first three indices,
s0 as to make the third index zero, and obtain [u-4j7-v+j-w].

I11. EquaTioN oF ZONE CONTROL

The equation of zone control is the relation between the indices of &
zone [uvjw] and those of a face (hkil) contained in the zone. Using the
three-index notation, the face symbol is written (/kl) and the zone sym-
bol [u+j-v+j-w]. It is known that the equation of zone control can
then be expressed

Bu+§) +ke+j) +lw=0 1)

This can be written

hu+ ko B+ R HIw=0
or, since i=h+k,
- hu 4+ kv 4 i+ lw = 0. (2)

Because j =u-1, the latter equation may also be written
(h+Du+ (k+idv+lw=0. (3)
The indices of a face (kkil) situated at the intersection of two given

zones [mufiw1] and [uavsjows] are found by means of equation (1). They
must satisfy the equatiors:

(r + j)k + (o 4+ jk +wd =0,
(ua + )k + (o2 + joyk + wnl = 0.
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The three indices %, k, I are therefore obtained by cross-multiplication:

(1 + h) (v + }.j 'y (lh + ]1) (1'1 -+ ]1) wn
X X X @
(20 + o) (72 + ) 0 (w: + ) (12 + f2) Wy

| J k 1 J

and the superabundant index is 7= — (h+k).

The indices of a zone [wvjw] containing two given faces (kiil;) and
(hokotsls) are found by means of equation (3). They must satisfy the
equations:

(I +i)u + (B + i)v + Lw = 0,
(b + i)u + (ks + in)v 4+ bw = 0.

The three indices u, v, w are therefore obtained by cross-multiplication:

(s +4y) | (B + 1) h (i + i) (ky + 1) h
X X X ©)
(s - 1) (ko + 42) Iy (e 4 ia) (s + i) I
,| 1 v w |
and the necessary additional index is j= — (u+1).

To check whether a given face (kkil) is contained in a given zone [uzjw],
use equation (2).

Remarks.—Note that (h+i-k+i-1) is not the three-index symbol of
(hkil) and that [wvw] is not the three-index symbol of [uvjw]. In equation
(2) the quantities %, , i, I, on the one hand, #, v, j, w, on the other,
play similar roles. This mathematical symmetry of equation (2) explains
why it can be written in both forms (1) and (3). It also accounts for the
fact that the same type of calculations permits finding the indices of a
zone between two faces and those of a face at the intersection of two
zones.

IV. ExaAMPLES 0F CALCULATIONS

In berylaface n is located at the intersection of two zones, between the
faces 7(1010) and ©(2131) on the one hand, between the faces a(1120)
and #%(2021) on the other hand. What are its indices?

According to (5) we have

Indices of the first zone: Indices of the second zone:
2 1 0 2 1 o 3 3 0 3 3 0
X X X X X X

5 4 1 5 4 1 4 2 1 4 2 1
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The symbols of the two intersecting zones are [1213] and [1102].
According to (4) we have

Indices of the face n:
0 3 3 0 3 3

X X X
1 1T 2 1 1 2

9 B B8

The symbol of the face » is (31_411). 3 e
According to (2) the face (3141) belongs to the zones [1213] and [1102]
since

301 3 1 3 1 7 1
X X X X X X X X
1 2 1 3 1 1 0o 2
3 =2 —4 43=0 3 -1 40 —2=0

V. ADDITION AND SUBTRACTION RULE

In the three-index notation it is known that any face (phi£ qhe- pk:
+ gky- ph+qls), where p and g are any integers, lies in a zone with the
faces (Mkih) and (hekols). The validity of this “addition and subtrac-
tion rule’ is obviously unaffected by the use of the fourth,superabundant,
index.

In the preceding example the indices of the face n could have been
obtained simply as follows (taking p=¢=1):

1 o 1T o 1 1 2 0
2 1 3 1 2 o 2 1
3 1 i 1) (3 1 4 1)

By virtue of the duality principle between faces and zones, the addi-
tion and subtraction rule also holds good for four-index zone symbols.
For instance the zone [0115] passés through the intersection of the zones
[1213] and [1102], since its indices are obtained by subtraction as follows:

1 2 1 3
1 1 0 2

o 1 1 5]

VI. GrRAPHICAL DETERMINATION OF A ZONE SYMBOL FROM THE
GNOMONIC PROJECTION

In the three-index notation, the indices of a zone axis in the direct
lattice (a1, as, ¢) are the same as the indices of the plane perpendicular
to the given zone axis in the reciprocal lattice (a;*, a2*, ¢*). This follows
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from the very definition of the reciprocal lattice. The plane in question—
the zone plane—contains all the normals to the faces in the zone. Its
trace on the plane of the gnomonic projection is therefore the zone line.

