PREPARATION AND PROPERTIES OF SOME COMPOUNDS
IN THE SYSTEM $\text{H}_2\text{O}-\text{Na}_2\text{O}-\text{P}_2\text{O}_5$

EARL INGERSON AND GEORGE W. MOREY,
Geophysical Laboratory, Carnegie Institution
of Washington.

Abstract

Optical properties of all known compounds of Na_2O and P_2O_5, both hydrous and anhydrous, are given. For eight of these the data are taken entirely from the literature; eight more have been re-studied; five are here described optically for the first time. Crystallographic and density data are given for some of them.

The methods of preparing twelve of these compounds are given, and for the others methods can be obtained from the literature cited. The nomenclature of these phosphates is discussed. Refractive indices are given for eleven glasses in the system $\text{NaPO}_3-\text{Na}_2\text{P}_2\text{O}_7$.

The voluminous literature dealing with the system $\text{H}_2\text{O}-\text{Na}_2\text{O}-\text{P}_2\text{O}_5$ contains descriptions of numerous ternary compounds, together with a large amount of speculation as to the constitution of these compounds and of their aqueous solutions. Much of this speculation about the constitution of solutions is not well founded and postulates hypothetical acids, the existence of which is supported by no real evidence. Nevertheless, some of these solutions do present striking illustrations of the difference in properties of solutions stoichiometrically equivalent, but of different histories. The mass action of water in such solutions ultimately causes them to become identical in properties, but the rate of this change commonly is slow at ordinary temperatures. It is, however, rapidly accelerated by increasing temperature, and the work of Abbot (1) demonstrated that the change to what is described as the orthophosphate condition, which takes months at ordinary temperatures, is complete in a short time at the boiling point.

We thus have in this system the possibility of realization of conditions of metastable equilibrium, and from the exhaustive study of such metastable solutions there appears a possibility of making a real contribution to the general problem of the constitution of liquids in general. An illustration is to be found in the binary system $\text{H}_2\text{O}-2\text{Na}_2\text{O} \cdot \text{P}_2\text{O}_5$, that is, with solutions in which the ratio of Na_2O to P_2O_5 is that of a disodium phosphate. In the series stable at ordinary temperatures there are the following compounds: $\text{Na}_2\text{HPO}_4 \cdot 12\text{H}_2\text{O}$ ($2\text{Na}_2\text{O} \cdot \text{P}_2\text{O}_5 \cdot 25\text{H}_2\text{O}$), $\text{Na}_2\text{HPO}_4 \cdot 7\text{H}_2\text{O}$ ($2\text{Na}_2\text{O} \cdot \text{P}_2\text{O}_5 \cdot 15\text{H}_2\text{O}$), and $\text{Na}_2\text{HPO}_4 \cdot 2\text{H}_2\text{O}$ ($2\text{Na}_2\text{O} \cdot \text{P}_2\text{O}_5 \cdot 5\text{H}_2\text{O}$). Each of these compounds has an incongruent melting point, and in each the solubility increases with temperature. The final compound of this series is Na_2HPO_4 ($2\text{Na}_2\text{O} \cdot \text{P}_2\text{O}_5 \cdot \text{H}_2\text{O}$), the solubility curve of which is
Some compounds in the system H₂O–Na₂O–P₂O₅ strongly retrograde and must terminate at some unknown quadruple point at which the anhydrous compound, Na₄P₃O₁₀ (2Na₂O·P₂O₅), is one of the coexisting crystalline phases. When this anhydrous compound is dissolved in water and the solution allowed to evaporate at ordinary temperature, the compound customarily written as Na₄P₂O₇·10H₂O (2Na₂O·P₂O₅·10H₂O) separates. This compound is metastable with respect to the preceding series, and its solution, on long standing or on heating, becomes transformed into one from which one of the compounds of the preceding series will separate. The solubility curve of the 10-hydrate will intersect the metastable prolongation of the solubility curve of Na₄P₂O₇ below the quadruple point Na₄P₃O₁₀·Na₃HPO₄·L·V, giving rise to a metastable quadruple point Na₄P₂O₇·Na₄P₂O₇·10H₂O·L·V.

