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ABSTRACT

This paper describes in detail a method that has proved useful in the summation of one-
dimensional Fourier series, and a procedure that enables this method to be applied to the
summation of two-dimensional series such as those by which the electron density of a
crystal is represented as a function of the coordinates in the projection of the unit cell on a
particular plane. The method, like those of Robertson and of Lipson and Beevers, utilizes
cardboard strips, each carrying a series of values of a certain trigonometric function, but
differs from the other two in that the selection of numbers to be added from a series of strips
for a given point of the unit cell is accomplished by one of a set of stencils. Experience has
shown that this method is well adapted to the range of F-values (or of |F|%-values) from
0 to 1000.

INTRODUCTION

In recent years there has been a very widespread use of the Fourier
series in the analysis of the data obtained by the diffraction of z-rays.
in crystals. The electron density in a crystal can be represented by a
three-dimensional Fourier series in which the coefficients are the struc-
ture factors F(kkl), the intensities of the diffraction lines, corrected for
certain known trigonometric factors, being proportional to | F(hED) |2
The projection of the electron density on a plane perpendicular to a
zone axis can be represented by a two-dimensional series using only the
F’s of the reflections in that zone. Various methods' which lead to the
successful analysis of x-ray data have been devised which depend on the
summation of Fourier series. Routine methods for carrying out the
summation of such series have therefore become part of the necessary
equipment of any laboratory specializing in x-ray analysis.

* Work of the senior author supported by the Elizabeth Thompson Science Fund,
and the Madge Miller Research Fund of Bryn Mawr College.

1 For a summary article on such methods see Robertson, J. M.: Reports on Progress in
Physics, Physical Society, London, 4, 332 (1938).
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The usual methods for summing two- and three-dimensional Fourier
series involve splitting these summations into a number of summations
of one-dimensional series according to a scheme proposed by Beevers
and Lipson.? Three numerical methods®** have been suggested for the
rapid handling of the one-dimensional summations, and it is the purpose
of the present paper to describe one of these methods® in detail.

The paper is divided into two parts. In the first part, the process for
the summation of a one-dimensional Fourier series is discussed and a de-
scription of the appliances used by the authors is given. In the second
part, an account is given of the routine methods used by us in combining
the one-dimensional summations into two-dimensional summations.

Part I. THE SUMMATION OF ONE-DIMENSIONAL FOURIER SERIES
1. Simplification of the summation of series by rearrangement of terms

The method for the summation of one-dimensional series to be de-
scribed in the present paper is in essential due to L. Hermann® who made
use of it in the analysis of voice records. The application of the method
to Fourier synthesis® was made without knowledge of the earlier work.
It will be evident to those who have read the original papers, that we
have made considerable use of short-cuts suggested by Beevers and
Lipson®** and by Robertson.* To avoid interruption of the line of argu-
ment, acknowledgment of this indebtedness is made here.

In its most general form, a one-dimensional Fourier series may be
written

flx) = i A(h) cos 2whx/a + B(k) sin 2nhx/a (1)

fim—o

in which
A(k) = A(R) and B(h) = — B(h). (€]

Such a series is of course periodic with a period a. We shall usually wish
to sum this series at N points which divide the period e into N equal
parts. It is thus convenient for our purpose to choose a new coordinate
X such that X=Nx/a, where X is an integer. We shall call such a coor-
dinate X a coordinate on the base &, and shall use coordinates of this
type throughout the remainder of the paper. We then have to sum the
two different kinds of series, i.e.

C(X) = > A(k) cos 2rhX/N )
h=—c0

% Beevers, C. A., and Lipson, H.: Pkil. Mag. (7), 17, 855 (1934).

3 Robertson, J. M.: Phil. Mag. (7), 21, 176 (1936).

* Lipson, H., and Beevers, C. A.: Proc. Phys. Soc., 48, 772 (1936).

® Patterson, A. L.: Phil. Mag. (7), 22, 753 (1936).

¢ Hermann, L.: Archiv fiir die gesammie Physiologie, 47, 44 (1890).
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and

S(X) = f B(#) sin 2xhX /N, (3)
h=—c0
for 0£X=<N/2 and to combine the results according to the relations
f(X) = C(X) + S(X) @
fIV — X) = €(X) — S(X).

