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Aesrnacr

The methods and results of morphological studies on mechanically twinned crystals are

reviewed. The derivation of the formulae relating the indices of any face before and after

mechanical twinning is presented A new and direct graphic solution for the twinning ele-

ments in a crystal which has been subjected to a twinning de{ormation is developed.

INrnooucrroN

As a result of the increasing interest in the interpretation of preferred

orientations of the minerals in deformed rocks, the mechanism of the

plastic deformation of minerals has become important to the structural

geologist and the petrologist. There are two main types of plastic de-

formation in crystals. The first is known as translation-gliding' This is a

mechanism whereby the crystal will deform by means of slip along cer-

tain planes and in certain directions. This mechanism does not produce

a reorientation of the crystal structure. The second is known as twin-

gliding which also takes place by means of slip along certain planes and

in certain directions. This mechanism reorients the crystal structure to

develop twinning. Both of these mechanisms are thought to play impor-

tant roles in the development of preferred orientations in deformed rocks.

fn 1930, M. J. Buerger (3)* undertook a study of translation-gliding.
He compiled and evaluated all the work which had been done on this

phenomenon in minerals. This served as a basis for new experiments de-

signed to clarify and explain translation-gliding in the light of our present

knowledge of crystal structure. The purpose of this paper is to make a

similar study of twin-gtid.ing. Most of the literature on the subject is in

German and good bibliographies are not available. The writer feels that

a paper dealing with the underlying principles and demonstrating the

logical development of the theories of twin-gliding, which started over

fifty years ago as a result of morphological studies and are still in use

today, would serve as an adequate foundation for further work on the

subject.
The application of the theory of simple shear to explain the phe-

nomenon of twin-gliding, and the development of the transformation
formulae (which are to be explained here on the basis of surface mor-

phology), have been explained and derived on the basis of the Bravais

crystal lattice. Since morphological studies are still the most important

* Numbers refer to corresponding references in the bibliography.
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tool used in the determination of twin-gliding in mineral crystals, the
writer feels that this approach to the subject is the most logical. It will
also serve as a good foundation for discussions of the data which the
writer is now compiling, as well as for future discussions of twin-gliding
and its explanation on the basis of crystal lattices and crystal structures.

Hrsrony ol rHE Srulv or TwrN-GuDrNG

In 1826, Brewster (2) discovered that the lamellae which had often
been observed in cleavage rhombohedrons of calcite were really due to
twinning. Over thirty years later, in 1859, Pfaff (10) found that he could
press a cleavage rhombohedron of calcite with a force perpendicular to two
opposite edges and thereby change the orientation of the interference
figure in parts of the crystal. However, it was not unti l 1867 that Reusch
(11) recognized that the twinning described by Brewster and the changed
interference due to pressure reported by Pfaff, were one and the same
thing. This marks the beginning of the study of mechanical twinning
(twin-gliding).

Following Reusch's recognition that twinning could be produced me-
chanically, mineralogists made extensive studies of the phenomenon dur-
ing the late 1800's and the early 1900's. Since that t ime interest seems
to have been lost in this phenomenon, or else it has been considered un-
important, because it is either omitted or given very incomplete treat-
ment in most mineralogical textbooks and reference books. This is
especially true of those books published in the English language.

During the last twenty years the metallurgists have found the behav-
ior of metal crystals during deformation to be of increasing practical im-
portance. As a result, extensive researches have been carried out on the
twin-gliding and translation-gliding of metal crystals. Most of these stud-
ies have as their foundation the early work of the mineralogists. Conse-
quently most of the modern theories of crystal deformation have been
developed by the metallurgists (4, 13). These theories are limited by the
material on which the metallurgists have worked, and also by lack of aid
from the mineralogical data on twin-gliding, which for the most part had
not even been compiled.

MonpnorocrcAr- Cr{ANGES IN A Cnvsral DUB ro MBcnawrcer
TwrNNrNc AS SHowN BY CALCTTE

In spite of the fact that mechanical twinning has been produced in at
least fifty different minerals, calcite is still used as the type example of
mechanical twinning. This is due to several factors: the mineral is very
common; in the second place, it can be twinned easily; in the third place,
it is the only common mineral in which an easily obtainable form (the
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cleavage rhombohedron) develops both morphological and structural
symmetry as a result of mechanical twinning.