Table 1. Optical Properties of Compounds

<table>
<thead>
<tr>
<th>Formula</th>
<th>2V</th>
<th>Sign</th>
<th>α</th>
<th>β</th>
<th>ε</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na₃PO₄·12H₂O</td>
<td>85°</td>
<td>+</td>
<td>1.462</td>
<td>1.470</td>
<td>1.478</td>
<td></td>
</tr>
<tr>
<td>Na₃PO₄·7H₂O</td>
<td>76°</td>
<td>+</td>
<td>1.493</td>
<td>1.499</td>
<td>1.508</td>
<td></td>
</tr>
<tr>
<td>Na₃PO₄·10H₂O</td>
<td>60°</td>
<td>+</td>
<td>1.499</td>
<td>1.4525</td>
<td>1.4604</td>
<td></td>
</tr>
<tr>
<td>Na₃HPO₄·12H₂O</td>
<td>57°</td>
<td>−</td>
<td>1.432</td>
<td>1.436</td>
<td>1.437</td>
<td></td>
</tr>
<tr>
<td>Na₃HPO₄·7H₂O</td>
<td>39°</td>
<td>+</td>
<td>1.4412</td>
<td>1.4424</td>
<td>1.4526</td>
<td></td>
</tr>
<tr>
<td>Na₃HPO₄·2H₂O</td>
<td>80°</td>
<td>+</td>
<td>1.450</td>
<td>1.461</td>
<td>1.477</td>
<td></td>
</tr>
<tr>
<td>Na₃HPO₄</td>
<td>78°</td>
<td>+</td>
<td>1.483</td>
<td>1.499</td>
<td>1.525</td>
<td></td>
</tr>
<tr>
<td>Na₄P₂O₃</td>
<td>40°</td>
<td>+</td>
<td>1.475</td>
<td>1.477</td>
<td>1.496</td>
<td></td>
</tr>
<tr>
<td>Na₄P₂O₇·10H₂O</td>
<td>60°</td>
<td>+</td>
<td>1.499</td>
<td>1.4525</td>
<td>1.4604</td>
<td></td>
</tr>
<tr>
<td>Na₃PO₄·I</td>
<td>21°</td>
<td>+</td>
<td>1.477</td>
<td>1.478</td>
<td>1.504</td>
<td></td>
</tr>
<tr>
<td>Na₃PO₄·II</td>
<td>57°</td>
<td>+</td>
<td>1.470</td>
<td>1.477</td>
<td>1.502</td>
<td></td>
</tr>
<tr>
<td>Na₃PO₄·6H₂O</td>
<td>20°</td>
<td>+</td>
<td>1.449</td>
<td>1.450</td>
<td>1.482</td>
<td></td>
</tr>
<tr>
<td>Na₃H₂PO₄·2I</td>
<td>82°</td>
<td>−</td>
<td>1.4400</td>
<td>1.4625</td>
<td>1.4818</td>
<td></td>
</tr>
<tr>
<td>Na₃H₂PO₄·H₂O</td>
<td>29°</td>
<td>−</td>
<td>1.4557</td>
<td>1.4852</td>
<td>1.4873</td>
<td></td>
</tr>
<tr>
<td>Na₃H₂PO₄</td>
<td>64°</td>
<td>−</td>
<td>1.481</td>
<td>1.507</td>
<td>1.517</td>
<td></td>
</tr>
<tr>
<td>Na₃H₂PO₄·I</td>
<td>80°</td>
<td>−</td>
<td>1.474</td>
<td>1.478</td>
<td>1.480</td>
<td></td>
</tr>
<tr>
<td>Na₃H₂PO₄·II</td>
<td>78°</td>
<td>+</td>
<td>1.498</td>
<td>1.510</td>
<td>1.529</td>
<td></td>
</tr>
<tr>
<td>Na₃H₂PO₄·2H₂O</td>
<td>32°</td>
<td>−</td>
<td>1.4599</td>
<td>1.4645</td>
<td>1.4649</td>
<td></td>
</tr>
<tr>
<td>Na₃H₂PO₄·6H₂O</td>
<td>32°</td>
<td>+</td>
<td>1.4599</td>
<td>1.4645</td>
<td>1.4649</td>
<td></td>
</tr>
</tbody>
</table>