We may now reduce the number of terms’ in the summations (2) and
(3) by making use of the two relations

cos 2= X(pN + k)/N = cos 2rhX/N, p=0,+1,£2.--, (5)
and

sin 20X (pN + B)/N = + sin 20hX/N, p=0, £ 1, £2,-+- .
It is thus possible to write (2) and (3) in the forms

c(X) = NZIZ C(k) cos 2ahX/N (6)
h=0
and
N/2
S(X) = >_ S(k) sin 2nhX/N (N
h=0

respectively, in which
Clh) = 24(h) + 23 {A(pN — h) + A(pN + b)}
p=1

L

Shy = 2B(k) — 2 {B(pN — k) — B(pN + k)}

. (8)
C(0) = A(0) + 23 A(pN)

C(N/2) =2 i A@p+1-N/2)
S(0) = S(N/2) = 0.3

If we sum the odd and the even terms of the series (6) and (7) sep-
arately, we can still further reduce the number of points over which it
will be necessary to compute these series. We note that

cos 2xh(N/2 — X)/N = (— 1)* cos 2rkX/N

sin 2rh(N/2 — X)/N = (— 1)**1 sin 20hX/N ©)

7 If the indices of the planes for which x-ray intensities are available are all less than
N/2, and this is the common case, the full analysis of this paragraph is unnecessary. In this
case the coefficients of the series (6) and (7) are given by C(h)=2A(k); S(h)=2B(h);
C(0)=A4(0); and S(0)=0 instead of the more complicated expressions (8).

8 This last result follows from the fact that

N X
sin 27 (P—- —> =sinmpX =0
2 N

so that the terms whose coefficients are B(pN/2) make no contribution to the sum (3 .
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and, if NV is an even number,
C(X) = Co(X) +,(CX)
C(N/2 — X) = C(X) — Ci(X)
S(X) = S.(X) + So(X)
S(N/2 — X) = — S(X) + SoAX)

(10)

provided that C, and S, are the partial sums of the even terms and C,
and S, are the partial sums of the odd terms of the series C(X) and
S(X) respectively.

2. A stencil method for the summation of sine and cosine series

In the last section we have seen that the summation of the Fourier
series (1) can be reduced to a number of summations of one of two types,
ie.

N/2 N/2
> C(k) cos 2rhX/N (11a) or S° S(k) sin 2#hX/N. (11b)
h=0 J=1

In these summations we shall be concerned with X values in the range
between zero and N/4 and either even or odd values of % in the range in-
cluding zero and V/2. If we could have available all possible products of
the type D cos 2rkX /N or D sin 2xkX/N in which D were any number
which we might meet as a C or an S coefficient, then the summations
(11) would be reduced to mere additions. If we notice that

sin 2x(N/4 — hX)/N = cos 2xhX/N

and that (¥V/4—#kX) and 2X are both integers if N is divisible by 4 we,
see that all possible numerical values of D cos 2nhX/N or D sin 2xhX/N
will be listed if we list the values
Dcos 2rs/N (s =0,1,2,--., N/4)

for all values of D which we may meet as coefficients C (%) or S(k), where
s is the number of the position in the series reading from left to right.
Such listings are conveniently arranged on cardboard strips. Typical strips
are shown in Fig. 1. The strips corresponding to positive D values are

of white card; those corresponding to negative D values are of card of a
different color.

Fic. 1. Typical strips for ¥ =60. The numbers shown are D cos (s6°), where s gives
the position of the number on the strip (s=0, 1, - - -, 15). The D-values shown are 179,
73, 7, and 1, respectively.
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In forming the sums C, and C,, a strip is selected for each value of
C(h). There will be, at the most, (N/2+1) such strips, which are then
arranged in order of their % values in a grooved rack (Figs. 2a¢ and 2b).

F1c. 2a. Rack for N =48 to handle /% values 0 to 25.

