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The notable lack of quantitative information regarding errors in many mineralogic

computations has prompted the writers to construct a series of diagrams from which such

information can be readily obtained. These include various determinative methods for

density, refractive index, birefringence, and optic angle. Assuming a skilled operator,

maximum values of the error in single observations are assigned to each procedure, so that

the diagrams represent "worst" values of error, rather than a "probablet' error as deter-

mined from a series of observations. Comparison of the various procedures is based on this

"maximum expected" error.
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INr:nopucrroN

It is a truism that all physical measurements are approximations
which approach, in varying degree, an unattainable absolute value.
As a result it is essential that the degree of approximation, or amount
of fractional deviation, be adequately known. In the field of mineralogy
everyone knows about this, but few have consiStently done anything
about it. For various reasons the subject as a whole has been treated in
the manner of a poor relation, with much overstatement and some un-
derstatement of the fractional deviations obtained (Hey, 1933). The
present paper is an attempt to improve this situation.

Deviations (also called uncertainties or errors) are classified as sys-
tematic (periodic) or random (accidental). Systematic errors are in-
herent in every experimental investigation (e.g. temperature variations
in density and refractometric work) and can be controlled. This con-
trol is in some cases fine enough so that this type of error is negligible
compared with the random error. Random derliations arise through
reading of scales, adjustment of extinction positions, etc. For a single
observation the uncertainty o{ the measurement depends in part on the
skill of the observer, in part on the eharacter of the apparatus. If re-
peated observations are made, the random error may be expressed quan-
titatively by calculating a "probable error." As there is a 50/e probabil-
ity of a measurement difiering from the true value by more than this
amount, the "probable error" of an observation may give a false im-
pression of accuracy. In the present discussion "maximum expected
error" is considered only-i.e., it represents the probable worst value
which a skilled operator would obtain from a single measurement with
a given apparatus. If it is known in advance how large this maximum
expected error is likely to be and if this value, added to the known sys-
tematic error, gives a total uncertainty which can be tolerated for the
work in hand, the labor of computing a standard "probable error" may

be avoided. This maximum error is of course not a precise quantity, but
the numerical values used in constructing the diagrams given here are
believed to be large enough so that the curves give fractional deviations
which would be exceeded only in rare instances.

The general method followed is (1) differentiation of the basic formula
with respect to all pertinent variables, (2) assumption of maximum ex-
pected values for the difierentials, (3) solution of the difierential equation
to determine the maximum expected random error, (4) calculation of the

systematic error, (5) addition of random and systematic errors, (6) con-
. struction of a diagram.

It is assumed that the reader is familiar with the determinative meth-

ods under scrutiny and has acquired enough manipulative skill to avoid
random errors appreciably greater than those shown in the diagrams.
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In cases where the observer believes that the uncertainty in any of his
own measurements differs markedly from the values used here, an ad-
justed diagram can usually be made with little labor by referring to the
proper differential equation.

DnrnnurNauoN or, DnNsrrv

Four commonly used methods of density determination are consid-
ered and their relative accuracies compared. The suspension, hydrostatic,
and pycnometer procedures give relative density, or "specific gravity,"l
whereas the r-radiation method measures density directly, without use of
a reference fluid such as water or toluene.

SuspeNsroN MErr{oD. Although this method does not involvp any
computation and is limited in its application, its potential accuracy is
worthy of note, especially where Clerici's solution is used (Jahns, 1939).
The random error in density inherent in Jahns'refractive index-density
curve is given as .01. A second random error arises from reading the
Abb6 refractometer, and may be assumed to be .0005. Using the slope of
this curve to obtain the ratio of density and index change (dD/dn), the
uncertainty in density is found to be .00044, negligible in comparison
with the first random error. The total random error of .0104 is converted
to a fractional deviation dD/D, this value being plotted against D in
Fig.2 (inset, top left). It is assumed that the systematic error arising
from temperature variations can be adequately controlled.

Extension of the density range through use of a glass float (of known
weight and density) attached to the mineral fragment can be achieved,
but with relative loss in accuracy. This case is not considered here (see
Bannister and Hey, 1937).

Hvnnosrerrc METHoD. A number of rnethods of this tvpe have been
described, of which two are discussed here.

Jolly Balance. The expression for density is

WeDw
l J : w o - w * '

where Wr:weight of substance in air.
Ww:weight of substance in water.
Dw:density of water at room temperature relative to D*:1

at 40C.

t Although widely used, "specific gravity" is terminologically incorrect as a syronym
for relative density, and is physically incorrect as a synonym for density determined by
the r-radiation method. "Gravity" implies the weight of a body, i.e., the earth's athaction
for it, which is not an intrinsic property, whereas by definition density is the mass of a
body per unit volume, the mass being an intrinsic and invariable property.
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The fractional deviation is given by

dD WedWw * WwdWe

D Wl(Wo - Ww)

where dWw and dWe are the uncertainties in determination of Wa and
Ww, respectively, and dDw is the uncertainty in density of water at arry
temperature. As dWe and dWw are obviousiy equal they may be re-
placed by dW. Furthermore, the uncertainty in Dw is relatively negligi-
ble so that, finally,

dD dW(Wr * Ww)

D W,r(Wr - Ww)

which represents the {ractional deviation arising from the random errors
of reading the scale. The obvious source of systematic error would be
temperature variations which would affect the density of the water.
Ilowever, it is found that, between 15o and 25oC. (room temperature
range), this error may be neglected.

Figure t has been prepared from data obtained with the current ap-
paratus ofiered by the Central Scientific Company. Two springs are
provided to extend the range of the balance. The uncertainty of any in-
dividual reading of the scale should not exceed one-quarter of a division.
In order to compare directly with errors found in the other weighing
methods, the springs were calibrated in grams, giving dW:.005 gm. for
the l ight spring, and dW: .025 gm. for the heavy spring.2 This conversion
is of course not ordinarily necessary. Per cent fractional deviation is plot-
ted against density for each spring, using four values of We known to be
within the range of the scale. The sensitivity of each spring is considered
constant within the range selected. It is seen from Fig. I that least ac-
curacy (greatest fractional deviation) is obtained where We is low and D
is high, and, conversely, that maximum accuracy is to be expected from
the combination of high W1 and low D. Furthermore, the variation in
dD/D with D is much less for high We than for low Wr. These observa-
tions hold also, in varying degree, for the other balance methods dis-
cussed (Figs. 2 and 3).