Numbers in parentheses are those of references at end of paper.
* Studied by Ingerson.
provided that no hydrate of Na₄P₂O₇ containing less than 10 molecules of water exists. Similar complex reactions are to be found with other ratios of Na₂O: P₂O₅. It appeared to us that the entire relationship of the various compounds in the ternary system H₂O-Na₂O-P₂O₅ could best be cleared up by the determination of the phase equilibrium relationships in the system up to the temperatures at which the anhydrous crystalline compounds become the stable solid phases. This research was started, but has been interrupted by the pressure of war work. Accordingly, it seems desirable to place on record a few qualitative observations, as well as the optical descriptions of some of the compounds we have prepared.

Most of the data heretofore available on the phosphates of sodium are contained in articles by Dufet and by Joly and Dufet (2, 3, 4). The accompanying table summarizes the optical properties of all the sodium phosphates of which we have a record, and in the notes which follow are comments on the preparation of these compounds. The new measurements include fair to good data on several sodium phosphates that have not been described optically before, and we have checked and extended measurements on a few others. Where two compounds have quite similar indices, as Na₃P₂O₉ I and Na₃P₂O₁₀ II, the properties were measured very carefully in sodium light, but the properties of a compound quite different from any of the others were determined much more roughly. Our opinion of the relative merits of the various determinations is indicated in the following notes.

Notes on the Various Compounds

Ratio Na₂O·P₂O₅ = 3:1

Na₃PO₄·12H₂O. Density 1.645. Melts incongruently at 70.75 ± 0.01° (D’Ans and Schreiner, 5), but they did not identify the solid phase formed, which probably was Na₃PO₄·7H₂O. May exist in two forms, one of which is of variable composition (Menzel and Sahr, 6).

“Na₃PO₄:10H₂O.” Mentioned as “easily prepared,” isotropic by Baker (7), but shown by Mason and Ashcraft (8) to be NaF·2Na₃PO₄·19H₂O.

Na₃PO₄·8H₂O. Also mentioned by Baker, but not obtained by us or other investigators.

Na₃PO₄·7H₂O. Prepared by evaporation of a solution of Na₃PO₄ at 83°; also obtained by Hall (9), who gives a good analysis but no properties. Properties measured in white light without measuring the indices of the oils on a refractometer at the time the determinations were made. Indices probably ±0.002. Beta was determined from alpha, gamma, and 2V, which was measured on the universal stage.
Na₃PO₄·H₂O. Measurements about like those for the 7 hydrate. Obtained by evaporation at 86° of a solution of 100 g. Na₂HPO₄·12H₂O and 50 g. NaOH. Analysis of material which probably contained some adhering mother liquor gave 16.6 per cent H₂O; Na₃PO₄·2H₂O contains 18 per cent; Na₃PO₄·H₂O, 9.9 per cent. Schroeder, Berk and Gabriel (10) give ω=1.498, ε=1.525 for crystals of Na₃PO₄·H₂O, without giving evidence of how the composition was determined.

Na₃PO₄. Schroeder, Berk and Gabriel (10) describe anhydrous sodium orthophosphate as monoclinic, 2V calculated from indices; ρ>v, distinct; b=acute bisectrix; Y∧c=10°±. Crystals described show 100, 110, and 001 faces. Twinning on 100 said to be common. They give the solubility curve of Na₃PO₄ from 80° to 350°C.

Ratio Na₂O:P₂O₅=2:1

Na₂HPO₄·2H₂O. Formed by evaporation of solution at 60°. Indices measured in white light, probably ±0.002. Beta calculated from alpha, gamma, and 2V, which was measured on the universal stage. Composition checked by loss in weight.