These strips in their rack (Figs. 3¢ and 3¢) then form a table which con-
tains all the numerical values which will be needed in the computation of
the sums C, and C,, that is in the computation of the series C(X) of
equation (2). It only remains to devise some means of selecting the values
needed in making the summation for a particular point. This is done by
means of a set of stencils. There is a C, and a C, stencil for each value of
X. In these stencils the openings are arranged to select the correct numer-
ical value for a given 4. One such stencil is shown in place in each of the
racks in Fig. 3b. The holes which select the positive values are unmarked,
while those corresponding to negative values are ringed with appropriate
paint. When the number seen through a ringed hole is on a colored card
the number is to be taken with a positive sign, the negative property of
the ringed hole offsetting the negative property of the colored strip.
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F16. 2b. Rack for N=060 to handle / values 1 to 22. (Note. The rack for N =60
would have a greater range of utility if additional slots for =23 to 30 inclusive were
present, although no case has yet been encountered where these additional slots were
needed. A slot for =0 would add slightly to the convenience of use.)
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F1c. 3a. Rack for N=48 with strips in place.
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F16. 3b. Rack for ¥ =48 with stencil in place for summation C(%) cos 2xkX/N for X =1,
even Indices.



SUMMATION OF THE FOURIER SERIES 663

Fic. 3c. Rack for N=060with strips in place.
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In a similar manner strips can be selected and racked so as to build
up a table containing all the numerical values which will be needed in the
computation of the sums S, and S,. The same set of strips can be used
for sine and cosine summations, but in the case of the sine summations
the numbers on the strips are taken as representing D sin 27 (¥ /4—s)/N,
(s=0, 1, -, N/4), where s as before is the number of the position on
the strip reading from left to right. Another set of stencils can then be
arranged to select from this table the values necessary for the summations
S, and S, for each value of X (Fig. 3d).

3. Layout for stencils

In describing the layout scheme for a set of stencils, we shall discuss
in considerable detail the case of N =20. For this small value of N we can
illustrate the full set of stencils and describe the process of laying them
out. We shall then give the tables that are needed to make the layouts
necessary for the more useful values N =48 and N=060. After study of
these tables the reader should be in a position to set up such tables for
himself for any other values of N that may be needed.

In making a cosine summation one strip is chosen for each C(k)
value and placed in the 4th position in the rack. For a given X and a
given % we shall need to select the value

C(k) cos 2rhX/N
from among the values
C(k) cos 2ws/N

carried on the strip in the 4th position on the rack. A table must therefore
be constructed of the s values corresponding to given values of A and
X for a specified N. Such a table is given below for cosine summations
for N=20, X=0,1,---, 5and £2=0, 1,---, 10. The s values for a
given & appear in a vertical column, while those for a given X appear in
a horizontal row. The C,and C, stencilsfor X =0 thus have all 0 values of
s and therefore select values of C (%) cos 2rs/N corresponding to cos 2rs/N=1.
The correct arrangement of holes for this stencil is shown in Fig. 4
in the stencil labelled® “Cos, X=0, % even” which selects the values
C(h) for all k even. Similarly the stencil “Cos, X =0, h odd” selects
the values C(k) for all & odd. The “Cos, X=1, k even” stencil selects
the values C(0), C(2) cos 4x/20, C(4) cos 8m/20, —C(6) cos 8r/20,
—C(8) cos 47/20, —C(10). These are then added to give the partial sum
C,(X) obtained by adding the even terms of the series (6). In Figs. 3band

9 Tn labelling stencils, one of us (P.) has used the abbreviated notation shown on the

stencil of Fig. 3b for N=48; the other (T.) has used the more detailed label shown on the
N =60 stencil of Fig. 3d.
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TaBLE 1. TABLE OF VALUES OF s AS FUNCTION OF % AND X FOR COSINE STENCILS
(N=20). A LiNnE UNDER THE s VALUE INDICATES A
NEGATIVE VALUE ¥OR D €05 2rs/N

IS e e S

s R | O T A
GUIN = W O
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1D = IS W O |
o o0 oL o

n

3d stencils are shown in place on the racks for N =48 and N=60. The
reader can easily assure himself that the other cosine stencils will select
the appropriate values to form the partial sums of the odd terms and the
even terms of the series (6) for various values of X.

