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Assrnncr
The implications of the alternative settings Gr and Gz used in the gnomonic projections

of hexagonal crystals are made clear by constructing the unit cells from which the two pro-
jections are derived. This process reveals that Gr is based on a simple hexagonal unit cell, in
conventional orientation, and with the usual axial ratio. G is based on a triple cell, not in
the conventional orientation, and with a difierent axial ratio. This situation, especially
with reference to the axial ratios, has not been generally recognized in the past. The G set-
ting has been commonly used for rhombohedral crystals, but the triple cell on which it is
based has no direct relationship to the actual rhombohedral cell. It is concluded that there
is no teason for the continued use of the G2 setting, either for hexagonal or rhombohedral
crystals.

There has arisen much confusion in the use of two-circle goniometric
measurements and gnomonic projections of hexagonal crystals, largely
because of the alternative settings, which were designated by Gold-
schmidt as Gr and G2, respectively. This confusion has been especially
noticeable in the determination of the axial ratio for the Gr setting, and
in the derivation of the Bravais indices from the Gr symbols.l It is the
purpose of this paper to re-examine the gnomonic projection in these two
settings, and to see if any clarification is possible.

fn the usual procedure, the gnomonic projection is constructed from
measurements made on an actual crystal. It can equally well be con-
structed from the measurements of a unit cell. For our present purpose it
is necessary to reverse this latter procedure. We wish to reconstruct the
unit cells upon which the Gr and the G2 projections are based. By doing
this, the implications of the two settings are made much more evident.

This reversed procedure could be carried out directly from the gno-
monic projection, but can be done more easily by using the very closely
related reciprocal lattice. In order to establish the unit cell, the vertical
boundary planes must be located. But they are parallel to the vertical
axis, and their face-poles do not appear in the gnomonic projection. They
do appear, however, in the reciprocal lattice, and can be used to locate
the unit cell boundaries. The transformation from a gnomonic projection
to a reciprocal lattice is very simple, and depends upon the following rela-
tionships.

Both the reciprocal lattice and the gnomonic projection are con-
I Palache, C., Am. Mineral.,5, 143 (1930).
Parsons,  4.L. ,  Am. Mineral . ,22,58l  (1937).
Peacock, M. A., Am. Minerol.,23, 315 (1938).
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structed by extending lines from the center of the crystal perpendicular

to the crystal planes. In the gnomonic projection all of these lines ter-

minate in the projection plane, giving a two-dimensional array of points.

In the reciprocal lattice each line extends a distance which is the recipro-

cal of the interplanar spacing of the set of planes in question, thus giving

a three-dimensional array of points. These points lie in horizontal levels,

designated as 0, 1, 2, 3, etc. For a crystal with a simple lattice, the pat-

tern oI points in the successive levels is the same, and their respective

symbols hk arc alike, while I varies with the level.
The points of a gnomonic projection which represent planes with in-

dices hkl form the basic network of the projection, and have Gold-

schmidt symbols pg which are integers, with P:h and q:k' The hkU

planes appear only as direction l ines, while all planes hk2, hk3, etc., ap-

pear as points between the nodes of the basic network, and at least one

of the symbols pqis a fraction.
The pattern of this basic network is identical in design with the pat-

tern of any level of the reciprocal lattice of a crystal with a simple lattice

cell.2 Accordingly this basic network of the gnomonic projection can be

used to represent any level of the reciprocal lattice by rnerely changing

the Goldschmidt symbols /q (integers) to the reciprocal lattice symbol

hhl, where h: P, k: L and I is the particular level desired. Thus it is pos-

sible to go directly from the gnomonic projection of the hexagonal sys-

tem to the 0-level of the reciprocal lattice (Fig. 1).
The two projections, Gr and G, as defined by Goldschmidt, are illus-

trated in Fig. 1o. The face poles 10 and 11 of Gr become 11 and 03 in Gz.

The face pole 01 of G, if present in Gr, would be ]$. In these projections

the last index, l, is of course equal to 1. If each point in Fig. 1o is con-

sidered to have a last index of 0 rather than 1, it can equally well repre-

sent the 0-level of the reciprocal lattice. This is illustrated in Fig. 16'

where the O-levels of the reciprocal lattices corresponding to the Gr and

Gz settings are shown.
The distance in the 0-level from any point to the origin is the reciprocal

of the spacing of the set of planes represented by that point. By arbitrar-

ily choosing a reciprocal factor, we can reconstruct the unit cells on which

2 In centered lattices, because of characteristic absences, successive levels of the recipro-

cal lattice are different. In non-orthogonal crystals successive levels may have the sarne

pattern, but are shifted horizontally. The above statement says the pattern of the basic

projection network is identical in design with that of any level of the reciprocal lattice for a

crystal based on a simple lattice. The actual size of the two networks depends upon arbi-

trary factors. Thus the size of the gnomonic projection network depends upon the radius

of the unit sphere, which is usually chosen as 5 cm. The actual size of the reciprocai lattice

network can be made identical with that of the projection by an appropriate choice of the

reciprocal factor.
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the two projections Gr and Q2 are based. This is shown in Fig. 2. The
small unit cell OABC is derived from the larger reciprocal lattice unit
ODEF (G1), while the large unit cell OLMN is derived from the smaller
lattice unit OI?D.S (Gr). Thus it is evident that the Gl projection is based
on a simple hexagonal unit cell, OABC, and that Gz is based on a multiple
cell OLMIV, whose cross-section is three times that of OABC. The cell
OABC has its primitive translation o| in the usual secondary position,
while OLM N has its primitive translation afr in the intermediate position.
Both cells have the same vertical translation cn.

