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AssrRAcr

Referring an hexagonal crystal to three sets of orthorhombic axes and taking @11-31 and

c'(r-r)(-roo-d) alternatively, gnomonic calculation yields the following :

cos {r-r (or @'14) ' tan p

k  c  ( h * 2 k ) c  ( h ] - k ) c . ( 2 h * k ) c .: T' ;' wn ' -.- -rJi '

Linear calculation yields the following:

tan (90o -p)/cos o'rr*at (or 4r-s)
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stants, has cleared up the tremendous confusion that has surrounded this
system for the past sixty years.

The two-circle calculation of hexagonal constants is best accomplished
by referring the crystal to three sets of orthorhombic axes with axial
ratios 1/3a:aic,but before entering upon the hexagonal calculation, it
will be well to see what facts may be deduced from the measurement and
projection of an orthorhombic crystal as well as the angles that can be
determined by trigonometric calculation so that a proper selection of
equations may be made for an abridged calculation of crystallographic
constants.

In doing this, the writer is accepting the two-circle equations of W. H.
Miller (1839, p. 83) for the orthorhombic system, which apply to the
Iinear projection, and is making the changes that are necessary for the
gnomonic projection. He is also accepting the Miller and Miller-Bravais
indices, and the Miller conventions for form symbols, face symbols, zorre
axis symbols, and zone (circle) symbols. He would also express his admir-
ation for the Miller precision two-circle goniometer constructed. in 1874
(Lewis 1899, p. 601), which was in perfect condition in 1928 at the Uni-
versity of Cambridge.

The Miller (1839, p. 83) equations are as follows:
tan O:ka/hb

tan lL:Iaf hc.cos S
6:(hko)A0oo) :e0'-d'
+L:lwrl\lhktl :e0'-p

In the form given, Miller's (1839, p. 79) complete two-circle calcula-
tion of the orthorhombic is perfect arithmetically, but obscure graphi-
cally. Substituting tan 90o-PX, etc. for cot pX,etc., the equations are
identical with those used in the linear calculation in this paper. substitut-
ing l/tan PX, etc., for cot PX, etc., the equations, when inverted, are
identical with those used for the gnomonic calculation. Miller's equations
have been used by nearly all crystallographers in the past century, some-
times in a mutilated condition. They have never been surpassed; when
changed, it has always been for the worse.

CoNvBwrtoNS rN NorATroN

Following Miller's practice, the form symbol is given as lhkzll, the face
symbol as (hk|l); the zone axis as fuaulau], and the zone circle symbol
as lhknl, h|lr\l. Miller used [unulow] interchangeably for the zone axis
and the zone circle except in one paragraph (p. 48) but commonly used
the zone symbol as given above for the zone circle only. This usage en-
ables one to use six types of angles without ambiguity, as follows:
(010)n(110), the well known interfaciat angle, [001][(001) or [001]
A(hkl) giving po or p, (o0l) ALhkl, 1001, not used in this paper, [001]
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n [001, 010] and l00llAlhhl,010l, giving {o and t0+{, [001]n [Zftl], useful
in the linear calculation, [001,010]nIhkl,0l0l, giving f.

Pnrr,rMntnny ORTHoRHoMBTc PRoJECTToN AND CalcurluoN

The projection of a beryl crystal (Fig. 1) will be used to illustrate
orthorhombic calculation both in linear and gnomonic projection. The
rectangular grid in the front half gives multiples of. c/1/3a and cf a so
that the orthorhombic symbol of (2131) may be taken as (511). The line
A'F ' in the rear  hal f  i i  the l inear  pro ject ionof  the same facewi th the
origin below the projection. The angle of azimuth, on the ar axis (hex-
agonal) is indicated as dr and its complement as f2l, as later similar angles
will be referred to the @1 and o3 &x€s.