To sum the series (7) we must place in the rack the strips

S(k) cos 2ms/N

and plan a set of stencils to select from among them the values which cor-
respond to the quantities

S(k) sin 27k X/N
needed in forming the partial sums of the odd and even terms of the
series (7). The appropriate s values are shown in Table 2.

TABLE 2. TABLE OF VALUES OF s AS FUNCTION OF /4 AND X
FOR SINE STENCILS (V=20)

N ] |
N0 2 | 3 | 4 S |6 | 7| 8| 9|10
L

\_____‘ | | ‘ |_'__

| i i

0|5 |s|s5|s5]5]|s5]s s‘s 5 | s
15|43 )2 [1to0o|1]|2|3|4]|s
2 | s (3|t |13 |5]|3|2|1]|3]|s35
35|21 |4|alolalalil2]ls
451033 |1|s|1|3|a|1]|s
5| s 0‘s|g|5059|505‘

The sine stencils constructed on this scheme are also illustrated in Fig.
3. It is easily seen that the backs of the cosine stencils can be used for
the sine stencils.
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serving for the cosine summation and the other side for the sine summation.

In Tables 3-6 the s values are given for the cosine and sine stencils
for N=48 and N=60. Both these values of N have been found satis-
factory in the laboratories of the writers and elsewhere for the summation
of the Fourier series that arise in x-ray analysis. If the reader wishes to
use any other value of NV, he will find it easy to construct corresponding

tables provided that N is divisible by 4.

Fr16. 4. Layout of stencils for N =20. The ringed holes correspond to negative values.
The same cards can be used for the sine and the cosine stencils, one side of each card
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TABLE 3. TABLE OF VALUES OF s AS FUNCTION OF % AND X For COSINE STENCILS (N
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4. The construction of strips, racks, and stencils

The strips upon which the values of D cos 2xs/N are tabulated can be
prepared in any width suitable for the type of lettering used. One of us
(P.) has used strips of width ¥”. The numbers were entered freechand,
using a guide to insure their correct location with respect to the stencil
openings. For N =48 a length of 84" proved appropriate. In another case
(T.) strips of width 4" were used and a length of 93" proved appropriate
for N=60. A Leroy lettering guide (#3240 120CL) was used in entering
the numbers on the strips in this case. In both cases, white card was
used for the positive values, while another color (green or blue) was
chosen for the negative values. The strips may be cut to appropriate
size in a printer’s guillotine or on a sheet metal cutter.

The rack for the strips can be cut out of hardwood or aluminum with
the aid of a milling cutter whose width is slightly greater than that of
the strips. The depth of the grooves should be equal to the thickness of
the strips, so that the filled board presents a flat surface on which the
stencils may rest. Brass strips around the edge of the board serve to lo-
cate the stencils accurately with respect to the rack. The details of the
construction of the board can be readily seen in Figs. 2¢ and 2b.

The stencils can be cut from pressboard or other similar material.
The positions of the holes are laid out on master stencils (cf. Fig. 3) in
accordance with the scheme adopted in laying out the rack and the
strips. The holes in the stencils may then be cut out with a hand punch
using the master stencil as a guide, or a punch press may be used. The
writers have made use of a simple punch mounted in a drill press. The
male punch was mounted in the chuck of a drill press, while the female
punch was located in a flat board clamped to the table of the press. If
pressboard is used for the stencils, the identification marks can be lettered
on them in Duco white with use of a Leroy lettering pen with the cleaner
removed.

The strips must be stored in such a manner as to make them readily
available. The container used by one of us (T.) is illustrated in Fig. 5;
it has a separate hole for strips of each D value. The positive and negative
strips of the same D value are filed in the same hole with the negative
strips placed in the rear. The method is only limited in extent of D values
by the convenience of filing the strips. The storage container shown has
208 holes for D values from 0 to 207 inclusive. A convenient container
could be made on the same design to accommodate strips with D values
0 to 1000 inclusive.
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FIc. 5. Container for strips for N =60, with places for strips for D-values 0 to 207. The
positive and negative strips of the same D-value are filed in the same hole.