The familiar technique of producing twinning in a calcite rhombo-
hedron by pressing a knife blade into the crystal was f.rst described by
Baumhauer (1) in 1879. Figure l copied from Johnson (5) i l lustrates
this procedure. A wedge-shaped opening of constant angle develops under
the knife blade. At the same time a triangular prismatic section of the
crystal is displaced to the right. This displacement causes an apparent

Frc. 1 Formation of a "knife blade" twin on a cleavage
rhombohedron of calcite (modified after Johnson).

tipping of a section of the right hand face of the rhombohedron, forming
a reentrant angle of constant value for that face. The tipped section of
the right hand face remains an optically flat surface. The other two faces
of the cleavage rhombohedron which bound the displaced triangular
prism show no efiects of the deformation. The contact between the dis-
placed prism and the rest of the cleavage rhombohedron is a horizontal
plane equivalent to the flat rhombohedron (0112) in the original crystal.
It is often possible to develop a good parting parallel to this plane and
thereby determine its attitude on the goniometer.

If the faces on the deformed and undeformed parts of this cleavage
rhombohedron are measured, and plotted on a stereographic projection,
it is found that the displaced portion of the crystal and the undisturbed
portion are symmetrical about this plane of separation (0112). Crystal-
lographically this relationship may be thought of as a 180' rotation of
the displaced part about the normal to this plane or about an axis par-
allel to the horizontal edges of the cleavage rhombohedron (Fig.2).
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Optical studies show that this relationship is the same for the interfer-
ence figures of the two parts of the crystal. It is, of course, obvious that
the mechanically twinned portion of the crystal was not actually cut
Ioose and turned 180'about either of these axes. iust as natural twins are
not actually rotated.

Frc. 2. Cyclographic projection of the "knife blade" twrn
illustrated in Fis 1.

Frc. 3. (01f2) trvins in calcite; left: "knife blade" twin similar to those illustrated in
Figs. 1 and 2. Center: twin-gliding lamellae on a crystal of calcite from Egremont, England.
The crystal is bounded by cleavage rhombohedrons and prism faces Compare with the pro-
jection Fig. 4. Right: growth ttvin from Guanajuato, Mexico

If the calcite crystal is not bounded by the planes of the cleavage
rhombohedron but for example by six prism faces terminated by the
unit rhombohedron, as shown in Fig. 3, the twinning resulting from de-
formation is not so obvious. After deformation the crystal is cut by a
series of lamellae. These lamellae are Dresent in all of the faces except two
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of the unit rhombohedron. Close examination shows that these lamellae
bound tipped portions of the faces on which they appear. Although all of
these tipped planes are optically flat, various physical tests have shown
that in many cases they are not the sarne as their undeformed equiva-
lents. The cyclographic projection* of this crystal showing all of the faces
present after deformation (Fig. 4) does not show any symmetry in re-

Frc. 4. Cyclographic projection of the faces present on the crystal shown in Fig.
3 (center). Note the lack of symmetry about (01f2).

spect to the plane of the lamellae, although the projections of the rhom-
bohedral planes are the same as they were in the case of the deformed
cleavage rhombohedron (Fig. 2). The cleavage rhombohedron, therefore,
must represent some unique form in calcite which shows mechanical
twinning morphologically. Muegge (7, 8) recognized the presence of these
unique forms in calcite as well as in other minerals. He realized that the
displacement of any face on a crystal due to mechanical twinning must
in some way be related to this so-called "grundform" and he thought
that the mechanical twinning could probably be characteized by this
"grundform." However, his attempt in 1885 (8) to set up analytical ex-
pressions for these relationships was unsuccessful.

Apprrcerrolr oF THE Tnaonv oF STMpLE Snoan ro
MrcneNrcar TwrNNrNc

Simple shear is a homogeneous deformation which takes place by
movements along a series of parallel planes (in a definite direction)

* A projection in which planes are represented by great circles on a stereographic net.
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whereby each plane has exactly the same amount of displacement in

respect to its neighbors as every other plane does in respect to its neigh-

bors. A prosaic analogy would be the deformation of a deck of cards in

which each card slides over its neighbor in a definite direction and by the
same amount as every other card.

fn a deformation of this kind there is no volume change, planes remain
planes, straight Iines remain straight lines and a sphere will become an

ellipsoid. Let us imagine a plane perpendicular to the slip planes and par-

allel to the slip direction, through a sphere and the ellipsoid which is its

deformed equivalent. Such a plane is called the plane of deformation and
it is the plane of projection of the drawing in Fig. 5, which may be used
to discuss this process of simple shear.

Frc. 5 Diagram illustrating simple shear. The plane of defor-

mation is the projection plane.

