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INTRODUCTION

The numerous early analyses of natural antimonial silvers listed by
Hintze (1904, p. 429) give silver values ranging from 71.52 to 84 per
cent. Several of these analyses correspond well to the composition Ag;Sh
(72.7 per cent Ag), which is the generally accepted formula for the min-
eral dyscrasite. The correctness of this formula has been confirmed by
Machatschki (1928) who showed that bladed dyscrasite from Andreas-
berg in the Harz has the same hexagonal or nearly hexagonal structure
as the artificial compound Ag:Sb. Antimonial silvers with more than 73
per cent Ag, such as the material from Cobalt, Ontario, described by
Walker (1921), are inhomogeneous, consisting of dyscrasite and a ma-
terial with higher silver content.

The crystal form attributed to dyscrasite is orthorhombic, pseudo-
hexagonal, with common twinning on (110). The accepted elements:

a:b:¢=0.5775:1:0.6718

rest on meagre measurements by Hausmann (1847, p. 57), probably
made on crystals from Andreasberg. Machatschki noted the fact that
Hausmann’s elements gave a prism angle of practically 60°, but could
find no further relation between the form ascribed to dyscrasite and the
hexagonal lattice of natural and artificial Ag;Sh.

A specimen with well developed crystals, labeled dyscrasite from
Andreasberg (Harvard Mineralogical Museum, 81628) offered an op-
portunity of revising the early crystallographic work on this mineral.
Satisfactory goniometric measurements gave orthorhombic elements in
fair agreement with Hausmann’s values: ¥-ray measurements confirmed
the choice of lattice and defined its dimensions; but a calculation of the
cell content, using the formula Ag,Sb and the specific gravity 9.7—the
mean of several concordant published values—gave an unsatisfactory
result. Remeasurement of the specific gravity gave a much lower value,
namely 6.83; but again an improbable cell content was obtained. Finally,
a pure sample was prepared and carefully analysed by F, A. Gonyer who
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228 M. A. PEACOCK

reported a surprising result: instead of AgsSb, the composition of the
mineral proved to be Ag,Sb, which accounted for the low specific gravity
and yielded an integral cell content.

Since there is no question regarding the existence of the mineral with
the composition AgsSb, to which the name dyscrasite! is firmly attached,
it is clear that the morphology attributed to dyscrasite is that of a min-
eral with the composition Ag,Sb whose individuality has hitherto not
been recognized. With the consent of Frau Geheimrat Goldschmidt, the
mineral with the composition Ag:Sb is named Goldschmidtine,® in mem-
ory of Victor Goldschmidt [1853-1933] of Heidelberg, whose kindly
teaching has led three generations of students to an appreciation of the
beauties of crystal morphology.

This work was carried out mainly in the Harvard Mineralogical Lab-
oratory on material and with facilities kindly placed at my disposal by
Professor Charles Palache. My thanks are also due to Dr. Harry Berman
for making an independent determination of the specific gravity of gold-
schmidtine; to Dr. J. A. Harcourt for assistance in examining polished
sections; to Mr. F. A. Gonyer for carrying out the analysis; and to Mr.
W. E. Richmond for taking the x-ray photographs.

MORPHOLOGY

Appearance of the crystals. The specimen from Andreasberg shows
groups of goldschmidtine crystals, which are between tin-white and
silver-white with bright metallic lustre on fresh surfaces, pale lead-gray
and dull when tarnished. The goldschmidtine is associated with abun-
dant poorly crystallized galena, veinlets of silver or antimonial silver
and specks of ruby silver in a gangue of calcite.

The crystal groups of goldschmidtine reach 3 mm. in greatest size.
Although imperfectly developed, due to mutual interference and con-
tact with the associated minerals, the general shape is easily recognized
as that of a short six-sided prism with a broad base, the edges between
the prism and the base being truncated by narrow faces. Already in the
hand specimen it is clear that the six-sided prisms are"“’not hexagonal
individuals, but complex groups of crystals twinned on planes in the
prismatic zone. In spite of the generally poor development, good gonio-
metric measurements were obtained from some portions of selected crys-
tal groups. These showed that goldschmidtine is orthorhombic, univer-

1 New observations confirming and extending Machatschki’s data on dyscrasite will be
reserved for another communication. These show that dyscrasite differs from the newly
recognized mineral in all its essential properties