Berman Balance. As with the Jolly balance

g?: dw(we * ww)
D We(We - Ww)

where dD1 and Dr refer to toluene instead of water. At any given tem-
2 Figure 1 will probably require some adjustment for Jolly balances of difierent make.

dDw
-  

D * '

the Iractional deviation rs

dDr
- T - t

Dr
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perature there is an uncertainty dDr:.0005 in the density of toluene
(Timmermans, 1912). The random error dW of a single scale reading on

Frc. L lotl'y balance. Variation in accuracy for difterent densities' Random error com-

puted for Wa values of 1,2,3,4 gm. (using light spring) and 10, 20, 30, 40 gm. (using heavy

spring). Based on an error of .25 division in reading the scale.

2

.9
=
E

,(L

?
LI
!

3

o 1

o '2

-2\/

D

Fre.2. Berman balance and' (inset, top LeJt) Clerici solution rnelhod (Johns). Random

error for Berman balance computed for Wa values of 5, 15, 20, 25, 50 mg. Based on dW
:.01 mg. Full lines (15,20,25 mg.) cover the range of maximum sensitivity of the balance

as specified by the manufacturer. Random error for Clerici solution method based on ex-

perimental data given by Jahns (1939).
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the balance should not exceed .01 mg. The systematic error arising from
determinations made at various temperatures is relatively negligible in
the range 15o-25oc. Surface tension deviation may also be neglected
where the suspension wire diameter is a small fraction of millimeter.
Figure 2 is therefore constructed directly from the equation given above.
Optimum conditions of accuracy are realized only for We values from
15 to 25 mg., as specified by the manufacturer.

Where a determination is made with several small fragments instead
of with a larger, single piece, accuracy will probably be lowered because
of less perfect wetting. Unlike the pycnometric method, this systematic
error can not be eliminated.

PvcNol.rornR MErHoD. Density by the pycnometer procedure is given
by

D :
(W, - W')Dr

W z - W * D r V

where W1:ra'eight of pycnometer
W2 : weight of pycnometer*powder
WB :weight of pycnometerf powder{toluene
Dr:density of toluene

V : volume of pycnometer.

If a silica-glass pycnometer is used, the uncertainty in V may be reduced
by careful calibration to a relatively negligible value (Ellsworth, 1928).
In the following expression for fractional deviation V is therefore consid-
ered constant

dD 2dW dDr
- T - -

D  W z - W r  D r

The three uncertainties dW1, dW2, dW3 used in the first step of the dif-
ferentiation are equal and have been replaced by dW in the final con-
densed expression above.s As the uncertainty in weighing on the ordinary

3 As the writers have not succeeded in duplicating the expressions derived by one or
trvo other authors for the pycnometric method, the derivation used here is given in detail.

D :
(Wz - Wr)Dr

Taking logarithms of each side,

l o g D : l o g D r *

Difierentiating,

W z - W s

log (Wz - Wr)

* DrV

- log (Wz - W3 + DrV)"

d W z - d W r + V d D . r

W z - W e * D t V

dD dDr . dW, - dW1
D  D t  W r - W ,
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chemical balance should not exceed .0001 gm., this value is assigned to

dW in constructing Fig. 3. dDr:.0005 as in Fig' 2' Room temperature

variations produce relatively negligible systematic errors. The 10 cc.

bottle described by Ellsworth (1928) is used to show variations in ac-

curacy for powder samples weighing l, 2, 5, and 10 gm. ; the 0. 1 cc. bottle

described by Winchell (1938) is used similarly for powder weights of 0.1,

0.2,  and 0.5 gm.
Every precaution must be taken to wet the powder thoroughly, as

failure to remove all the imprisoned air will lead to deviations much

greater than the rand.om error from weighing. Ksanda and Merwin (1939)

have described an excellent technique of this kind.

Figure 3 shows that bottles of large capacity give smaller fractional

deviations over the usual range of powder weights than do bottles of

small volume, assuming equivalent conditions of weighing. This becomes

obvious from inspection of the differential equation' Increase in V re-

duces the dDr/Dr term, and increase in Wz-Wr (weight of powder in air)

reduces the dW term. Ofisetting this apparent superiority of the larger

bottle, however, is the fact that its greater bulk of powder increases the

Collecting the dWr, dWz, dWa, and dDr terms separately,

+ dwr(
W z - W s * D t V )

For determination of m,arimum error all the bracketed expressions must have the same sign.

The dWr term is therefore made positive. (The minus signs wi.thin the dDr and dWz

brackets must be left unchanged, as Da and W2 occur in both numerator and denominator

of the original density equation. Errors in their measurement would therefore be expected

to compensate each other partially, as shown by the minus signs in the diflerential equa-

tion.) Furthermore, as dWr:dWz:dWe, we replace each by dW. Thus
--- - Wr

*:'"'(uf _u*,(*,:w,)

+ aw'(*r- 'r, -

- w r  I
w;+ Dt\r)l

dD- : d
D

lVs f DrV) * (W' - W3 + DrV) - (WI - W1) + (W,

( W z - W r ) ( W z - W ' + D r V )

#5*"] 
must be added totheabove'If V is not considered constant the term 

ttr -+=



680 H. W. FAIRBAIRN AND C. W. SHEPPARD

difficulty of removing the last traces of trapped air. Homogeneity in com-
position of the sample is also more difficult to attain with a large sample.
It is probable therefore that in practice the accuracy of the two bottles
will be about the same.

In the micropycnometric procedure described by Bannister and Hey
(1937) only 15 to 25 mg. of sample are required, with a reported accuracy
oI 0.5/6. As part of this error stems from an uncertainty in the volume
of liquid used, a greater error than that of Fig. 3 would be expected.

Fte.3. pycnomr,r, *l,roo.u".t",a"; ':"i, a, 
j,u","r'r'l"nsities. 

Random error
for 10 cc. bottle (Ellsworth type) and.1 cc. bottle (Winchell type). FuIl lines refer to the
10 cc. bottle for mineral weights (in air) of 7,2,5,l0 gm.; broken lines refer to the .1 cc.
bot t leformineralweights( inair )  of  .1, .2, .5 gm. Based on dW:.0001 gm. and dDi:
.0005.