Frc. 1

Now considering the orthorhombic as a special case of the triclinic,
we wil l see in Table 1 the information that we have in connection with
(511), (2131), together with the remaining angles to be solved.

o

o

(t2i2)
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Tlslr 1. Axcr-rs Fouxo rN
Fecr (511)
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Two-Crncr,r Mnasuneulnt ol A CRlrsrAr, loR TEE

Or.rsonsourrc, (2 131) IfuxecoNer-

Orthorhombic Hexagonal

c: 6Ac : [001]A[010] :qO'
B: alc: [100]n [001]:e0'
"y : a Ab : [100]n[010] : e0'
^: (001)n (010):e0'

(001) n (100) -90'
y: (010) n (100) :90.

po: [001]n[001]: 0"
t001ln (s11) :

p, :  [001]n [s11] :90.-p
do : - -
o: (s10)n (010)
6,: (s10)n(100)
Ito: [001]n[001, 100]: g"

6o: [001]n [001,010]: s"
tto,: t001ln t0101 :90'
Eo': [001]n [100] :90o

To find in the gnomonic projection

?:[001, 100]n [511, 100]
g: [001, 010]n [511, 010]
a r b r c . h r k r l

And in the linear projection

?': [001, 100]n [011] :90"- ?
€': [001, 010]n [501] :90"- €

[0001]n [10I0]
F2Toln toooll
F2T0ln [10T0]
(0001)nG2T0)
(000i)n (1010)
G2T0)n(1010)
[0001]n (0001)
t0001ln(2131)
[0001]n [2131]

(2130)nG210)
(2130)n 1010)
[0001]n [0001, 1010]
[0001]n [0001, I2T0]
tooolln [I2To]
[0001]n [1010]

[1010, 0001]n [2131, 1010]
[1210, oool ]n [2r3r, 12Io]
t/\a, a, c. h, k, i,2h+k, h+Zk h-k, . l

[1010,0001]n [1212]
1T210, 00011n [5051]

The calculation of these angles follows'

cos d ' tan p: tan q:k/ l 'c /a ( IV and ( I I I )
cos 4'. tan p:Lan t:h/l c/',/3a (IY), :(2h*k)/l'c/V3o (III)
tan p'lcos 6:tan t':l/k.a/c (IV and (II!

tan p'f cos 6':tan t':l/h'l\a/c (IV):1/(2h+k).J\o/c (IID

Axrar, Rnr,arroNs

Before going into the graphical and mathematical solution of an
hexagonal problem, it will be well to consider the axial relations and
intercepts of a plane on the hexagonal axes. It has been customary to re-
fer an hexagonal crystal to three horizontal axes (or, a2, a3) of unit length
and a vertical axis (c) which is greater or less than unity, and the re-
corded ratios are a:c. It has, however, been recognized that there is a
second set of horizontal axes, at right angles to the & axes, having a
length ol 1/3a, which could, be used if results obtained from the first set
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proved unsatisfactory. This seems to indicate that the compldte solution
of an hexagonal problem demands that the relationship of six horizontal
axes to the vertical axis should be ascertained.

In r-ray analysis of hexagonal crystals, it is customary to look upon
the hexagonal cells as being made up of three unit cells, each an ortho-
rhombic prism with angles of 600 and 1200.

The results of measurement of an hexagonal crystal when plotted in a
gnomonic projection indicate three units with axes f 3a:a:c.In this way
we get six horizontal axes, three pairs of rectangular axes, which yield
the simplest polar equation of the plane (hktl) for each of the triaxial
units involved.

CoNsraNrs rN rHE Lrnran Pnolacrron

In the linear projection (Fig. 2), in order to have a common centre for
the three orthorhombic units, they are shown as interpenetrating, and
the height of the vertical axis is indicated by a circle with radius equal to

4  a r 6

-6\  ato

Frc. 2
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c (beryl). Of the four faces shown, we will for the present confine our

attention to the general case (2131), which cuts t}re az axis at unity'

Careful measurement will show that:

PtA t ,  P tB , t  P , c , ,  P , I ) , ,  P tE , ,  P tF t l

l a l J 3 a l ' a l

k  c  h + 2 h  c  h * k  c  2 h + k

which are the abscissae cut off on six axes by the trace of the plane

(2131) in the linear projection with the origin aboae the plane of projec-

tion and with /0:c. The linear projection of the same face is shown in

Fig. 3 with the origin belou the plane of projection and with ro:1'The

ratios shown above are the tangents of interaxial angles (zonal axes).