The circle BCC'B' with a radius equal to unity may for example be
deformed into the ell ipse BC'B'by slip along a set of l ines parallel to
BB'.The ratio of the amount of displacement along any line to its per-

pendicular distance fuom BB' is a constant for any particular deformation
and is called the "amount of shear." This is designated by the letter s

and is equal to the displacement along a line at a unit distance above
BB'.It is obvious that any simple shear could be uniquely defined by the
slip plane, the slip direction and the amount of shear.

There are two planes in the ellipsoid, the circular cross-sections, which
do not change in shape or size as a result of this deformation. These are
represented by the lines BB' andOC. BB' does not change its position.
OC changes its position to that oI OC' and this change is a function of the
amount of shear. The angle 2 d between the slip plane BB' and the other
plane of no distortion OC bears the following relation to the amount of
shear:  (13)

T R ^ c e  a F  K z  ( 7 , )

B E F o R T

T R A C €  o r  S L r F
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,)
tan 2 6:--

The intersection of the two planes of no distortion is perpendicular to the
slip direction. Therefore, it is also possible to uniquely define the simple
shear by means of the two planes of no distortion and their included
angle.

It is seen that the relationship of the two planes of no distortion before
and after deformation can be geometrically described by a rotation of
180o of the original positions about an axis normal to the slip plane or
about an axis parallel to the slip direction.

In 1889, Liebisch (6) realized that this theory of simple shear could be
used as a geometrical means of describing the end result of mechanical
twinning. fn the knife blade twin of calcite, the deformation could be
considered as the result of slip along a series of planes parallel to (0112)
with the slip direction parallel to the horizontal edge of the cleavage
rhombohedron. fn this case the right-hand face of the cleavage rhombo-
hedron would be the other plane of no distortion and its symmetry in
respect to the slip plane and the slip direction is explained. The homo-
geneity of this kind of deformation also explains the fact that all of the
tipped planes remain optically flat. It also explains the fact that the
tipped portions of planes which are not symmetrical to their original
positions in respect to the slip plane no longer have the same properties
as they had originally (etch figures). This theory of simple shear explains
all of the facts which can be observed on mechanically twinned crystals.
However, it should be emphasized that this may not represent the actual
movements of atoms, molecules, ions or other units in the crystal struc-
ture.

TneNsronuarroN oF INnrcBs oF A FACE AS A RESULT oF
MBcuaNrcel TwTNNTNG

After it was realized that the development of mechanical twins could
be geometrically described as a simple shear, the next important problem
was to find some way of using the tipped faces of a deformed crystal to
define the twinning process. We have seen that a process of simple shear
can be uniquely defined by the two planes of no distortion and their
included angle. Therefore, if we know the indices of these two planes in a
certain crystal we can describe the twin. It has also been shown that this
twin will be geometrically equivalent to a 180o rotation about the normal
to the slip plane or about the axis which is parallel to the direction of slip.

In 1889 Liebisch (6) and Muegge (10) developed the transformation
formulae which relate the indices of an orisinal crvstal face to the indices
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of its tipped portion in the twinned individual in terms of the indices of
the planes of no distortion of the strain ellipsoid of simple shear. These
transformation formulae can be developed in the following manner:

In crystallographic literature the slip plane is designated by Kr. The
intersection of this plane with the plane of deformation is parallel to the
slip direction and is designated by /y'r. The other plane of no distortion is
designated by K, and its intersection with the plane of deformation is
designated by 1/r.

,qac (hi r)

K, (f l ,K,L,)

5

C
R e N e  o r
Deronrnrror (H, ( L.)

A

aac ' (n 'x ' t ' )

7 Luvq-

S r r e  p 1 o " .
(H,  k,  L,)

/*LotVwrl

/ y

Frc. 6 Diagram illustrating thc derivation of the transfornation formulae.

Let us refer a crystal which shows twin-gliding to a set of rectangular
coordinates, X, Y, Z, Fig.6, in such a manner that the XIlplane coin-
cides with K1, ar.d the Y Z plane coincides with the plane of deformation.
OZ is then parallel to /y'1 and OX is perpendicular to Iy'r in the slip plane
Ky. Let OC and OC', which lie in the plane of deformation, be parallel
to 1y'2 before and after deformation respectively. OCX and OC'X then
represent Kz before and after deformation. Let the plane ABC represent
any plane in the crystal before deformation. After deformation it will
occupy a position and attitude indicated by ABC'.