However, uncertainties regarding the homogeneity and wetting of the
powder may be better controlled in the Bannister-Hey method than in
the others, and too much emphasis should not be placed therefore on the
purely mathematical aspects of the case.

X-nanrarron MErHoD. Density by this method is expressed by

MZ
o:  

ou
where M: molecular weight of the material

Z:number of formula-units in a unit cell
V:volume of unit cell
A: Avogadro's number (6.02 X 1O'?).
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As V is the single variable,a

In a cubic crystal, oo:d(h2*k2+12)rt2
where o6:lsngth of side of unit cell,

d:interplanar spacing of planes with indices lftl'

Aao Ad
Therefore

2,0 d

aV A(ao3)
But --

V ao3

From Bragg's equation d:tr/2 sinO,
where tr:wave Iength of r-radiation used'

0: diffraction angle.

The fractional deviation of d is ad/d: -cot 0L0. Expressing the frac-

tional deviation in density in terms of the diffraction angle, AD/D:3

cot 0A0 (for cubic crystals only).
Application of this equation is confined here to powder photography'

The eiror in read.ing a millimeter scale placed on a line of the film should

not exceed .25 mm. for any single measurement. Therefore the uncer-

tainty in the distance between such a line and its mate on the other side

of the line of zero difiraction is 0.5 mm. As this total distance in a camera

oi 57.3 mm. diameter is equivalentto 40, the error in d is .125o. That is,

A0:.125/57.3:.00128 radians. The curve R for random error in Fig' 4

is based on this value.
The four systematic errors inherent in *-ray crystal diffraction work

-absorption of radiation by the specimen, eccentricity of the sample with

respect io the camera, film shrinkage after development, and uncertainty

in the camera radius-must each be considered on its merits. As details

are given by Buerger (1942) for such corrections the matter is taken up

onlybriefly here. use of a two-hole film (Straumanis method) permits the

camera radius and film shrinkage errors to be combined, and for a care-

fully constructed camera and film dried at room temperature, the error

from this source is relatively negligible. It does not appear in Fig' 4'

The eccentricity error is small but appreciable. Its curve (E in Fig' 4)

is based on a maximum expected displacement of the sample relative to

the true center of the camera of .025 mm. The equation used is given by

Buerger (1942, p.413). The deviation may be positive or negative'

a To avoid conlusion with the interplanar spacing symbol d, A replaces here the custom-

ary difierential symbol.

681

AVAD

_ 3(aao) _ 3ad.

o'o d
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The absorption error (Buerger, 1942, p. 414) is based on complete
absorption, a specimen diameter of .25 mm., a pin-hole-specimen dis-
tance of 10.6 mm., and camera diameter 57.3 mm. Its curve (A in Fig.
4) shows an order of magnitude for AD/D similar to the curve R, and of
the same sign.

The total value of the maximum expected error is shown by curve T
and has been drawn using positive values for the individual errors. As
the random error may be opposite in sign to the absorption error, and is

80' 90'
e

Fte .4. X-ray methoil.Yariationin accuracyfor difierent difiraction angles. Random error
(curve R) based on an uncertainty of .25 mm. in reading the position of a diffraction line.
Absorption error (curve A) from data in Buerge r $9a\. Eccentricity error (curve E) like-
wise from data in Buerger (1942). Curve T shows total error where R, A, E are assumed to
have the same sign.

of the same order of magnitude, the total error may, however, be very
small. Curve T represents the worst possible case. The diagram does
not include values smaller than 50o, as the accuracy decreases very rap-
idly in this range.

CoupanerrvE AccuRAcy. Excluding the x-ray method, comparison of
the remaining procedures shows that the pycnometer method has the
greatest inherent accuracy, the Jolly balance method the least. Choice
of method is dictated by the nature of the material and the degree of ac-
curacy required. For most work the accuracy range of the Berman bal-
ance is adequate, provided that a single fragment of suitable weight can
be obtained.

Direct comparison of these weighing methods with the *-radiation

60'50' 70'
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method is not possible, as the latter gives the density of the unit cell

whereas the former give values for aggregates of unit cells. The individual

cells in these aggregates are rarely, if ever, packed together perfectly,

with the result that lower density values are obtained than from the *-ray

procedure. If it is desired to contrast the two density values for a given

material, a weighing method should be selected which gives an accuracy

comparable with that indicated by the 0 value chosen in Fig. 4' In gen-

eral, the Berman balance would satisfy this requirement.

DBrnnurNarloN or RBlnacuvn INoBx

As this paper is concerned with errors in computation only, the ac-

curacy of direct-reading instruments will not be discussed. In the case of

refractometers the accuracy of the widely used Abb6 type has recently

been reviewed by Tilton (1942) in an informative paper. It need only be

stated here that the ordinary Abb6 used in mineralogical laboratories

reads correctly to *.0002 in its lower range, but is considerably less

accurate in its upper range. Other direct-reading re{ractometers (Fisher,

Nichols, etc.) are usually reliable to *.001.
Mruruuu DEvrArroN MErHoD. In the field of precise refractometry the

minimum deviation method is preferable to any other. Where moderate

precision is required, as in standardization of oils or melts for use in the

immersion method of refractive index determination, it affords the only

universal method for the entire range of indices. The accuracy of the

method has been discussed by Tilton (1935) who lists 19 sources of error

for determinations of the highest precision (+.000001). As mineralogists

seldom require this accuracy for crystal measurement, and never for im-

mersion oils or melts, only the random error of reading prism and mini-

mum deviation angles need be considered here.

The index of refraction is given by

.  A+D.
Sln -

a
L

where A:angle of the prism.

D- : minimum deviation angle.