The gnomonic projection is a representation of the reciprocal lattice
(Mallard’s Theorem). Indeed, since the scale of the projection is arbi-
trary, it is permissible to choose the plane of the gnomonic projection
at a distance ¢* above the origin; the gnomonic poles (k1) then con-
stitute a net of the reciprocal lattice, namely its first layer. The natural
axes of co-ordinates (Pi, P;) of the gnomonic projection (Fig. 3) are
parallel to the axes (a1*, a.*) of the reciprocal lattice. The zone plane
passes through the origin; therefore, in order to find its indices in the
reciprocal lattice, it is convenient to translate it parallel with itself until
its intercept on the ¢* axis is —c¢* or ¢*/1. After translation, the inter-
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cepts of the zone plane on the a;* and a,* axes of the reciprocal lattice
are equal to the intercepts of the zone line on the P, and P, axes of the
gnomonic projection. Let ¢*/m and a*/# be these intercepts, which can
be determined graphically. The symbol of the zone plane in the reciprocal
lattice is (mn1)*. The symbol of the zone axis in the direct lattice (re-
ferred to the three axes a1, as, ¢) is therefore [mnl]. If the four axes, aj,
as, a3, ¢, are used, the symbol may be written [mn01] or preferably
[uvj1], where u, v, J are the functions of m and # defined above (Section
II). The necessity for carrying out the transformation [mn01] to [uwj1]
can be avoided and the latter symbol determined directly by graphical
means, thanks to the following mathematical artifice.
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Theorem.—In the plane of the gnomonic projection (Fig. 3) a zone line
that intercepts ¢*/m, ¢*/n on the axes Py, P will intercept A/u, A/v,
A/ (where A=a*/4/3) on the axes A;, As, As.

Proof —This theorem is easily proved by effecting a change of co-
ordinates in the gnomonic plane. Let the old axes be P1, P», with co-
ordinates X, Y. Let the new axes be A, As, with co-ordinates %, . The
relation between the old and the new co-ordinates of any point N (Fig.

3) are
X 4+ Y sin 30° = x cos 30°,
¥ — Y cos 30°= «x sin 30°,

which can be written in the symmetrical forms

X = (22 — »)V/3/3, Y = 2y — x}v/3/3. ©)

The equation of the zone line PQ in the old co-ordinate system is
X/(e*/m) + ¥/(@*/n) = 1.
In the new co-ordinate system, it becomes, by virtue of relation (6) and
after simple rearrangements,
x/{(@*/\/3)/lm — §(m + )1} + v/{(@*/v/3)/In — §(m + )]} =1
or
x/(4d/u) + y/(4/9) = 1.

The intercepts on the axes A;, A, are thus seen to be A/« and A/v. The
intercept on the A; axis must be A/7, with j=u-+v (the proof of this is
the same as that given in Section I).

Graphical method.—The indices [uj1] of a zone line RS (Fig. 3) are
obtained by measuring the intercepts A/u, A/v, A/j on the axes A;, A,,
A;. The unit length to be used, A =a*/+/3, is equal to one third the long
diagonal of the reciprocal lattice mesh (a*, ¢*) built on the axes Py, Py
(see Fig. 4). It is equal to the distance of the pole (1123) from the
center of the gnomonic projection.

VII. EXAMPLE

Given (Fig. 5) the poles (1012) and (0113) in gnomonic projection,
find the symbol of the zone defined by these two faces.

Through the pole (1011) pass a line parallel to the A; axis to obtain
the unit length A=4*/4/3 on the A; axis. Measure the intercepts of the
zone line RS on the axes A;, A;, A;. They are: CR=3A, CS=3A/4,
—CT=—3A/5. They can be written: CR=A/(1/3), CS=A/(4/3),
—CT=—A/(5/3). The intercept on the vertical axis is —¢* by con-
struction (see Section VI). The indices of the zone plane in the reciprocal
lattice are therefore (1453)*. The zone indices in the direct lattice are
the same, [1453].
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VIII. REMARKS

The axes A, Az, A; are not co-ordinate axes of the direct lattice. They
are indeed parallel to the axes a1, 43, a3 that pass through the origin. Their
unit length, however, is A=a*/4/3, whereas the unit length ¢ of the
direct cell, expressed in terms of reciprocal lattice unit lengths, is
a=c*a*/V*=c*a*/c*a* sin 60°=2/a*\/3 and not a*/4/3 as Wolfe im-
plies (1944, pp. 52-53 and Fig. 4).

The four-index notation of hexagonal zones explained in Section II is
due to Weber (1922). An excellent presentation is found in Terpstra’s
textbook (1927, pp. 201-204), including the derivation of the equation of
zone control in the four-index notation.
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! One misprint in Terpstra: on page 202, last line of the text, a minus sign is omitted.
Read @=— (m-+n)/3.