Parr II. METHODS FOR TWO-DIMENSIONAL SUMMATIONS
5. The summation of lwo-dimensional series

The two-dimensional series which appear in crystal analysis are of the
form??
X'V =3 3 {A(hk) cos 2x(hX’ + kY') + B(hk) sin 2x(hX’ +- RYH) (12)
h=—w k

—
where

X
X' =2, X=0+1,%2-,%N,
N

10 Bragg, W. L.: Proc. Roy. Soc., A123, 537 (1929); Robertson, J. M.: Reports on Progress
in Physics, 4, 332 (1938).

Cf. especially equation ITg, p. 3, Lonsdale, K. : Simplified Structure Factor and Electron
Density Formulae for the 230 Space Groups of Mathematical Crystallography, Bell & Sons,
London (1936).
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and
Y’
V'=—y, ¥=04+1,+2---,+DN,
N
with . -
A(hk) = A(hk)  B(hk) = — B(hk).
If we write
AX'Y) = 3. 3 A(hk) cos 2r(hX' + BY) (13)
h=—w0 k=—u
and
B(X'Y") = 3. X B(kE)sin 2r(hX' + kV") (14)
=—00 k=—u

then we may write (12) in the form
JX'Y) = AX'Y") + B(X'Y). (15)

We note that the function A(X’¥’) possesses a center of symmetry at
the origin, and that the operation of a center at the origin reproduces
B(X'Y’) with a reversal of sign. We need only compute these two func-
tions for points covering one half of the unit cell. If the function fIX'Y)
has a center of symmetry at the origin, we must have XY =g (X T)
and consequently B(X'Y’) =0 everywhere and B(kk)=0 for all values of
% and k.

The summations (13) and (14) are now split up into one-dimensional
summations following the method suggested by Beevers and Lipson.2
We shall discuss the expression (13) first. It may be written

AX'Y) = 3. > A(kE){cos 2rhX’ cos 2k Y’ — sin 20hX’ sin 2wk v’} 16)
h=—w k=—ox

= C(X'Y) — S(X'Y),

in which
C(X'Y") = i > C(kk) cos 2rhX' cos 2k Y’ 17
h=0 k=0
with
C(00) = 4(00), C(h0) = 24 (r0), C(Ok) = 24(0k), a7
C(hk) = 2A(hE) + 2A(RE),
and
SX'Y) = Zw Zm: S(hk) sin 2xhX’ sin 2wk Y’ (18)
A=l k=1
with _
S(hk) = 24(hk) — 2A(hE). (18")

The expression (17) may now be summed completely. We may sum
first with respect to /, or with respect to k as we wish.!! Suppose we sum
with respect to & first. Thus (17) may be written

11 Tt is usual to sum first over the index that has the highest value represented among

the values C(/%); in this way, the number of initial summations to be performed is made as
small as possible.
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)

CX'V'y = 2 c(hY") cos 2whX’ (19)
in which
c(hY’) = X C(hk) cos 2wkY". 20
k=0

We can compute this latter series by the methods described earlier,
and use the results of this computation as coefficients in performing the
computation (19) by the same methods. This process will be described in
detail below.

The summation S(X’Y’) may be split up in exactly the same way, i.e.,

S(X'VY") = X s(hY’) sin 2rhX' (21)
h=1
in which
s(kY’) = D S(hk) sin 2xRY". (22)
k=<1

The series for B(X’Y’) may be written

o

B(X'Y') = Y. 3. B(ik){sin 20hX"' cos 2ak¥" + cos 2rhX’ sin 2wk ¥} 23)
h=—ow0 f=—o

= SC(X'Y’) + CS(X'Y")

in which
SCX'Y’) = 3 Y. SC(hk) sin 2whX' cos 2wkY’ (24)
h=0 k=0
CS(X'Y') = > 3 CS(kk) cos 2uhX’ sin 2xkY". (25)
E=0 k=0

In these expressions the coefficients are related to the B(kk) by the relations

SC(0k) = SC(00) = CS(h0) = CS(00) = G,
SC(H0) = 2B(h0),  SC(kk) = 2B(hk) + 2B (k) (26)
CS(0k) = 2B(OF),  CS(kk) = 2B(kk) — 2B(hE).