Difierentiating partially with respect to A, dn: -I/2 sinD^f2 cosec2

A/2 d A, and partially with respect to D^, dn--1/2 (cos D*/2 cot h/2

. A
SIN -

2



684 H. W. FAIRBAIRN AND C. W, SHEPPARD

-sin D*/2) dD-. As it is probables that dA:dD*, we replace each by
dr, so that the total random error is

rn constructing Fig. 5 the error in the prism and minimum deviation
angles is assumed to be *1/, so that dr:.000291 radians. The second
term in the difierential equation is considered positive in order to give

Ftc. 5. Minimurn d'ettiation method,.l{aiation of random error in z for a series of z values.
Computations shown for prism angles of 25', 30",40o, 50o, 60", with the /a accuracy given
for each' Steep curve transecting the prism curves is the locus of limitingvaluesof prism
angles for determination of a given refractive index. Diagram based on an uncertainty of
* 1r in determination of prism and minimum deviation ansles.

dn its maximum expected value.6 Most single determinations wilr have
greater accuracy than that indicated by the graph. In working with crys-
tal prisms the deviation is likely to be much less than 1,, but with the
ordinary hollow cell used for oil determinations this is unlikely, and for
crude prisms composed of S-Se mixtures may be much greater than 1/.

Figure 5 shows the total maximum expected error for prisms of varying

6 This may not be true if the prism angle is determined from readings of the table circle,
and the minimum deviation angle from readings of the telescope circle. The table angles of
small spectrometers and goniometers tend to be less accurate than telescope angles. How-
ever, if the prism angle is determined by the split-beam method, no table angle need be
rtsed, and except in high-precision work gives very satisfactory results (Guild, 1923).

6 The small numerical range of the common refractive indices makes it unnecessarv to
plot the variation in fractional deviation for difierent values of n.

z(dn) : f[.o*r.1 .o, 
A + D^ - cosec2 j 

rin 3=lor.
2L  2  2  2 - - - -21- "
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angle over a wide range of indices. For a given index greatest accuracy
(least dn/n/) is attained where large prisms are used. Inspection of the

formula
.  A+D^  / .  A

,? : s rn  
2  / " t " 1

indicates a maximum value of nlor any given prism angle. The boundary

curve in Fig. 5 shows this graphically. For example, the limiting refractive

index determinable with a 600 prism angle is 2.0. In practice, since the

1 4  1 5  l ' 6  n  1 7  1 8  1 9  z ' e

Ftc.6. Mini'rnum dpvialion rnethod where prism angle is 6O" . Curve P shows random error

arising from prism angle uncertainty of 1', Curve D14 shows random error arising from

minimum deviation uncertainty of 1'. Upper curve shows the total error where P and D1,a

are assumed to have the sarne sign.

proportion of transmitted light at grazing incidence is greatly reduced

relative to the reflected portion, it is never possible to proceed to the limit

shown in the diagram.
Figure 6 gives greater detail for a 60o prism. Curve P shows the

variation in prism angle error for various indices; D* shows dn for dif-

ferent indices arising from measurement of the minimum deviation an-

gle. At the limiting index of 2.0 the prism angle error reaches itsmaximum

whereas the minimum deviation error becomes zero. The upper, straight

line represents the total maximum expected error. If the Gifiord methodT

7 This method (Gifford, 1902) makes use of a closed prism whose angles approximate

60'. Minimum deviation angles are measured across each prism and an a\erage computed.

Angle A may then be assumed equal to 60o without any accurate measurement of the in-

dividual prisms. An uncertainty in A of the order of magnitude of 1 o causes an uncertainty

of only *.0001 in z. As there need be no difficulty in maintaining the prism Ceviations at

much less than 1o, the resultant prism angle error using this method becomes negligible.
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is used, the error in prism angle becomes negligible and the total uncer-
tainty is shown by D^. In all cases where the demands of this method
can be met, increased accuracy will result, particularly for refractive in-
dices approaching 2.0 in magnitude.

Where the goal of accuracy is in the neighborhood of *.0001, system-
atic errors become significant only for determinations made on liquids.
Temperature corrections are necessary, particularly for methylene iodide

dn x l05

Frc. 7. Grazing inciilence mathod (Puffrich refractomcter). Variation in dn with n shown
for t'rvo prisms of refractive index as marked. Approximate /s accuracy at curve maxima
is also given. Based on an uncertainty of * f in reading the scale.

and mixtures containing it, and require control to at least 0.10C. if the in-
dex error limit of .0001 is to be maintained. In addition the hollow cell
must be constructed of optically flat glass. Suitable material may be se-
Iected according to the method suggested by Larsen and Berman (1934).
In Figs. 5 and 6 it is assumed that these systematic errors can be reduced
to negligible proportions and that only random errors remain.

Gnazrxc rNcrDENcE MErHoD. This method is incorporated in the
widely used Pulfrich refractometer. Although Iess used by mineralogists
than by chemists (Gibb, 1942, p.333), and inherently less accurate than
instruments used for precise minimum deviation work, a brief compari-
son is not out of place. Refractive index is given by

n : (np2 - sin2 r)1/2

where no:lefractive index of prism,
r: angle read on divided circle.

Differentiation gives

d " :  - [
sin 2r

]u,2(no' - sin2 r)1/2
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The error in a single reading in the middle range of r values is not likely
to exceed 1/, so that dr:.000291 radians. Figure 7 shows a graphical

solution of the differential equation for two prisms ol n:I.620 and n
:1.752. For each prism there is an r value which gives maximum frac-

tional deviation (.07/6 and .06/6 as indicated). Thus for material of

n:!.6 the maximum expected error would be only about one-half as
great where the lower index prism is used as where the higher one is used.
For high and low r values, however, dr may easily exceed the value used

in the diagram, so that the accuracy indicated in the lower part
(dn <.00004) may not be realized. Ilowever, even the worst values at the

noses of the curves are as good, or better, than the accuracy to be ex-
pected from ordinary four-figure minimum deviation measurements.

UNrvnnsar, srAGE ExrRApoLATroN METHoD, In cases where one critical
index alone can be determined in a given oriented optic symmetry plane,

measurement of an intermediate index at a known angle in this plane

makes possible the computation of the other critical index. This method,

first used by Pauly (Johannsen, 1918, p. 266), and' later developed by

Emmons ( 1943, pl. 10) depends on the following equation

n2(nr2 sin2 d * n*2 cos'6) t / '

rlr

where n*:qnknown critical index,
nr : known critical index,
n2 : intermediate index,

d:rotation angle used in obtaining n2.