2 Goldschmidtite of Hobbs (1899) was shown by Palache (1901) to be identical with
sylvanite.
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Suily-twirmred-om ¢410), as described later. With considerable angles be-
tween the subparalle] faces in twinned relation, it was easy to distinguish
the faces of a single individual and thus obtain a projection of the
untwinned reciprocal lattice.
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F1c. 1. Goldschmidtine. Gnomonic (reciprocal lattice) projection of the observed forms.
The underlined indices refer to the axes P1P3R of the simple (principal) reciprocal lattice
cell; the indices not underlined refer to the double (base-centered) reciprocal lattice cell
with axes POR. The inset shows the corresponding direct lattice, the simple cell with axes
A14:C, the double cell with axes 4 BC.

Determination of the crystal lattice Jrom the crystal form. This was con-
veniently done by applying the Harmonic-Arithmetic Rule (1937) to
the gnomonic projection of the observed planes. This rule is a rigorous
consequence of an idealized form of the Law of Bravais, as applied to the
simple structural lattice. It states that, if the relative importance of
crystal faces is a direct expression of the relative spacings of the corre-
sponding lattice planes, then the gnomonic projection points of the faces
of a zone-quadrant form simultaneous series:
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in which the end-terms represent the planes with the greatest and second
greatest spacings while the unit term represents the plane with the third
greatest spacing in the quadrant.? The primary series (p) is always the
most strongly developed; the secondary (s), tertiary (f) and higher
series are successively weaker and often entirely absent. The harmonic
and arithmetic parts of each series are equally developed only if the
spacings of the planes represented by the end-terms are about equal.
In general, either the harmonic or the arithmetic part will preponderate
with reduction or complete suppression of the other part.

Figure 1 gives a gnomonic projection of the observed forms of gold-
schmidtine on the plane normal to the axis of the main (prismatically
developed) zone. Our problem is, in the first instance, to find what we
shall call the principal lattice cell, that is the lattice cell whose axial planes
are the three sets of non-coaxial lattice planes with the greatest spacings.
From the Law of Bravais it follows that the main zone of a crystal con-
tains two of the axial planes of the principal lattice cell. The vertical
axial planes must therefore be chosen from the planes my mz b, Since the
symmetry is orthorhombic, i, ms are the only possible vertical axial
planes; ¢ is necessarily the third axial plane. The polar axes of the princi-
pal lattice cell are therefore Py Py R, with reference to which the axial
planes are m,(100), ms(010), ¢(001).*

It remains to determine unit planes defining the relative lengths of
the cell-edges; and since the axes Py Pyare equivalent it suffices to deter-
mine, say, the unit plane (101) in the axial zone [emi] of the principal
lattice cell. From the definition of the principal lattice cell the planes
with the greatest spacings in the zone quadrant [em] are ¢(001) and
m1(100); the plane with the third greatest spacing is (101). Inspecting
the zone series ¢—1, in the gnomonic projection we see at once that ¥
is the only admissible unit term. With c—y as unit length we have a regu-
lar primary series in which the harmonic part alone is present:

(4
p: 0

The plane y is therefore the plane with the third greatest spacing in
the zone quadrant and consequently it is the plane (101) of the principal
lattice cell. Thus the structural lattice is completely defined. Confirma-
tion is given by the zone series ¢—b where p is the unit term of a regular
primary series in which the harmonic and arithmetic parts are equally
developed:

w 4 y m
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3 The derivation of these ideal series from the Law of Bravais was outlined to the
Mineralogical Society of America at the meeting in 1936, A similar derivation with further
study of zonal series has recently been given by Donnay (1938).

+ In figure 1 indices referring to the principal lattice cell are underlined.
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The plane p is therefore the unit plane (111) in the principal lattice
cell.

The harmonic-arithmetic rule thus yields an unequivocal determina-
tion of the simple reciprocal structural lattice, whose first layer is given
by the net in full lines carrying the filled points (k%l) at its nodes. The
direction lines to the vertical planes are parallel to vectors leading from
the origin (000) to zero-layer points (kk0); the blank points are points
in which vectors joining the origin (000) to higher layer points (kkl)
intersect the plane of the first layer (plane of the gnomonic projection).
The inset in figure 1 shows the corresponding direct lattice with 4, 4,C
as the axes of the principal lattice cell.