The two sums (24) and (25) can now be split up into one-dimensional
series in strict analogy with the process described for the series (17)
and (18). We shall give no further discussion of the series B(X'Y’) in
this paper since most two-dimensional series met with in crystal analysis
have a center of symmetry, in which case B(X'Y’)=0. If the need for
it arise, the reader, who has made himself familiar with the summation
of series of the type A(X’Y"), will have no difficulty in setting up a scheme
for B(X'Y").
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6. Arrangement of numerical work

A scheme for the computation of a series of the type A(X’Y”) is shown
in Fig. 6. The quantities 4 (kk) are assumed to be known either from ex-

e k

A(%"'X,) Y’)=Ce—co+se_sa

B

AG—X', 1-Y")=C,—C,—S.+S,

AX, V),

Fre. 6. Arrangement of numerical work for two dimensional cosine series.

I Ak, B) |-
Al k)
— I3 _ - . P
| : Ak, &) )
; i | [t
i) S0, &)
6 ¥ 3 S T 4
0 - 0
% iV ! Y’ 1—p
l Feolh, T7) +ch, 1) +s.(k, V) —5u(h, V')
b\ A-colh, )| | b —cq(h, 17) k| hl s, th, | | B 4s.th, ¥
e, V) clh, 3—¥) s(h, 1) s(h, §—17)
b 1
< i
c(k, ¥) s(h, 1)
0— Y’ 3 0—s v’ 3
0 0
! I ! r
x| x CAX', 1) x| x [sx, 7
C.(X', V') e 4 )
1 1
4 Fs
cX’, 1) SX', ¥')
00— v’ !
0
l .
X' | AX, V)=CHC,—S.—S, AX', 1=Y)=CACo+Sc+S,
1
.
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periment or as a result of a previous calculation.’” In general A (kk) will
be different from 4 (hk), but A(kk) will be equal to 4 (kk). The value of
A(hk) can thus be entered in a table in which the indices # and % run
from 0 to the largest value of % or & for which A (kk) has significance, pro-
vided A (kk) and A (hk) are written in the same box one above the other.
The two tables C(kk) and S(kk) are then constructed from the A(hk)
values according to the rules of equations (17°) and (18’) which define
these quantities. The table C(kk) provides the material for the summation
which leads to C(X’Y").The first step is a summation over k given by equa-
tion. (20). There will be as many such series to sum as there are values of
h, and each series will be summed for the points 0 to N/4. The results of
this summation are entered in the c(k¥') table. The summations for the
even £ values lead to the quantities c,(2¥”) and those for odd % lead to
c,(kY"). Both these sets of quantities are entered in the same box in the
table, and their sum gives the values of c(£Y’) for ¥’ values from 0 to
N /4. This table is now extended to N/2 by writing c.(hY’) and —c,(RY")
in the N/2— Y’ box, the sum of these two quantities being the value of
c(k, N/2-Y").

We must now sum (N/241) series of the type (19) for the points 0
to N/4. The results of these summations, i.e. C.(X'Y") and C,(X'Y")
are entered in the same box in the C(X’Y”) tables and their sum in each
case then gives the C(X’Y”) values for the points in question.

A similar procedure now leads to a computation of the table S(X'Y")
from the table S(kk), the only difference being in the use of sine stencils
instead of cosine stencils and in the rules for combination of the even and
odd parts of the various sums. In the final table, according to equation
(16) the function A(X’'Y’) is formed by subtracting S(X'Y’) from
C(X'Y") while the values at the points (X', N—Y’) are obtained by
adding these two quantities.®

The reader who finds it necessary to sum a series that does not possess
a center of symmetry, and must therefore sum the series B(X'Y") given
by equation (14), will find no difficulty in setting up a scheme entirely

2 4 (kk) may be either the structure factor F or the square of the absolute value of the
structure factor. The magnitudes of the structure factors can be determined from measure-
ments of the intensities of the diffracted x-ray beams from the crystal planes. The signs of
the absolute values of the structure factors are not determinable by measurement, however,
and must be obtained from a previous solution, either by trial and error, or by the use of an
| F|? series, or, in some cases, by comparison with those of another member of the same
isomorphous series of crystals.