Assuming that the uncertainties in n1 and nr are the same, and using

dn to represent both, the difierential equation is:

d n *  T 1  n * z c o t 2 g / l  1 \ 1  /  n * ' \- . :  :  |  _+ - - (  -  _  _ )  l d "+  (  I  __ ; )  co t  { d { .
nx Lnz l1z '  \nz nr /  J  \  nr ' .2

If dn:.001 and the uncertainty8 in S is 1" (dO:.0174 radians), the

equation appears graphically as in Fig.8. It is assumed that nr)n*'

In Fig. 8 dn* is plotted against (tr-t*) for difierent values of f using

the computations made for nr:1.6. For other values of nr no appre-

ciable difierence in the deviations is obtained. For d:90o inspection

of the differential equation shows that 41*:(n*/nz) dn and since nz

now equals n*, then dn*: d1 : .001 as shown in Fig. 8. The total dn term

remains fairly constant at .001*, most of the variation being shown by

s The uncertainty in f stems from the initial random error in orienting the optic sym-

metry plane rather than from any inherent defect in the OEW axis of the stage.
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the d{ term. In general, dn* is least where large angles are combined with
low partial birefringence. Except for angles of less than 20o, however,
dn* changes little where partial birefringence is low.

Frc.8. Ertropol,ation m,ethod.. Variation in dn* for difierent partial birefringence (nr
-n*). Shown for three values of d, where nr:1.6. Based on dn:.001 and an uncertainty
in d of  1 ' .

d 6

d e

0 0 (

0 0 0

F = l  5 0
(+) td

,/

//,/
z

H -)?'

04030 lq-p

Frc.9. Optie angl'ernethoil.Yariation in d7 (or da) for difierent values of 7- B @r a-B).
Four selected values of the optic angle are used. Diagram based on p:1.50 and an optically
positive crystal. FulI lines refer to da only; broken lines to d7. The uncertainty in deter-

mination of the known refractive indices is.001 and in the optic angle 1o.
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If nr(n*, dn* increases by a few per cent for high n* and birefringence
values; for low values the change is inappreciable. No diagrams for this
case have been constructed.

Oprrc arqcr,n MErHoD. Mertie's nomogram (Mertie, 1942) showing the
relations between a, A, "y, and V, based on ellipsoid geometry, is a neces-
sary prerequisite to the deviation diagrams of this paper. As differentia-
tion of the full equation gives a long, involved expression, the approxi-
mate equations

B - o t
sin2 V

' Y - o t

sin2 V :!--J for optically negative substances,
^ l - o t

are used here. Differentiation of these with respect to a, 8,7 in turn,
gives

d a :  d n  *
(0 - t) sin 2VdV

d y :

d a : d n *

d v : d n *

sina V

@ - ") 
sin 2VdV

sina V

@ - t) sin 2VdV

for optically positive substances.

for optically negative substances.

cosa V

dF : dn * (t - a) sin 2VdV for either positive or negative substances,

where dn substitutes for dB and dt, dg and da, da and d7, respectively,
and is assumed equal to .001. The uncertainty in direct measurement of
2V need not exceed + 10 if both optic axes are found. If only one axis can
be oriented the uncertainty will be t 2o. For low to moderate refringence
and birefringence

d" ( * )  :  d r ( - )  and  d r ( * )  :  do ( - ) .

Figure 9 is based on a constant value of B: 1.59, an optically positive
substance and dV:.0174 radians (uncertainty in V of *1o). It shows
the variation in da with change in a-8, and the variation in d7 with
change in,y-0, fpr selectedvalues of V. As would be expected, the closer
a (or 7) approaches B the smaller is da (or dl). The rate of increase in
da (or d7) is greater for small V values than for large. The percent frac-
tional deviation (accuracy) follows the same trend. Figure 10 is similar
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to 9, but is based on B:1.90. The same type of variation persists, but

da and d7 are on the whole several times larger. For p values other than

1.50 and 1.90 interpolation or extrapolation will give a reasonably good

result.

d

d

'l
,//

/ , .

/

1%y
./:

%,4,
| 90 (+)

,%'t

0 0 6a - p
, . 8

Frc. 10. Optic angle m,ethoil.. Same as Figure 9, but based on p:1'90'

Frc. 11. Opti,c angl,e mcthoil.. Variation in dB for different values of total birefringence

(7-a). Four ielected values of the optic angle are used. Based on uncertainties of .001 in

determination of the known refractive indices, and of 1" in the optic angle'

Figure 11 is of similar form, but the variation is simpler in character.

The curves are valid for any value of B, and for both positive and nega-

tive substances. In contrast with Figs. 9 and 10, dB is smaller for small v
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values than for large. The overall range of dB is also considerably less than
for da and d7.

rf the refractive indices are determined by precision methods, dn will
be much less than .001. However, as the immersion method is rapid and
widely used, the diagrams have been constructed for dn:.001.

CoupenarrvE AccuRACy. It has already been pointed out that the min-
imum deviation method is capable of greater precision than any other.
rrowever, the small spectrometers used for this method in most labora-
tories give results which are usually less accurate than those obtained
with the Pulfrich refractometer, although adequate for practically all
mineralogic work.

In contrast, the extrapolation and optic angle methods, insofar as they
depend on immersion in oils, are much less accurate, giving third decimal
place accuracy only.

DnrpnurwarroN oF BrRonrrNcprqcn

GBunnar coMpENSAroR METHoD (Bereh). Determination of refractive
indices to *.001 (immersion method) yields birefringence values accu-
rate to + .002. This direct method may be compared with an indirect
method which makes use of the Berek compensator. Birefringence is de-
termined by:

I /t :  
v**

where I': retardation in the unknown for a particular orientation.
t:thickness of thin section.

0/:angle between path of light and normal to the thin section.
By difierentiation, dB /B: dl'/ I/ - tan 0,d 0, - d,t/t. The thickness
t is found from a reference mineral of constant B (e.g. quartz), and
t: I" cos 0" f B, where I" and 0" are analogous to I/ and 0/. Difierentiat-
ing, dt/t: df." f l" -tan 0,,d 0,,. By substitution in the original dB/B
equation, and assuming positive values for each term (to give the maxi-
mum deviation)

dB dr, dr,,
B- :  F 

+ tan o 'd  o '  +  
r*  

*  tan o"do" .