With reference to the rectangular reciprocal lattice cell, with axes
P Q R (dotted in figure 1) and elements Poqoiry there is systematic
absence of points not conforming to the law, (k+k) even; the direct
rectangular lattice cell, with axes 4 B C (dotted in the inset, figure 1)
and elements a:b:¢, is therefore base-centered (C). Since we recognize
the faces of a crystal as planes of the crystal lattice, and see a direct
relation between the relative importance of crystal faces and the rela-
tive spacing of lattice planes (and the intimately connected relative
simplicity of indices), the indices used to describe the forms of a crystal
must surely conform to the mode of the lattice. The indices of the ob-
served forms of goldschmidtine are therefore as given in Table 1,in
which the indices of only two forms, 5{020} and {022} must be written
in multiple form to give (A4 k) even. In both cases the resulting reduced
spacing and increased complexity of indices is in keeping with the rela-
tive importance of the form.

It is now of interest to compare the form list of goldschmidtine with a
list of lattice planes and spacings extending from (001), with the greatest
spacing in the lattice, to (061), the observed plane with the least spacing
(Table 1). The spacings were determined by a rapid graphical method
described elsewhere (1938), the values being given in absolute units
based on the value ¢y=8.42 A subsequently obtained by x-ray measure-
ment.

In excellent agreement with the Law of Bravais, the most important
forms of goldschmidtine, ¢ m & ? ¥, correspond to the most widely spaced
planes of the lattice; the remaining observed forms (with letters), and
some further forms (with queries) attributed to dyscrasite (Goldschmidst,
1916) but probably observed on goldschmidtine, are separated by in-
creasing gaps in the list. These gaps do not affect the choice of lattice,
which is amply confirmed by the arrangement of the principal forms;
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TaBLE 1. GOLDSCHMIDTINE: SPACINGS OF PLANES IN THE BaseE-CENTERED LATTICE <

Form  hkl d(A) Form  hkl d(A) | Form  hkl d(k)
¢ 001 8.42 — 221 3.05 = 203 2.27
m 110 6.57 g 041 2.89 = 151 2.26
b 020 6.16 ? 202 2.85 ? 133 2.21
y 11 5.17 — 132 2.75 . 312 2.16
) 021 4.96 w 113 2.58 — 223 2.13
? 200 3.88 f 023 2.55 = 331 2.11
= 201 3.77 — 310 2.53 = 242 2.08
? 130 3.60 = 311 2.41 — 043 2.07
z 112 3.55 ? 240 2.41 — 152 2.04
e 022 3.47 ? 150 2.35 v 114 2.01
== 131 3.32 = 241 2.31 k 061 1.99

they do, however, represent departures from perfect correspondence
between form-importance and lattice spacing. One might, therefore,
fairly ask: If the Harmonic-Arithmetic Rule follows rigorously from the
idealized Law of Bravais, why is the Rule strictly satisfied in the present
case whereas the Law is only approximately true? This is easily under-
stood if we regard the departures from perfect agreement between form
importance and lattice spacing not as under-development of certain
expected planes but as over-development in certain zones. As may be
seen in Table 1 all the observed planes after p lie in the two important
zones [100] and [110]. This over-development simply extends these zonal
series, thereby adding precision to the selection of the unit term. And
thus we see that over-development in certain zones, a frequent departure
from ideal correspondence between form-importance and lattice spacing,
is a help rather than a hindrance in finding the crystal lattice by means
of the serial expression of the Law of Bravais.

Elements and angles. The best goniometric measurements give the
following geometrical elements for goldschmidtine:

Poigoiro=1.0868:0.6860:1
a:b:c=0.6312:1:0.6860

Hausmann’s elements, supposed to have been obtained on dyscrasite:
a:b:¢=0.5775:1:0.6718

are only roughly similar to the new values. A comparison of angles is

perhaps more significant:

Hausmann Peacock
(110):(110) 60°01’ 64°31’
(001):(01%) 33 54 34 27
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The angles (001):(011) and consequently the ratios b:c are fairly close;
the considerable difference in the angles (110):(110) and therefore in
a:d, is very probably due to Hausmann's having taken this value as 60°
for lack of a good measurement, whereas the true angle actually departs
from 60° by 44°,