Frc.  1a Frc.  1b

Frc. 1a. Gnomonic projections of the hexagonal systern in the two settings, Gr and Gz.
Gr is shown in dashed lines; Gz is in solid lines and the Gz symbols are underscored.

Frc. |b. OJevel reciprocal lattices derived from the two gnomonic projections of Fig. 1a.

The axial ratio for the simple cellOABC is cr:co/ai. This is the value
which would be derived from goniometric measurements in the conven-
tional orientation, hence c1 :c. Thus in Fig. 1o the distance 2l is equal to
co/aiJt, hence 26Xrlt:r ' :r. For the triple cell the axial ratio
is csf af,:6z:c/Ji, and in Fig. 1a the distance pf,:60/af,{zn, and,
p?xl/in:c':c/Ji. But in terms of the true unit cell p7:c0/at3/2,
and pPoX3/2: c.

For crystals based upon a rhombohedral unit cell exactly the same re-
lationships exist. If the rhombohedral cell is referred to hexagonal axes,
new points are added at +33 and 3** in the simple cell OABC, and cor-
responding points in the triple cell, but the cell outlines remain un-
changed, as do the geometrical relationships involving cr, c2 and c,
namely cr:c and c':c/l/3.

Frc. 1a
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These relationships differ from those derived by Goldschmidt.s His
equations relating Gr and Gzto c are the same as above, but he introduced
values of c1 and c2 as follows:

(Gr)  po 'x3/  2 :  c t  :cr ' l3 '  (Gr)  Po2xs/z:  c2 :  c '

These values of c1 and c2 are such that the length of o, taken as unity in
the Gr cell, must be equal to the distance OH (Fig.2), and in the Gz
cell equal to the distance OA. Obviously Ofl is less than unity in the cell
OABC, and hence his value of cr is too large; ct:cJT.It so happens that
O,4, which is not equal to unity in the triple cell, is equal to unity in the
Gr cell, and hence Goldschmidt's value of c2 is incorrect for Gz but correct

Frc. 2. 0-level reciprocal lattices for the Gr and G2 settings, with the unit cells upon

which they are based. The small Gr unit cell O,4BC (dashed lines) gives rise to the large

reciprocal lattice rnit ODEF (dashed lines). The triple G2 unit cell OLM N gives rise to the

small reciprocal lattice unit ORD.S.

for G1, and thus his value of c2 agrees with the customary value of c. This
situation results from the fact that although the axial ratio was derived
ftom ll2l, which cuts at unity on two secondary axes 120o apart, he used
the intercepts of this face on the two intermediate axes 60o apart for his
unit values in determining cr and c2.

The Gr setting has commonly been used for crystals with hexagonal
development, and as used by Goldschmidt did not give the proper value
of c. The Gr setting has been considered more suitable for crystals with a
rhombohedral development. As has been shown, the Gr setting is based

3 Goldschmidt, V., Index der Krystallformen der Mineralien, vol. l' 33-35 (1886).
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on a simple hexagonal unit cell in the customary orientation, and its sym-
bols correspond to the usual Bravais indices. The objection that it does
not give the correct value of c has no validity. On the other hand, the Gz
setting is based on a triple cell, with a value of c difierent from the cus-
tomary one, although this fact has not been generally recognized in the
past.

Actually this triple cell is sometimes used in crystal structure descrip-
tions. In certain symmetry groups of the hexagonal system the secondary
and intermediate positions do not carry the same symmetry elements,
and are therefore distinguishable. For example, in the ditrigonal pyram-
idal class there are three vertical symmetry planes, and in the usual
morphological description of this class, these planes are considered as be-
ing in the intermediate positions. But structurally the alternative ar-
rangement, with three planes in the secondary positions, is equally possi-
ble, hence the two space group s C 3ml and C 3Im. To bring the structural
data in harmony with the morphological data in this latter case, the triple
cell may be used, for it reverses the intermediate and secondary positions.
This convention, however, has no application to rhombohedral crystals,
which are always described either in terms of rhombohedral axes, or else
in terms of the unit hexagonal cell of the G1 setting.

The question thus arises as to whether there is any good reason for con-
tinuing the use of the Gz projection. A possible advantage is that it has
three times as many nodes in its basic network, and therefore has three
times as many possible face-poles for which the Goldschmidt symbols will
be integers. This would apply equally to both hexagonal and rhombo-
hedral crystals. Of more significance is the fact that the most prominent
hhil zones in rhombohedral crystals coincide with the basic network of
Gz rather than G1, so that at least one of the Goldschmidt Gz symbols is
an integer, and is common to all faces of the zone.

It would seem that this slight advantage is greatly outweighed by the
confusion caused by a dual system, with two orientations, two sets of
symbols and indices, and two axial ratios. It is therefore concluded that
there is no sufficient reason for retaining the Gr projection, and that in
the future all hexagonal crystals, both with hexagonal and rhombohedral
developments, should be described in terms of the Gr projection.
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