A general expression for dl'fl, and, dl,,f l,' may be obtained from the
basic compensator formula, log l: log C*log f (i) where C:constant
of the compensator;e f(i):1un.,ion of angle of rotation i of compensator
drum. As f(i):sitrzi+.204 sinaif ...for a calcite compensator (Berek,
1913), differentiation of the compensator formula gives:

0 This constant must be determined for each instrument.
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dr  s in  2 i (1  +  .408 s in '? i )d i

sin2 i * .204 sina i

The maximum expected uncertainty of a single reading of the com-

pensator drum is assumed to be 0.20. The uncertainty in 2i would then be

0.4" and for i would be 0.20. Then di:0.2/57.3:'00349 radians. Curve

df/f in Fig. 12 shows the per cent variation in fractional deviation with

change in I.r0 It is seen that accuracy is much increased where I is not too

small.

5oo looo 1500 2000
f (mf' ""

Frc. 12. Berek compensator.Yariation in dI, and /6 accuracy of l., for difierent values

of I. Based on an uncertainty of * .2" in reading the compensator drum'

The uncertainties in 0' and 0" may be assumed equivalent. T'heir mag-

nitude depends on (1) error made in orienting the sections, (2) error in

obtaining 0' and.0" on the stereographic net, (3) error in the final hemi-

sphere correction. Error 3 applies only to the unknown, as the refractive

indices of the reference mineral are known. For the worst case, therefore,

a maximum uncertainty of !2" is not improbable. Where 0/ and 0" are

both small, however, errors 2 and 3 will be negligible and the uncer-

tainty should not exceed t 1o. The general importance of small I values is

indicated clearly in Fig. 13.
No simple diagram will show the variation in accuracy of B, but the

total fractional deviation in any given case can be found by adding the

values of the four terms in the equation for dB/B.

r0 Thc values in Fig. 10 are about double those given by Berek (7924,Fig' 22,p'46)'

His calcul,ation, however, is of a "mean" error, not a maximum expected deviation'
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The preceding discussion implies strict uniformity in thin section
thickness. As this condition is seldom realized., and, as it is physically
impossible for the reference mineral and the unknown to occupy the
same area of the section, a systematic error is thereby introduced which
has not yet been considered. In the case of a strongly wedge-shaped sec-
tion, detection by means of interference colors is easy, and the mount
discarded if necessary. The thickness of apparently uniform sections can
be rapidly checked by orienting three or four widely separated reference
grains and noting the discrepancy in thickness obtained. Where this is
small, e.g., .002 mm. across the whole section, it can be shown that, if
unknown and reference mineral lie reasonably near to each other, a neg-
ligible error in B will result. In the case of mineral fragment mounts a
reference mineral can always be added, so that close spatial association
with the unknown is realized without difficulty.

In summary the accuracy of the indirect method increases where (1)
thick rather than thin sections are used, (2) measurements are made on
grains requiring the Ieast angular rotation for their orientation, (3) the
reference grain is as close as possible to the unknown.

EulroNs ExrRApoLATroN METHoD. A new orocedure described bv Em-
mons (1943, plate 13), based on the Biot-Neumann equation, permits
determination of total birefringence in any crystal where the optic plane
is vertical. The compensator used may be of fixed retardation (standard
gypsum or mica plate) or variable (Berek, graduated wedge, etc.). As
the analytical work on which Emmons' plate 13 is based has not been
published, no diagram of maximum error appears in this paper. Com-
ment on the probable accuracy of the method will be found in the follow-
ing section.

Oprrc eNcrr-coMpENSAroR MErHoD. The approximate relation

D - B p
" t -  ,h  o . in  /

developed by Biot and Neumann (Johannsen 1918, p. 351), where Br
:total birefringence of the crystal, Bp:partial birefringence (as meas-
ured on a randomly oriented crystal section), 0 and,0tare the angles sub-
tended by each optic axis with the normal to the crystal section, becomes
81:(Bp/sin2 V) where the optic plane is parallel to the microscope
axis, with X or Z vertical, thus making 0:Y:0'. A graphical solution
of this equation is given by Emmons (1943, plate 11). Where Br)0.1
there will be an appreciable correction to apply to V (see Larsen and
Berman, 1934, Fig. 1, or Emmons, 1943, plate 13). By difierentiation,
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dBr dBp

B r :  B "  
- 2 c o t v d V '

dBp/Bp consists of four terms as described for the general compensator
method (Figs. 12 and 13). The additional term 2cotVdV is shown graph-
ically in Fig. 13 for two values of dV. The uncertainty in measuring an
optic axis position need not exceed *1o; therefore if both axes can be
measured directly, the error in 2V is * 20 and in V is + 10. If, however,
only one axis position can be measured, the uncertainty in V is * 20. Both
these cases are included in Fig. 13. It is obvious that 2cotVdV is least
where V is large and that the method fails badly for small V values.

Frc. 13. Tri'gonometric terms useil in the compensator melhotls. Tan 0d0 curve (general

compensator method) based on an error of *2o in 0. 2 cot VdV curves (optic angle-com-

pensator method) based on an uncertainty in V of I 1o in curve (a) and of * 2' in curve (b).

CoupenauvE ACcuRAcy. Inspection of the differential equations de-

rived for the first two birefringenie procedures indicates that the general

method is potentially superior to the optic angle method. Presence of
the 2cotVdV term in the latter decreases the relative accuracy mark-

edly. Total birefringence may be more accurately determined therefore

on an optic normal section using the general method.
It is probable that the fractional deviations in the Emmons extrapola-

tion method are of the same order of magnitude as those in the optic an-
gle method, i.e., somewhat less accuracy is to be expected than in the
general method.

Comparison of the general method (indirect) with direct determina-

2C
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tions of B may be made in an approximate way as follows. Where re-
fractive indices are determined to *.001 (immersion method) the un-
certainty in birefringence would be *.002. For B:.01 the fractional
deviation is then 20/6;for B:.10 it is 2/s.Inspection of the range of
values in Figs. 12 and 13 for the indirect general method indicates that
a total fractional deviation in birefringence of I5/o might commonly
occur. By using thick sections and selecting grains which do not re-
quire appreciable rotation for their orientation, the above value might
easily be reduced to 5/s as a maximum expected error. Comparison of
the two methods depends therefore on auxiliary data, particularly on the
magnitude of B and d. For low birefringence the indirect general method
may, in many cases, be preferable; for high birefringence the direct
method is superior. Values of B obtained from precise prism determina-
tion of refractive indices would, of course, be superior in all cases to the
indirect method.