The forms attributed to dyscrasite (Goldschmidt, 1916) are also those
of goldschmidtine. Of the twelve forms observed in the present work,
{001}, 5{010}, m{110}, ef011}, p1021}, z{112}, y{111}, are given for
dyscrasite. The remaining forms ascribed to dyscrasite, a{ 100}, #{120},
q11304, r{150}, d{101}, »{332}, s{133}, are also probable forms of
goldschmidtine, the indices of the more complex forms, ¢, r, x, 5, conform-
ing to the base-centered condition, (h+%) even. Finally, the oft repeated
figure representing dyscrasite is a typical goldschmidtine combination:
¢bmpzy Itis evident, therefore, that the early crystallography of
antimonial silver was based on crystals with the composition Ag,Sh
while the early analyses were made on dyscrasite, or mixtures of anti-
monial silvers of higher average silver content. )

Table 2 gives a summary of the best measurements on goldschmidtine
and the corresponding calculated two-circle and interfacial angles. The
angles 4, B, C have the following significance:

A=(hkl):(100); B=(hkl): (010); C=(hkl): (001)

TABLE 2. GOLDSCHMIDTINE—Ag:Sb

Orthorhombic—C; disphenoidal—222
a:b:¢=0.6312:1:0.6860; po:go:ro=1.0868:0.6860:1

Measured Calculated
Forms
.;, P ® o=C A B

¢ 001 — 0°00/ — 0°00’ 90°00/ 90°00
b 020 0°00’ 90 00 0°00’ 90 00 90 00 0 00
m 110 57 44 90 00 57 441 90 00 32 153 57 443
f 023 000 25 15 000 24 341 90 00 65 25%
e 022 000 34 25 0 00 34 27 90 00 55 33
p 021 0 00 53 55 000 53 55 90 00 36 05
g 041 000 70 46 000 69 58% 9000 - 20013
k061 0 00 76 00 000 76 20% S0 00 13 3935
v 114 57 50 18 09 57 441 17 483 75 00% 80 36
w 113 57 44 23 39 57 441 23 113 70 33 77 52
z 112 57 43 32 43 57 441 32 433 62 48 73 13%

111 574 52 10 57 443 52 07 48 08 65 05
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The good agreement between the mean measured and calculated
angles for the common forms, m ¢ p z y, shows that the geometrical ele-
ments are sufficiently precise.

Character of the forms. The following notes describe the frequency and
quality of the observed forms.

{001} : large on most crystals; surface good; usually faintly striated along [110] as a
result of poor cleavage or parting on (110); separate segments in twinned groups usually
slightly displaced from true parallelism due to slight misfit of twinned parts.

5{020}: large on all crystals; surface poor, but gives good azimuth readings; always dis-
tinetly striated along [100] or stepped by oscillatory combination with planes (0&1).

m{110}: large on most crystals; surface good; always faintly striated in an oblique di-
rection by very narrow planes (kkl); oblique striations often symmetrical to a plane (001)
passing through the middle of the crystal.

£{023} : observed twice as a very narrow face.

{022} : fairly common as a good narrow face.

£{021}: on all crystals as a good face; usually wider than e.

g1041}, #{061} : rare and usually narrow.

{114}, w{113}: each observed three times as narrow faces of fair quality.

2{112}, y{111}: common and often well developed; ¥ usually wider than z.

As already mentioned the further forms ascribed to dyscrasite were
probably observed on goldschmidtine:

{200}, {150}, q{130}, n{240}, d{202}, x{332}, s{133}

These may be retained subject to confirmation.

Twinning and crystal class. Crystals of goldschmidtine are all twinned
by reflection and composition on the planes (110) or (110). Twinning on
this law results in complete restoration of the crystal lattice with some
deviation at the twinning plane (Fig. 9). The obliquity of the twin, given
by the angle between the normal to the twin plane (110) and the quasi-
normal lattice row [310] is 4° 25/, which is larger than the values usu-
ally found in this common type of twinning. Planes of 5{020} on the
normal individual and m{110} on the twinned individual make the
calculated angle 6° 46’, as compared with the mean angle 6° 43’ from
four measurements. Planes of {022} and z{112}, »{021} and {111},
and other pairs likewise come into subparallel position on the two indi-
viduals. In the valuable explanatory terminology of Friedel (1926, p.
421) this twin law is an example of fwinning by pseudo-merohedry. This
designation conveys the fact that the crystal (orthorhombic) is pseudo-
merohedral (pseudohexagonal) and therefore predisposed to twin on the
elements of hexagonal pseudosymmetry.