CoNstaxts rN THE GNouoNrc Pno;ncrroN

If we invert the terms of the equations under linear constants so as to

have reciprocal values, we get

c c c c c c

p , A t t '  p t B n '  p , c t t '  P t D , , '  P t E t t '  P t F t l

k  c  h + 2 k  c  h * k  e  2 h + k:  - .  - :  - -
I  a '  I  t / \ a '  I  a  I

PA PB PC PD PE PF:  - - :
r0  r0  r0  ro  /0  f0

which are the indices with the axial ratios, and the abscissae, respectively,

on the axes of the gnomonic projection when a circle is described with

tan p as the diameter. They are also the tangents of interzonal angles.

LrNnan ZoNer, Axns aNo GNouoNrc ZoNn LrNBs

The line joining c and, A" (Fig. 2) is common to (213f ), 0111),(0111),
and (lZlZ) and is the axis l lZIZlot the zone lI2l2,l0l0l in which these

four faces lie. In like manner cB" , cC" , cD" , cE" , and cF" are zone axes

which are perpendicular to the planes which intersect in the normal to

the plane (2131) (Fig.3). The traces of these planes in the gnomonic

projection are the familiar zone lines in the projection. The angle be-

tween one of these zonal planes and re on the o axes is known as 4, and

to distinguish the particular axis is indicated in this paper as tlr, 42, a\d

43. The corresponding angle on the J3a uxes is known as f, with similar

indication of the axis involved. 'Ihe angles subtended between the zonal

axes and the perpendicular in the l inear projection are 900-4, and

o I 
"/3a- :  - .  - -

c l c

t/sa I o I t/'-la

c  h  c ' h - k  c

c  h  c  h - k  c

$, ,7 '  ; . - r -  . J3 "
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90"-{, respectively. These zone axes are best indicated in terms of a
possible face as follows: cAt'ft2l21, cBt'102211, cC"133621, cD"150521,
cE"l2ll l l , and cFl'[1102]. In the transfer of the l inear projection of
(2131) (Fig. 2) to the gnomonic projection (Fig. 3) there is a reversal of
the sign for lf h, If k, and l/h+n.

HnxecoNer, INprcns

fn the hexagonal system, it is customary to use four indices, h, h, t,, and
l, with three of these referring to horizontal units and one to the vertical
unit. Of the horizontal values, one (i) equals the sum of the other two
(h a"nd fr) but with opposite sign ( * ). Of the twenty-four ways in which
these letters may be combined, four at least are given in standard works
on mineralogy and crystallography. In a previous paper, the writer used
the order given by Will iams (1901). In this paper the usage of Dana is
followed, as indicated above, but inasmuch as indices on six horizontal
axes are to be considered, the following values wil l be sought:

h  k  ( h + k )  ( h + 2 h )  ( 2 h + k )  ( h - k )
j '  i '  

'  
t  

'  
t - '

Although the familiar transformation formula from the standard to
the alternative orientation is involved, no further reference to this will be
made, but in the gnomonic projection (Fig. 3), these values will be shown
as multiples oI cf a and c/{3a, together with their reciprocals in the
Iinear projection which are directly connected in Fig. 4 with the inter-
cepts on the axes in Fig. 2.

GNolroNrc Car.cur.ertoN on cf a rNo c/J3a

In the accompanying projection (Fig.3), we have the gnomonic pro-
j e c t i o n  o f  t h e  f o r m s  c f  0 0 0 1 ] 1 ,  o t t l l 2 2 l ,  p { 1 0 T 1 } ,  s 1 1 1 2 1 } ,  ? , 1 2 1 3 1 } ,
m{1010\, all l2}l, and i[2130] of beryl with zone lines parallel to
the o axes in the front half" In the rear half is shown the linear projec-
tion of the face (2131),4'F', passing through the origin 5 cm. below the
plane of projection. The graphical solution will at once be clear to those
who know that tan p (IZTD:c/a and. tan p(1012):c/J3a.

Dropping perpendiculars from H, (2131), to each of the six axes, we
have PA:c/a,  PB:4c/{3a,  PC:3c/a,  PD:5c/J3d,  PE:2cf  a,  and
PF:c/f 3a. This is an extension of Ford's (1922) graphical determina-
tion of h, k, and i.