13 Since the tables of Co(X'Y"), C.(X'Y") and SAX'Y"), So(X'Y’) are always the same
size (for a given number of divisions in the unit cell e.g. 48 or 60) a strip of cardboard with
2 suitable notches can be used to select quickly the four values needed for combination into
the final value of A(X’Y’). This device was first used in these summations by Mrs. Selma
Blazer Brody and we are indebted to her for the suggestion.
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analogous to that of Fig. 6. The difference will lie in a different use of
stencils and a different combination procedure. Equations (23) to (26)
and the results of equations (5) and (9) provide all the information neces-
sary for the purpose.

The computation outlined in Fig. 6 can conveniently be carried out on
squared paper of dimensions 50 cm. X 75 cm. ruled in 1 cm. squares. Since
the three numbers required in one entry in the tables c(A¥”’), s(A¥"’), etc.
can readily be entered in a 1 cm. square, the whole computation with the
exception of the final A(X’Y’) table can be entered on one sheet. The
A(X'Y’) table then occupies a separate sheet.

7. Conclusion

In this paper, we have described in detail a method for the summation
of one dimensional Fourier series' and a procedure that enables this
method to be applied to the summation of two-dimensional series. In
conclusion it is perhaps desirable to make a brief comparison between
this method and the two others which have been described previously.
The method of Robertson® and the present method are the same in prin-
ciple, but in practice they differ in one important point. In Robertson’s
method the strips are mounted in slides. Each slide is set for a given X’
value by means of an indicator. The advantage of his method is that the
numbers to be added appear in a vertical column, and can be added with
maximum ease. In the method we have described the selection of numbers
is by means of stencils, and the addition is along a slanting or zigzag
sequence of holes. Owing to the relatively small number of holes in any
one stencil, this adds little or no difficulty to the process of addition. In
going from one point to the next, in Robertson’s method all the strips
must be individually reset, whereas in the method here described it is
only necessary to replace one stencil by another.

The method of Lipson and Beeverst differs quite radically from the
other two?® in that their strips carry the values

D cos 2zkX/N and D sin 2rhX/N

for fixed values of / and for varying values of X. Strips for sine or cosine
are then selected for a given D and its appropriate 4. After the strips
have been selected, they are arranged one above the other and the figures
in vertical columns are simply added. If positive and negative values are
both present they must be added separately and the results combined.

* Those familiar with the processes of Fourier analysis will have no difficulty in recog-
nizing that the method is equally applicable to Fourier analysis by the method of equi-
distant ordinates. Cf. Whittaker and Robinson: The Calculus of Observations, Blackie,
London (1924), and Fagle, A.: Fourier’s Theorem, Longmans, Green, London (1925).
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The Lipson and Beevers method thus requires very many more strips
than are required by the present method. This disadvantage is, however,
somewhat reduced by the fact that strips for the numbers 1 to 100 have
been printed and are available. In the method of Lipson and Beevers, the
Miller index, the D-value with its sign, and the nature of the functioa
(sine or cosine) all must be watched in the selection of the strip; whereas
in the method described here, only the D-value with its positive or nega-
tive sign determines the selection. A comparison of the experience of
workers using the Lipson-Beevers method and of those using the one
under discussion here, seems to indicate that the time taken fora summa-
tion is not greatly different for D-values ranging from 0 to 100, For D-
values ranging from 0 to 1000, or more, the method of Lipson and Beevers
would require such an enormous number of strips that it would not be
so convenient as the stencil method, which experience has shown to be
well adapted to this range.”®
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15 Sets of 1800 strips (F-values 0 to 300, negative and positive, three strips of each kind)
for use with the method described in this paper may be obtained from Prof. J. D. H.
Donnay, Institut de Géologie et de Minéralogie, Boulevard de I’Entente, Québec, P. Q.,
Canada. (Price $9.00 per set.)