Na₂HPO₄. Formed by evaporation at 105°. Composition checked by loss in weight. Indices measured in white light, probably ±0.002. Beta calculated from alpha, gamma, and 2V, which was measured on the universal stage.

The solubility curve of Na₂HPO₄ in water has been studied by Menzies and Humphrey (11) and by Hammick, Goadby, and Booth (12). The incongruent melting points as given by them are, respectively: l₂Aq, 35.2° and 35°; 7Aq, 48.3° and 48.09°; 2Aq, 95° and 94.97°. Hammick, Goadby, and Booth give evidence indicating that there are two forms of the 12-hydrate, with a transition at 29.6°. No crystallographic or optical details are given in either of the above references.

Na₄P₃O₁₀. Beta calculated from alpha, gamma, and 2V, which was measured on the universal stage.

Ratio Na₂O:P₂O₅=5:3

Na₅P₃O₁₀ I and II. These compounds were made by melting NaPO₃
and Na₄P₂O₇ in proper proportions and cooling. If the furnace and charge were cooled to room temperature, by cutting off the furnace current, the I-form was usually obtained, and the II-form by removing the crystallized melt at from 500 to 550°. The inversion to the II-form was always accompanied by spontaneous powdering. The relationship between these two forms is not clear. Refractive indices were measured with sodium light, and the oils used were checked on a refractometer at the same temperature and using the same light source. The axial angles were measured on the universal stage, using sodium light. The observed values of 2V agree closely with the values calculated from the indices, which are probably accurate in the third place, 2V to the nearest degree.

\[\text{NatPSO}_{0.6\text{H}_2\text{O}} \]

Obtained by dissolving crystalline Na₅P₃O₁₀ in water and evaporating at room temperature. The crystals were separated from mother liquor by suction on a sintered glass filter, and crystals and solution analyzed. The crystals gave 44.80 per cent P₂O₅; theory 44.75. The solution represented 45 per cent of the Na₅P₃O₁₀ taken, and contained 0.165 g. Na₅P₃O₁₀, or 0.213 g. Na₅P₃O₁₀·6H₂O per gram of solution, the solubility at "room temperature," about 25°. The P₂O₅-content per gram of solution was 0.0945.

When a melt containing more NaPO₃ than corresponds to Na₅P₃O₁₀, say 43.4 per cent NaPO₃ and 56.6 per cent Na₅P₂O₇, was quickly cooled to a glass, powdered, dissolved in hot water, and the solution allowed to evaporate at room temperature over sulfuric acid, it dried to a gummy-to-hard glass. When the cooling was so carried out that the product consisted of glass and crystals of Na₅P₂O₇, crystals of Na₅P₂O₇·10H₂O immersed in a thick, viscous liquid were obtained. When the cooling was so carried out that the product consisted of glass and crystals of Na₅P₂O₁₀, the evaporation yielded crystals of Na₅P₃O₁₀·6H₂O surrounded by liquid too viscous to be separated completely from the crystals, which were identified by their optical properties. Finally, when the cooling was so carried out that the product was completely crystallized to a mixture of NaPO₃ and Na₅P₃O₁₀, crystals of NaPO₃·2H₂O and Na₅P₃O₁₀·6H₂O were obtained. The above sequence of striking differences in behavior depending on the thermal history of the material which was dissolved to make the aqueous solutions indicates that in the glassy phase there are no "molecular groupings" which on solution give rise to crystals of the several hydrated compounds. It should also be mentioned that each of the above solutions on sufficient boiling will give solutions from which hydrates of NaH₂PO₄ and Na₃HPO₄ will crystallize.

The indices of Na₅P₃O₁₀·6H₂O were measured in sodium light, probably to ±0.001. When well crystallized it has blocky cleavage in two
SOME COMPOUNDS IN THE SYSTEM H₂O-Na₂O-P₂O₅

directions at 90°. When precipitated from solution by alcohol the crystals are intricately twinned in such a manner that γ is difficult to observe. Dispersion, ρ > ν.