For the complete mathematical calculation, six angles of azimuth are
used:  f1,  (2130)n (2110),  O' ' :90o-dr ,  Or,  (2130)A(1210),  Qz' :90"-Qz,
{3,  (2130)n(1120) and 6r ' :9O"-Qa.
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The cosine of each of the @ angles is multiplied by tan p to obtain
tan 4, the tangent of the angle of slope of the three zones involved, and
the cosine of each of the f' angles is used similarly to obtain tan {, the
angle of slope of the other three zones involved with axial ratios, e.g.
cos dz. tan p-tan Tz, the angle of slope of [2131, 1010], whose zone axis is

Frc. 3

[I2I2l. This form for the equation involved was apparently first used by
Lewis (1899, pp. 428 and 449) for the pyramid (0111) but was not ex-
tended to the general case.

This fundamental calculation is the one from which all other gnomonic
constants are derived by multiplication or division by a constant, and is
the only one that gives the polar constants as reciprocals of the inter-
cepts on the Iinear axes. The complete calculation Ior (2231) follows:

cosd2' tan p: PA/PH . PE/ro : tannz: h/ l  .  c/a. :  I /PA' :  ro/PA' ( l)

cos@1''  tanp: PB/PH ' PE/ro: tan fr :  (h+2k)/ l-c/J3a: I /PB' :  ro/PB' (2)

cos{3 .  tan  p :  PC/PH.  PH/ ro :  tan?a :  
9 l  D  .  r1o  :1 , /PC '  :  ro /PC'  (3 )
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(rh J- b\
cos{2 ' .  tanp:  PD/PH -  PH/ro:  tan Ez .  c /J la:  I /PD'  :  ro/PD'  (4)

Cosrf3/ '  tar-p: PF/PH - PE/ro: tan €a :ry .  c/r/3a : l , /PF' :  ro/PF'. (6)
,

These final results are shown graphicaliy in a single plane in Fig. 4, where

rof PA' : rnf PE' : rof PC' : cf PtA't : cf P'E" : cf P'C"

and

cos01 ' tan p:  PE/PE -  PH/ro:  tan41 :  h/ l  .  c /a : I/PE, : ro/PE' (5)

P 'A t '  
"  

P 'E t ' :P 'C t t (F i g .4 ) :  p r t r r r  i  P 'E "  iP 'C "  (F i g .2 )

ro/ PF' : rof PBt : rof PD' : : c/ P' F" : c/ PB" : c f P' D"

and

P'F":P'8":P'D" (Fig.4): P'F":P'8" - PtD" (Fig.2)

LrNnan Calcur-erroN or af c AND 3af c

The line A'F' (Fig.3) is the l inear projection of (2131) with the origin
below the plane of projection (ro:1). The calculation of the elements
concerned follows:

tan (90' - p)/cos12 : (PH'/r1)/(PH'/PA') : tannz' : l-. " : PAt/ro

tan (90o -  p) /cos6rr  :  (PE' / ro) / (PH' /PB') :  tan t r '  :  ; .13d :  p3 '1ro- '  
h + 2 h  c

tan(90'  -  p) /cos6,  :  (PH' / r I ) / (PE' /PC')  :  tanqt '  :  .  
l  

r .  
o 

:  PC' / ro' -  
h * h  c

tan (90' - p)/cosO2' : (PH'/ro)/(PH'/PD') : tan tz' : --+.4: pO'/ro
z h + k  c

tan (90' - p)/cos-g1 : (PH'/r,)/(PH'/PE') : tan4r' : L. a : PE'/ro

tan (90' - p)/cos6"' : (PH'/ro)/(PH'/PF'): tan tr ' :rh 
+: 

PF'frs.

The final results are in every case reciprocal to the results of the
gnomonic calculation and establish definitely that the linear constants
are afc and J3a/c and that the reciprocal polar constants of the gno-
monic projection are cf a and c/t6a.

With the introduction of the circle with radius of ro, the linear projec-
tion assumes importance in helping to solve crystallographic problems
and is worthy of further investigation, particularly in the inclined sys-
tems.
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Fon Pnrsus
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AsnrocnMBNTS To rHE CarcurarroN

It is well to let the student see at least one complete calculation which
will show definitely the relationship between indices and parameters on
all seven axes, and then abridgements to the calculation may well be
introduced, depending altogether on what is desired. Equations 1, 3, and
5, give the complete calculation for the crystal when referred to the four
standard axes of reference. lf only the best average values of cfa and
c/f 3a are desired, equations 3 and 4 should be sufficient. If indices
are desired for forms where I is large or for forms which cannot be readily
be shown on the projection, equations 1 and 5 give k/l.cfa and h/l.c/a,
from which all other desired indices can be derived.