DnrrnurNarroN or, Oprrc Axcrn

Accurate information regarding the size of the optic angle in biaxial
crystals is less important than accurate determination of refractive in-
dices. However, as a number of procedures for optic angle determination
are in common use, it is advisable to consider their relative merits.

CoupnNsaroR METHoD. The approximate relation between optic angle
and birefringence, sinz V: B"rrBr is equivalent to sin 2 V: Ip/lr, where
retardations are computed for a common thickness of section, Ir is the
retardation in a section normal to X or Z, and Ir is the retardation in a
section normal to Y. Wright's graphical solution of this equation is given
by Emmons (1943, plate 11). Differentiating,l l

Irdlr - fpdlr
d V :

I21 sin 2V

Using the Berek compensator, dlp and dlr are obtained from Fig. 12.
In Fig. 14 dV/V (%) is plotted against Ir for several selected values of
V. In general, accuracy is seen to be greatest for large retardations; in
particular, where V is large as well.

As the basic formula above is an approximation, an appreciable cor-
rection to V must be applied where B)0.1 (Larsen and Berman,1934,
Fig. 1). This correction, however, would result in negligible change in
Fig. 14.

RnnnactrvB rNDEX METHoD. The approximate equations cos? V"
: @-o) /(t-o) : sin2 V", and sin2 Vo: 6-i l /Q-d: coS2 Vz may be used

-"1lX:;.*"tive 
sign in the expression is changed to positive for computation of maxi-
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to determine V if all three indices are known. The subscript a refers to a

negative, 7 to a positive mineral. Difierentiating cos2 Vd'

6 - 
")dA + G - 7)da * (" - B)dT

( t  -  o ) ' s in  2V

Frc. 14. Cornpensotor methoil. Variation in accuracy oI V for difierent values of total

retardation (f1). Diagram shows curves for four values of V.

As a (g (?, dV will have its maximum value where dB is positive, da and

d7 are negative. The equation is then rewritten

(r - 
")d0 

- @ - t)do - (o - ildt
( t  -  o ) ' s in  2V

Furthermore, da:dB:d7, permitting the substitution of dn, so that

2dn 57.3  X 2dn
dV (radians) : or dV (degrees) :

( t  -  o ) ' s i n  2V( t  -  o ) ' s i n  2V

The uncertainty in n for the immersion method need not exceed

+.001, and for precise prism work +.0001. Figure 15 is constructed for

these values of dn, the curves representing various values of V as

marked. In general, accuracy is greatest for high birefringence; in par-

ticular for high V values. It is obvious that an optic angle computation

where dn: .001 is useful for relatively few substances (see Mertie, 1942),

and that prism refractometry is required if any precision in V is expected

by this method. Even with precision methods the accuracy is low if v is

small.

d V :

d V :

dV/V =15at r=200
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ExtrNcuou ANGLE MErHoD. This method, first made practical by

Berek (1924) and later amplified by Dodge (1934), provides a means of
determining the optic angle independently of either refractive indices or
retardation. It is discussed in two parts as outlined below.

Opti.c plane horizontal. This is the most useful case. The geometrical
relations are as follows (Dodge, 1934):

K+K'
Q : - - - - ; - r  t a n K :  t a n ( O  +  V )  c o s x , t a n K / :  t a n ( S  -  V ) c o s x '

L

lic. 15. ReJraclile ind.er mel,hoil.Yaiation in accuracy of V for difierent values of total

birefringence (ry-a). Curves shown for optic angle values of 10", 20o, 30", 45'. Based

on refractive index uncertainties of .001 and .0001.

where the following rotations are made, in the order listed-

S is a fixed angle of rotation on the outer vertical axis of the stage;
x is a fixed angle of rotation on the outer east-west axis of the stage;

@ is an angle of rotation to extinction made on the microscope axis.
The graphical solution of these equations wil l be found in Dodge (1934)

and also in Emmons (1943).
For the so-called "normal" case, where

some given angle, we assume V and 6 to
above relation. Differentiating,

d V :
sin 4d tan 2V

12 The uncertainty in x arising from incorrect orientation of the optic symmetry plane

is lessened very considerably here by the large { value used, and is neglected in the difier-

ential equation. Where { is small x cannot be considered constant.

o
o

'i
c

!t

6:45", and x is set equal to
be the only variablesl2 in the

2d6
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Fig. 16, showing dV/V plotted against V, contains two curves (full lines)
derived from this equation, for values of x:54.7o and 70o. The uncer-
tainty in f need not exceed + 10 if the optic axes are more nearly hori-
zontal than vertical for the orientation in which d is determined. If, how-
ever, the opposite condition holds, as it will in many cases, the uncer-
tainty in @ is likely to be more nearly * 20. As Fig. 16 is based on this
larger value, dV /V may be halved if the optic axes approximate a hori-
zontal position under the conditions just stated. It is seen that high V and
high x increase the potential accuracy of the measurement. Two incom-

*r
t 0

X=7C

I

X=54 7 '

={g

\=20'-\

,-N{
\ -  D "  \
.a-- \

\ _'  
__Ar

40 A5

Frc. 16. Erl,inction angl,emz,thoil (opl,ic plane horizontal). Variation in accuracy of Vfor
difierent values of V. FulI lines for 6:45' and x:54.7 and 70" as marked. Broken lines
for x:70o and {:15" and 30o. These four curves based on an uncertainty in @ of *2".

Curves Dr and Dg, for direct readings of optic angle, are based on uncertainties in the optic
angle of 1o and 2o, respectively.

plete curves for [:15o and 30o (both for x:70o) have also been plotted,
using the slopes of the proper curves given by Dodge (1934, plates I and
II). Although these curves indicate higher accuracy than where 6:45o, it
must be recalled that x is not constant for such small values of n (see
footnote to previous paragraph). As the difierential equation for {(45"
and x variable is extremely cumbersome, no computations have been
made. However, the discrepancy in fractional deviation between curves
based on 6:45" and {: 15o is less than Fig. 16 indicates.

Figure 16 includes also two curves, marked Dr and D2, which show the
variation in accuracy where V is measured directly. D1 is based on the
case where both optic axes are measured and the uncertainty may attain
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a value of * 10; Dr is for the case of one measured axis and an uncertainty
of *2". Assuming an uncertainty oI 20 in @, and d:45o, it is seen that
the computed values of V approximate the accuracy of the direct method
only for the highest values of V; for small optic angles a small value of {
is required to attain comparable accuracy.