Let the indices in respect to the undeformed crystal axes of the ele-
ments which we have iust described be:

ABC, any plane before deformation (hhl)

ABC' , any plane after def ormation (h'h'l')

Kt, the slip plane (H1KIL)
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f(\ the other plane of no distortion (HrKzLz)

1y'r, the slip direction lufitwtl
Nr, luzttzwzl
OX, intersection of Kt and Kz lu*tzwt]
'YZ, plane of deformation (H3KzLi

It is now possible to refer the plane ABC with indices (h, k, l) to a new
set of axes. Let these new axes be OX, OY, and OC as the a, b, and c-
axes respectively.

By cross multiplication we find that the indices of the new axial planes
are:

(H $ t L s) oI Y Z : ((o tw z - t w ) (u zw I - u tu 2.\ (u tr 2 - u 2a 1))
(1) (HzKzIa) of Kr:(ktztvt-1:az)(u.twz-uzwz)(ltttz-uaw))

(H tKtZr) of K1 : ((z3zrr1 - qw3) (u1w 3- u3u) (uztt - uttz))

The transformation formulae for this chanEe are:

o ,,:!u 
u^l4r!]u, 

p":(1a3loslw3)

(2) o 6:Ujt!t4!t gt:(ut-lrt1.wt)
At

o. 6:!!!tk!!tl'! , gz: (uzlaztwz)
U2

where/zo,  ks,  lsare theindicesoI theplane (hkl ) referred. tonewaxeslutvf laf ,  lu f l rut land
lu,2r2u2f and p is a proportionality factor.

By solving the three equations (2) for h, i and I we get:

p fu : fu fu s(l pa 2 - t zu ) l 0 th o(v zw t - a 3w z) + 0 zl o(a 3w t - t) tw s)
(3) p ' k: hhg(u2rxJ1- wtuz) I|tho(u*tz- uzwz) llzlo(utut- iltwr)

p ' I,:0sho(utsz- u21)t) +|rko(u2u- utaz) *0zlo(uttt- ara)

These formulae give the original indices of the faces in terms of the
indices referred to the axes OX, OY, ald OC.

By substituting values from (1) equations (3) may be expressed:

p' fu : hhsil sl 0 rh oH zl 0zlolI t
(3a) p h:ilhsK:t*0tkoKt*0zloKt

p l' : ?thoLaI9rhoLz+gzlDLr

The discussion of the strain ellipsoid has shown that the deformed
equivalents of the axes OX, OY ard OC will be -OX, -OY and OCt or
-OX, OY and -OC' depending upon whether we choose an axis of rota-
tion normal to K1 or parallel to nlin describing the deformation. In either
case, the relationship of the crystallographic axis in the new position to
the new positions of the axes OX, OY and OC will be the same as the rela-
tionship between these two sets of axes in the original positions.
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Therefore, the formulae

p'  l r '  : fuhs 'H 310'Ao'Hz*9zlo 'H r
p ' lat :hhstK3l|tho' KzIilzlo' Kr
p l' : |ahot Ls-f|rho' Lz-l9zlot Lr

express the relationship between the indices h'k' l 'of the plane ABC'
referred to the new crystallographic axes and its indices referred to the
deformed equivalents of OX, OY and OC.

Let us first consider the deformation as equivalent to a rotation of the
axes 1800 about the normal to Kr. In this case, OX is equivalent to -OX,

OIz is equivalent to -OY and O,E is equivalent to OE' in the new posi-
tions. Therefore the indices of the plane ABC' arc:

( 5 )  ho : -ho ' ,  ho : -ho '  and  l r : l o t .
Substituting the values of (5) in equation (4) we find:

p' fu' : -fuhsH3--0rkoHz-l0zloHt

(6) p. h' : -%hsK3-0rhoKz-l0zloKr

p lt : -hhsL3-|tkoLzl9zloLr

If we now substitute the values of h, k and. I ftom (2) in (6), we find that:
p ht : 2H {u zhltzk*wzl) - h(uzll r+1)2Kr+w2L)

(6a) p pt:)K{u2lt,fvzh.lwzl)-h(uzHtlazKtluzL)

p l' : 2 L1(u2hlr2h!u,21) - l(u2H rlozKtlwzL)

We have now expressed the transformation of indices of any plane due
to twin-gliding in terms of the original indices of the face, the indices of
lfz and the indices of Kr.