The student will be perfectly satisfied with such an abridgement.
whereas he is never satisfied with the explanation that one of the indices
has been lost in the projection but can be obtained by adding the two
others.

Equation ior tan p (hkal)

From equations (1) and (4), we find

t anp (hh r l ) : /W (7 )

Frc. 4



and from equations (2) and (5)

tan p(hkel)

and from equations (3) and (6)

tan p(hhtl) :

/ h2+4hk+4k2 ):Y -  
t ,  

'

GNOMONIC AND HEPTAXIAL TWO.CIRCLE CALCU LATION J J /

(8)
c2 h2c2-+ -

?a2 l2a2

(e)

Each of these equations when reduced to a common denominator and simplified, gives

tan pgtkit) : /{ 
+!!1J2. c (10)

f lz 3a2

c

t/3a

which is the equation of tan p when referred to three sets of orthorhombic
axes with ratios o:r,,/3a:c. It is simultaneously the equation for a circle
having tan p as its radius and the equation for the diameter (: tan p)
of a circle in terms of its supplementary chords. The first of these is ex-
tremely useful in analyzing the results of measurement in terms ol 2c and
2c/1/3, while the second gives the polar elements c and c/{3 directly.

Gnapurcal DntpnurnerroN oF Por,an CoNsteHrs lnou
rne Equn'rroN ToR Taw p

fn the gnomonic projection (Fig. 3), with P//:tan p(2131) as diam-
eter, describe the circle PABC DEF cutting the six axes at A, B, C, D, E,
and F.  Then PA:c/a,  PB:4c/ f  3a,  PC:3c/a,  PD:5c/{3a,  PE
:2c/a, and PF:c/t/3a.

The polar units derived in this manner are cf a and c / I 3a: they are the
polar units of a hexagonal crystal treated as a special case of the orthor-
hombic system.

OnrnNTarroN oF THE Pno;ecrroN

In the hexagonal system there are two types, one giving a triangular
pattern in the gnomonic projection, the other an hexagonal pattern. For
the first of these, the rhombohedral, it is only necessary to draw the
principal zone lines which are parallel to the a axes, having the apex of
the inner triangle (1011) to the front.

The second is more complicated, but, in general, the zone lines with
the greatest number of projection points are perpendicular to the o axes.
If there are only first order pyramids, or second order pyramids, or di-
hexagonal pyramids, the orientation cannot be established beyond ques-
tion. Any two of these ordinarily can establish the orientation beyond
reasonable doubt, so as to give the simplest indices for all the forms.
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An interesting exception to both these statements is exhibited in a
crystal of hematite described by Foshag (1920) which, except for triangu-
lar markings on the base, exhibits perfect hexagonal symmetry and shows
(1011) and (01T1) truncating the edges of. (224r.

Por,Rn .o.Nn AuxrrrARY CoNSTANTS

The calculation of the axial ratios and polar constants cf a and c/{3a
brings us to the common point where all theories of axial relations in the
hexagonal system meet. If we go no further, it leaves us in the position
of considering the hexagonal system as a special case of the orthorhombic
system. Graphically, these constants have been determined as units of
measure of chords of a circle. Three other circles give three pairs of
constants, two of which are definitely connected with theories of axial
relations while the third seems to be more general in scope. In addition,
zone lines drawn perpendicular to any pair of @ axes or J3a axes give
grids in terms of the polar constants po(G) or po(Gz).

The four pairs of polar constants are as follows:
(1) Hexagonal heptaxial polar constants cf 3a and c/3",/3a derived by

describing a circle with diameter equal to tan p/3 thus cutting the six
axes at one-third the distance obtained for the orthorhombic constants.
The six abscissae taken in any order and moved parallel with themselves,
when necessary, Iocate the projectionpoint of the face normal byco-ordi-
nates in six directions.