Optic Plane Verti,cal. This orientation is considered here only for the
case of a horizontal acute bisectrix. Where the acute bisectrix is vertical

Frc. 17. Exlinction angle m,ethoil (optic ltlane terlical). Similar to Fig. 16.

it is usually possible to measure both axes directly and thus avoid indi-
rect methods. The basic equation (Dodge, 1934) is:

/  cos 26 cos x \ r /2
s e c V : I s i n : f r f  _  

-  .  "  
s i n 2 g c o t 2 g l

\  srn"  x  s tn"  x  /

where {, x, and @ are the same quantities used in the previous section and
rotations are made in the same order. As before, { and V are assumed
to be the only variables, although this is true only where x is not appre-
ciably affected by incorrect setting of the optic symmetry plane. Dif-
ferentiating,

dv-- -
cos x sin 26 cos Vdd

/ cos 26 cos x \ 1/2
sin2 x sin2 2g tan V ( sin2 6* _ 

-- sin 2$ cot 2S I
\ sln' x sln" x /

For selected values of { and x this expression becomes much less formida-
ble in appearance. The uncertainty in @ is taken as * 20, but with the
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same reservation as discussed in the previous section. Figure 17 shows
the variation in dV/V (7o) with change in V for two typical curves taken
from Dodge (1934, plates IV and V). In addition, a portion of the frac-
tional deviation curve for the "normal" case is included (upper right of
Fig. 17). Where the uncertainties in { are the same it is seen that greater
accuracy can be obtained in the computation of V with small { than is
otherwise the case.13 The curves Dr and Dz described in Fig. 16 are re-
plotted in Fig. 17 for comparison of direct and computed values of V.
As they cover about the same field in the diagram as the two curves

d:10o and {:15o, it is seen that there is l i tt le to choose between the
two methods under these conditions. If, however, the orientation condi-
tions indicate a lower value of d{ than that on which Fig. 17 is based, the
computed value may be more accurate than that obtained by direct
measurement. In all cases, direct measurement is preferable to the com-
puted value based on 6: 45".

INrnnnnnBNcE lrcuRE METHoDS. A number of methods based on in-
terference figures are known (Johannsen 1918), but few are in wide-
spread use at present. Where 2V<60" and a centered acute bisectrix
figure is obtainable, Mallard's method is convenient to use. The basic
relation is sin V:D/Kp, where D:one-half the diptance between the
points of emergence of the optic axes of the crystal plate, K:a constant
of the optical system (previously determined using minerals of known
optic angle), 0:intermediate refractive index of the crystal under ex-
amination.

Assuming any random error in K to be negligible relative to the un-
certainty in measuring 2D, difierentiation of the above equation gives

If K:30 for the given optical system the uncertainty in 2D need not
exceed 0.5 scale divisions, so that dD:.25. If d0 is known to *.001, it
is easily shown that dB/B is negligible relative to dD/D, so that, finally,
dV (degrees):57.3dD/D tan V. Curve M in Fig. 18 is based on this
equation. It is seen that the accuracy of the method is low for small optic
angles.

Curve C shows the variation of dV/V with V where the optic angle is
estimated from curvature of a single isogyre. With practice the uncer-
tainty in estimating 2V by this methodra need not exceed 60, so that
dV:3". Curve C is based on this value.

13 The same comment made in the previous section regarding uncertainty in x for low n
values applies here.

la E. S. Larsen, personal communication.
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For comparison, curve Dr (showing the fractional deviation in the di-
rect method for dV:1o) is included in Fig. 18.

CoupanerrvE ACcuRACy. Inspection of the diagrams (Figs. 14-18)
makes apparent the difficulty of general comparison of optic angle meth-
ods. Except where V and B are smail, the refractive index method is

Frc. 18. Inlerlerence f.gule methods. Variation in accuracy of V for Mallard's method
(curve M), where K:30 and dD:.25. Curve C represents the estimation method where
dV:3'. Curve Dr is for the direct method where dV:1'.

undoubtedly the most accurate if the indices are determined by the
minimum deviation prism method. However, where the indices are de-
termined by matching with an oil to *.001, the method yields results
which are not much better on the average than results obtained from
estimating the curvature of an isogyre.

Where favorable conditions for rotation exist, and with the uncer-
tainty in S not in excess of 1o, the extinction angle method will give
values of V almost as free from error as the refractive index method (for
dn:.0001 and B>.02). Where the uncertainty is *20, however, the
accuracy is approximately the same as the refractive index method with
dn : .001 .

Comparison of the compensator method with other methods requires
the assumption of a definite thickness for the section. Thus for t:.02
mm. the dV/V compensator values are about intermediate between those
obtained from the extinction ansle and refractive index methods.

$z

a5n300l5 '
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Although of restricted application, Mallard's interference figure
method is more accurate than direct measurement of optic angle with
the universal stage, if the maximum values for dD and dV used in the
diagrams are accepted as probable.

Comparison of the three indirect universal stage methods with the
direct method shows in most cases that the latter is at least equal, or
definitely superior, in accuracy to the former. Exceptions occur with the
refractive index method where dn:.0001 and B and V are moderate to
Iarge, and with the extinction angle method where fr is small and x large.

For all methods less accuracy is possible for low values of optic angle
than for high values.

Suuueny

The usefulness of the diagrams presented in this paper depends on
good judgment in selecting a reasonable maximum value of the un-
certainty in any given measurement. In choosing the values on which the
preceding figures are based the authors have assumed a skilled operator
who has at his disposal good material and equipment. Where a series of
readings of the same measurement is taken and a "probable error" com-
puted, greater accuracy should be attained than shown here. Where the
working material is poor less accuracy is to be expected. In general,
where the uncertainties in measurement are believed to differ from those
used in the diagrams, it is necessary only to substitute in the differential
equation the revised value for the original and to construct a new graph.

A set of these graphs readily available in the laboratory should prove
highly useful by providing instant information regarding the order of
magnitude of the maximum error to be expected in a given procedure. It
is the authors' hope that in time a more realistic attitude will be devel-
oped toward mineralogic measurements than is now apparent from much
of the published quantitative data.
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