If on the other hand we consider the deformation as equivalent to a
180" rotation of the axes about 1[r then the indices of the plane ABC' are

(7)  ho:-ho' ,  ho:ho'  and.  lo: - lot .
Substituting these values in equation (4) we find:

p fut : -ilhsH3l9rkoHz-IzloHr

(8) p' h': -9shnK3l9rhoKz-9zloKt

p Jt : -fuhnL3{0rhola-0zloLt

If we now substitute the values oI ho, ho and 16from (2) in (8), rve find that:
p . fut : 2 H 2(u1hl uh + u1l) - h(utU z-f arK zl w tl)

(8o) p . h' :2K2(u1hlt:1klu1l) - h(u1H zllrKzlwtlz)
p lt : 2 L2(u1h! arh I utl) - I,(ufl zl t:tK z* urlz)

Ifere we have expressed the transformation due to twin-gliding of the
indices of any plane in terms of the original indices of the plane, the in-
dices of I[1 and the indices oI Kz.*

* The use of these transformation equations can be illustrated by using calcite as an
example Let K1 be (0112). The corresponding Kz is (0111) and S is (2110). The inter-
section of S rvith K1 is lil [1231] and with Kz is 1[z [1232]. For use in the transformation
equations only 3 indices are used. For these elements they are:6r:(01 2), Kr:(0Il),
s: (2T.0), Ir1:[12.T], +N':112.21

If we now investigate the transformation of the plane (0221) due to twin-gliding with
the above-mentioned elements we find:
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By means of these transformation formulae we can express the mor-
phological changes which take place in a crystal as a result of mechanical
twinning. It has been shown that these twins can be described by a rota-
tion about one of two axes. Observers have found that in some cases the
slip plane has simple indices, and then it can be considered as the twin
plane or its normal as the twin axis. This is known as TWII{l{II{G OF
TYPE 1. In other cases the slip plane is irrational, but the slip direction,
ly'1, is rational and can be considered as the twin axis. This is known as
TWII{NII{G OF TYPE 1/. It should be emphasized that from a mor-
phological standpoint these two types of twinning are identical except
for the so-called rationality or irrationality of certain elements used in
our geometrical description of mechanical twinning. fn some cases all of
the elements used to describe a mechanical twin are rational. If this is
the case, it often happens that Kz may also function as a slip plane,
whereby two varieties of twins will be formed. One variety can be de-
scribed as twinning by rotation about the normal to K1 or about 1[r. The
other can be described by rotation about the normal to Kz or about /y's.
This is ca,lled RECIPROCAL TWII{NIl{G.

There are hundreds of measurements on record which show the valid-
ity of the transformation formulae which have been developed. If the
indices of two faces which do not lie in the same zone are known before
and after the deformation, it is possible to solve these formulae for Kr
and Iy'r or for Kz and 1[r. However, if we do not know what the twin
plane in a crystal is, it is impossible to index any faces with respect to the
twinned axes. Most investigators have been able by close observation
and shrewd guessing to arrive at probable values ior Ky, Kz, Ir{t, and 1y'2.
After doing this they substituted these values in the transformation for-
mulae and found what the indices of the displaced faces should be. It was
then a simple matter to measure the angles between the displaced faces

By subst i tut ing the values for  Kr( I I r :0,  Kr: I ,  h:2) ,  Nz(u2:1,  1)2:2,  w2:2) and

h:0' k:2' r:1 in equatio 
r'ilz.*in-;gl;lll= :
p / : 4(0+4+2) - 1(0+2+4) : 18

Dividing through by the proportionality factor, p:13, h'k'l 'become (0O1).

By substituting the values Ior K2(I:12:Q, Kz: -7, L2:l), l{r(17,:0, tt:2, wr: -l)

and /z:0,  h:2,1:7 in equat ion (8o) we f ind that :
p '  h ' : 0 (0+4 -  1 )  - 0 (0 -  2  -  1 ) : 0
p k '  :  -2(0+4- 1)  -2(0-2-  r )  :0
p  y :2 (o+4 -  1 )  -  1 (0 -2  -3 ) :9

Dividing through by the proportionality factor, p:p, h'k'l ' become (OOI).

This shows that with these deformation elements (0221) becomes (0001) in the twinned

crystai. This fact rvas established experimentally by Muegge in 1883 (7).
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and their equivalent faces in the undeformed crystal. These values could
be compared with those values which were calculated for the angles be-
tween the known indices of the original crystal face and the assumed in-
dices in the twinned individual. The agreement between the calculated
and the measured values served to substantiate or disprove their guess
as to the values of K1, Kz, Ir{r, and 1y'2. The transformation formulae,
therefore provide an excellent means of checking, but only an indirect
solution for the twinning elements.