Twinning on (110) is rarely simple. Sometimes it is repeated on paral-
lel planes giving successive plates alternately in normal and twinned
positions; occasionally the twinning is truly lamellar in some parts of



GOLDSCHMIDTINE, ANTIMONIDE OF SILVER 235

the intergrowth. More commonly the twinning takes place on both
planes of {110}, giving a variety of cyclic intergrowths similar to the
well known twinned groups of aragonite. As shown in Fig. 9 the “misfit”
on a cyclic group of three individuals is considerable. Theoretically this
gives a pronounced gap, or overlap, according to the arrangement of the
intergrowths. Actually such misfits are covered by irregular growths.
Although the patterns of the groups can be easily distinguished the crys-
tal groups are always more or less malformed.

In addition to the very evident twinning on (110) goldschmidtine
shows evidence of twinning on other laws which have important bearing
on the crystal class. The already mentioned symmetrical oblique stria-
tions on {110}, shown in Fig. 8 and frequently visible, are perhaps pos-
sible in the holohedral class; but in crystals attached at one end of the
vertical axis they rather suggest twinning on (001). More convincing is
a notching of the edges [100] by terminal planes in symmetrical relation
to (100), illustrated in Figs. 6 and 7; this was observed several times, and
it can be explained only by twinning on (100). If (001) and (100) are
twinning planes they cannot be symmetry planes of the crystal. In the
orthorhombic system the absence of two symmetry planes excludes both
the dipyramidal and pyramidal classes and admits only the disphenoidal
class—222.

Twinning on a symmetry element of the crystal lattice which is not
a symmetry element of the crystal structure was termed twinning by
merohedry by Friedel. As shown in Fig. 10 such twinning precisely
restores the lattice (obliquity zero), whereas the merohedral structure,
indicated by two points with only disphenoidal symmetry in each cell,
is brought into reflection relation. Since the lattices of the two individu-
als fit equally well on any junction surface the complete irregularity of
this surface in most twins by merohedry is easily understood. As the
obliquity is zero we should expect that the twinning would be difficult
to detect, especially if the twinned parts are equally developed or inti-
mately intergrown. Under these conditions it is also difficult or impos-
sible to distinguish the complementary merohedral forms. Such is the
case with goldschmidtine in which a distinction between right and left
disphenoids is not practicable.

The final step in the morphological study is to attempt to determine
the space group from Donnay and Harker’s generalization of the Law
of Bravais (1937). As a better approximation than the Law of Bravais,
the generalization states that the importance of crystal planes is propor-
tional to the effective spacings of the corresponding lattice planes, as
defined by the lattice parameters and the simplest indices conforming
to the general extinctions of the space group.
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Fic. 7 F16. 9
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Expranarion or Fieures 2-10,

Fies. 2, 3. An incomplete cyclic group resulting from twinning on (170) and (110),
showing the commonly large development of ¢ and b.

Fics. 4, 5. Twin on (IT0) with unusually large development of terminal planes.

F16s. 6, 7. A cyclic group (restored) showing twinning on (1T0) and (T10) and also
twinning on (100). -

F1c. 8. Fragment of a twin showing the usual juxtaposition of a horizontally striated
plane b on one individual and an obliquely and symmetrically striated plane 7 on the other
individual

Frc. 9. The direct lattice twinned by pseudomerohedry on (110) and (11I0) with
obliquity 4°25'.

F1c. 10. The direct lattice twinned by merohedry on (100), bringing a schematically
represented disphenoidal structure into reflected position.
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In the disphenoidal class there are only two space groups in a one-
face centered lattice, €222 and C222;. In C222 there is no general condi-
tion beyond that imposed by the lattice and the effective spacings are
as given in Table 1; in €222, a vertical screw axis gives effective halving
of the spacing of the basal planes. The importance of ¢{000} certainly
ranks with that of m{110} and {020} and not after that of p{021} as it
should with the halved spacing of 4.21 A; therefore we could choose the
space group C222. However, the space group 222, is given by the sys-
tematic absence of the odd orders of (00/) in the x-ray photographs. Iso-
lated exceptions do not, of course, invalidate an approximation. It
would strengthen the generalized Law of Bravias, however, if it were
shown to explain the development of crystal forms better than the clas-
sical law in a large number of special cases.®

STRUCTURE CELL

Lattice and space group. On a small crystal of goldschmidtine the fol-
lowing x-ray photographs were taken with copper radiation: rotation,
zero-layer and first-layer Weissenberg about [001], and a zero-layer
Weissenberg about [100]. The crystal proved to be twinned on (110);
but with the considerable obliquity of the twin the diffractions from the
two individuals were easily distinguished.