(2) Hexagonal tetraxial polar constants po and IIs (Goldschmidt 1886),
derived by describing a circle with diameter equal to 2 tan p/3, thus
cutting the six axes at two thirds the distance obtained for the ortho-
rhombic constants. Alternate abscissae give two sets of three which locate
the projection point by co-ordinates in three directions as shown by the
writer (1938) f.or po, although as a matter of fact, po(Gz), which is arith-
metically equal, was used. Goldschmidt could have obtained these con-
stants only from the polar equation of a plane derived from the equation
of the plane in terms of the intercepts on four hexagonal axes. This was
verified independently for the writer many years ago by Dean Samuel
Beatty, Professor of Mathematics in the University of Toronto, but until
the simple method described above was found, the writer could see no
way of deriving these constants with their proper indices by graphical
methods.

(3) Orthorhombic polar constants cf a and c/13a. These have already
been shown.

( ) The polar constants po(Gr) and. po(Gz) (Goldschmidt 1886) best
derived by drawing zone lines perpendicular to any pair of o axes for
y'o(Gr) and any pair of t/Sa axes for Po(Gz). These locate the projection
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point of the face normal by co-ordinates on lwo inclined axes.
An extremely useful pair of auxiliary constants, 2cf aand2c/{3u,is

obtained from abscissae on the zone lines, which intersect in the projec-
tion point of (hkal), when cut by a circle with radius equal to tan p. When
16:5 cm., we get direct measurement of cfa and c/J3a as units of
measurement of interfacial spacing in the zones shown in the gnomonic
projection.

It will be noted that only one pair of the four pairs of polar constants
is referred to alternative sets of three horizontal axes and belongs to the
hexagonal system, as ordinarily presented. These and the heptaxial con-
stants are polar only in the sense that they locate the projection point of
the plane (hkAl) by co-ordinates in three of six directions, respectively, in
the gnomonic projection. In every other respect, they must be looked
upon as auxiliary constants. When more than two horizontal axes are
involved, the projection units for locating the projection point of (hkit)
will be fractions of the normal polar units.

Suuuany

The reciprocal relations of linear and polar constants in the hexagonal
system are shown graphically in linear and gnomonic projections and the
complete mathematical calculation from f and p angles is given for
each projection, with suggested abridgements for ordinary use. The cal-
culations are based on the conception that an hexagonal crystal should be
referred to three sets of orthorhombic axes, seven axes in all. Polar con-
stants which have been proposed in the past introduce unnecessary
sources of error and should be discarded as a means of calculating axial
ratios.

2{nz -:, hk + k2 c
f a n p :  

I
t 7 - '

\/ re

The polar constants cf a and c/f 3a with their proper indices are de-
tetmined graphically by chords of a circle with tan p as diameter, which
in the gnomonic projection is the reciprocal of the trace of the given plane
in the linear projection. Two other pairs of polar constants are derived
by drawing circles with diameter of tan p/3 and 2 tan p/3 and a fourth
pair by drawing zone lines perpendicular to any pair of @ axes or f 3a
axes. The linear projection with the addition of a circle with radius
ro: 1 is shown to be well adapted to two-circle calculations in systems
which can be referred to rectangular axes, and when referred to the same
origin as the gnomonic projection gives reciprocal relations which are
easily recognized. Zonal axes in the linear projection are located by the
intersection of the traces of planes having a common horizontal intercept;
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zone lines in the gnomonic projection, which are parallel to the r,,/3o axes,

connect the projection points of faces having a common h/1, h/1, or i'/l

and furnish the best means of orientating the projection, the lines with

the greatest number of faces being parallel with the a axes in the rhom-

bohedral group and perpendicular to the @ axes in crystals with six-iold
symmetry.

In conclusion, the writer would, pay high tribute to Miller, Gold-

schmidt, G. F. H. Smith, Lewis, Palache, and Ford, for their contribu-
tions to two-circle goniometry. The only changes introduced in their

fundamental equations, which are arithmetically correct, involve, in

some cases f or graphical clarity, the substitution oI 1 f tan p or tan (90' - p)

for cot p; cos (90o-@) for sin @;and 1/cos (90"-@) for cosec @.
He would also thank Dr. E. H. Kraus, of the University of Michigan,

Dr. W. A. Wooster and Dr. F. Coles Phillips, of the University of Cam-

bridge for references establishing the date of the original Miller two-
circle goniometer, which preceded the instrument seen by the writer.

Finally, he would thank Dr. E. W. Nuffield, of the University of Toronto
for making the drawings which illustrate this paper.
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