Gneprrrc SolurroN oF THE TvtrrNNrNc ElnuBNrs rN DEFORMET,)
Cnvsr,q,rs wrrH THE Arl or rno SrBnBocRApHrc PnolecrroN

It has been shown that a simple shear and thereby a mechanical twin
can be completely described by three elements, namely:

(t) the slip plane (K)
(2) The slip direction in the slip plane (Nr)
(3) The amount of slip or shear (s).

ff these three elements are known and their relation to the crystallo-
graphic axes of a crystal are known, then the twinning elements which
developed during the deformation of a crystal are completely defined.

These three elements can be determined graphically. fn order to do
this one must know the positions with respect to the originol crystal axes
of two planes of a crystal before and after the twinning deformation.
These two planes must not lie in the same zone and neither of them can
be in the zone of the slip direction. The planes may be crystal faces or
they may be artificially prepared planes. The only further restriction is
that they give reflections which can be measured accurately on the re-
flection goniometer, or that they are suitable for measurement by other
means.

From the data described above and illustrated in Fig. 7, the steps in
the graphic solution are as follows:
(1) PIot the two planes before deformation (planes,4 and B) and the corresponding planes

after deformation (planes A' and B') as great circles on the stereographic net along
with the crystallographic axes of the original crystal.

(2) The intersection of planes A and A' (point 1) and the intersections of planes B and B'
(point 2) must both lie in the slip plane. Therefore the slip plane can be constructed
as a great circie passing through these two points. The fact that the intersections of
these planes lie in the slip plane is clear when we remember that in mechanical
twinning the slip plane separates the deformed and undeforrned parts of the crystal
(see Fig. 1).

(3) 1'he line of intersection of planes ,4 and B (point 3) and the line of intersection of planes
A' and B' (point 4) must lie in a plane which contains the slip direction Therefore a
great circle drawn through these two points will intersect the slip plane in a point
which represents the slip direction (point 5).

(4) A great circle is then constructed parallel to the slip direction and perpendicular to
the slip plane. This great circle represents the plane of deformation The plane of
deformation will intersect planes ,4, A' and B' in four points (points 6, 7 , 8, and 9).
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Frc. 7. Cyclographic projection of a mechanical twin in calcite illustrating the
graphic solution for twin-gliding elements.

The amount of shear can be calculated from the angles between the slip direction and
the intersection of the planes of deformation with one of the planes before deformation
(at) and the angle between the slip direction and the intersection of the plane of de-
formation with the same plane after deformation (dr). The formula used in this calcu-
lation is:

s: ctg 91 - ctg 42.

259

(s)

#
St r  e

DraEcrrox

Frc. 8. Diagram illustrating how the arnount of shear (s) may be
derived from the graphic solution.

The derivation of this formula can be erplained with the aid of Fig. 8. The plane of
deformation is again the plane of the projection. The slip direction is parallel to OX.
By simple shear, the point P1 is transferred to the position of point Pz. If we consider
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that their y coordinate is equal to unity then the difierence between their ro coordi-
nates is equal to s It follows that:

so
similarly

J - r t - , r 2

#r : l r  CoS 0r

1
L - -

SIn dl

x2: ctg 02
s : ctg dr - ctg dz.

From the value of s we can calculate the angle between Kr and Kz and then we can
plot K2 and .I[z on the projection. We have now determined all of the elements necessary
to describe a mechanical twin. The accuracy of our determination is limited only by the

accuracy of the measurements and the accuracy of plotting. This graphic solution of the

twinning elements is advantageous because it is direct and rapid and it helps to visualize
the deforrnation. For final determinations the graphic solution can be checked by using

the transf ormation formulae.

CoxcrusroNs

From a review of morphological studies it has been shown that me-
chanical twinning in crystals may be described as a process of simple
shear. However, it is to be emphasized that at present this process of
simple shear cannnt be applied to an analysis of the actual paths of move-
ment of atoms, ions or molecules in the crystal during the deformation
by twinning.

Formulae relating the indices of a crystal face before and after me-
chanical twinning to the elements of the deformation are reviewed. It
has been pointed out that these transformation formulae cannot be used
as a direct solution for the elements of the twinning deformation.

A new and direct graphic solution of the deformation elements has
been presented.

Although much of the material presented in this paper is not original,
it is the first time that it has been compiled in English in the present
form. The writer feels that such a presentation is a necessary foundation
for further studies of mechanical twinning.
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