Ratio Na₂O:P₂O₅ = 1:1

NaH₂PO₄·2H₂O and Na₂H₅PO₄·H₂O are the two commonly obtained hydrates, with incongruent melting points at 40.8° and 57.4°, respectively. NaH₂PO₄ was prepared by evaporation at 95°, and in experiments in closed vessels it was obtained up to 300°. However, at this temperature it looked as if the compound had melted congruently, then solidified. With smaller water contents, NaPO₃ II was obtained, sometimes in excellent crystals.

NaH₂PO₄·2H₂O. Orthorhombic. a:b:c = 0.915:1:1.569. 110 \(\angle \) 110 = 95°6'. Density = 1.910.

NaH₂PO₄·H₂O. Orthorhombic. a:b:c = 0.934:1:0.962. 110 \(\angle \) 110 = 93°56'. Dispersion, ρ < ν. Density = 2.055.

NaH₂PO₄. Indices measured in white light; probably ± 0.002. 2V was measured on the universal stage in white light.

NaPO₃ I. The discussion of the forms of NaPO₃ is made more difficult by the persistence of the now absurd system of nomenclature devised almost one hundred years ago by Fleitmann and Henneberg (13), which not only has no justification in modern theory but also is in conflict with modern knowledge of the structure of crystals and glasses. The glassy form, called "sodium hexametaphosphate," is but one of a continuous series of glasses in which the assumption of definite compounds is in conflict with modern theories of the structure of glasses. The characterizations of the soluble crystalline form, NaPO₃ I, as sodium trimetaphosphate, and of the insoluble NaPO₃ II as sodium monometaphosphate are likewise in conflict with our knowledge of crystal structure, in which such molecular aggregations play no part.

NaPO₃ I is obtained by crystallizing NaPO₃ just below the melting-point. The indices were measured in sodium light, probably ± 0.001; 2V was measured on the universal stage.

NaPO₃ II may be obtained by crystallizing the glass at about 450°, but the best crystals were obtained by hydrothermal means, as mentioned above. The indices were measured in sodium light and the oils checked on the refractometer, and are probably accurate in the third decimal place. 2V was measured on the universal stage. It is probably orthorhombic, 110 \(\angle \) 110 very nearly 90°, 110 \(\angle \) 101 ca. 55°. Axial plane parallel to 010, acute bisectrix parallel to a-axis.

NaPO₃·2H₂O. This was prepared by dissolving NaPO₃ I in water and evaporating over H₂SO₄. The crystals were not very satisfactory. The
indices are no better than ±0.003, and the high index possibly not that good. Universal stage determinations showed most of the grains to be essentially uniaxial and negative, but a few of them gave values of 2V of approximately 80°, both positive and negative. These were probably grains of the two anhydrous forms, NaPO₃ II and I, respectively.

Na₂H₃P₂O₇. Material was very fine needles with positive elongation. The indices given are really α' and γ', since it was not possible to check the orientation of the needles.

Na₂H₃P₂O₇·6H₂O. This was not prepared by us. Monoclinic, a:b:c = 2.026:1:2.049. β = 56°41'. 110/110 = 61°8'. Dispersion, ρ<υ, strong.

Refractive Indices of Glasses

Refractive indices of several sodium phosphate glasses were measured by preparing mixtures of oils to match the glasses in sodium light. The indices of the glasses were then measured on the refractometer. Indices are given to four places, but the fourth place is probably almost entirely without significance because a given glass may vary considerably in index with different heat treatments. The glasses were not annealed, but allowed to cool freely in air, usually in 10-gram lots in the 15-cc. platinum crucible in which they were melted. Following are the compositions, given as weight fractions Na₃P₂O₇ in the binary system NaPO₃—Na₃P₂O₇, followed by their respective indices, nD: 0 (NaPO₃) 1.4847; 0.15, 1.4846; 0.33, 1.4845; 0.40, 1.4843; 0.45, 1.4836; 0.475, 1.4834; 0.50, 1.4831; 0.5659, 1.4825; 0.57, 1.4823; 0.60, 1.4820; 0.72, 1.4814.

References