The lattice parameters obtained for the rectangular cell are:

a0=T7.75 A, bo=12.32 A, co=8.42 A, all+0.05 A
@o:bo%co="0.629:1:0.683

if good agreement with the geometrical ratio:
a:b:¢=0.6312:1:0.6860.

The films showed diffractions (kkl) only with (k+%k) even, proving
the base-centering of the lattice found by morphological study. Further-
more diffractions (00I) are present only with I even. In the disphenoidal
class these systematic extinctions admit only one space group, C222,.

Specific gravity and cell content. A small clean crystal (0.1571 gm.)
weighed with proper precautions in air and in water, gave the specific
gravity:

G=6.83

In view of this unexpectedly low value Dr. Berman kindly made an
independent determination, using the method of attaching the crystal

5 Since this was written Dr. Donnay has added great weight to the generalized law of
Bravais, in a paper read to the Mineralogical Society of America, December, 1938: Crystal
space-groups determined without x-rays (Abstract in Am. Mineral., 23, no. 12, part 2,
p. 5, 1938).
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(0.0065 gm.) to a small glass rod and suspending the whole in a heavy
liquid. The value thus obtained was 6.7. With the higher specific gravity
the molecular weight of the contents of the base-centered cell is:

M=3328

On a clean sample of crystal fragments (0.34 gm.) Mr. Gonyer reported
the values in the first column of Table 3.

TABLE 3. GOLDSCHMIDTINE : COMPOSITION AND CELL CONTENT

1 2 3 4 5
Ag 64.78 0.6488 0.006013 20.01 63.9
Pb 0.00 — — — =
As 0.00 == = = —
Cu 0.00 = -— = —
Sn 0.00 —= — = =
Sb 35.01 0.3506 0.002896 9.64 9.70 36.1
S 0.06 0.0006 0.000019 0.06]""
99.85 1.0000 100.0

1. Goldschmidtine, Andreasberg, Harz; anal. F. A. Gonyer. 2. Weight proportions
summing to unity. 3. Atomic proportions. 4. Atoms in the cell with molecular weight 3328.
5. Percentage composition of Ag,Sh.

As shown in the fourth column, Table 3, the content of the base-
centered cell closely approaches:

AgzoSblo or 10[Ag28b]
The calculated specific gravity is:

CuEMICAL CONSIDERATIONS

The composition Ag,Sb has been mentioned in the past as one of
many possible silver-antimony compounds. Rammelsberg (1875, p- 26)
notes that Domeyko obtained 64 per cent Ag on material from Chanar-
cillo, Chile. If this material was a homogeneous silver-antimony mineral
it was presumably goldschmidtine. Following earlier systematists, Groth
(1874, p. 14) also suggested the composition Ag:Sb on the basis of a
supposed analogy between the silver mineral and chalcocite. Since there
is no simple structural relation between goldschmidtine and chalcocite
this speculation is without significance.

The silver-antimony equilibrium diagram (Guertler, 1913, p. 769)
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shows only one compound, Ag;Sb (dyscrasite) which crystallizes at 560°.
This indicates that Ag:Sb does not form from fusion conditions. To test
this a crystal was heated in a partial vacuum for 15 minutes at 520° to
530°. The crystal melted and, on cooling, solidified to a black bead which
gave an x-ray powder photograph not resembling a powder diagram of
goldschmidtine. The crystal had evidently dissociated to a mixture of
phases as predicted by the equilibrium diagram in the region corre-
sponding to the composition Ag;Sb.

PuvYSICAL PROPERTIES

Goldschmidtine has no good cleavage. A difficult separation, probably
a parting, was obtained parallel to (110). The cleavages {001} and {011}
attributed to dyscrasite seem to have been based on the striations noted
on goldschmidtine. The hardness is 23, which is notably lower than the
hardness 33—4, given for dyscrasite.

Polished sections were made of a single crystal group and of fragments
from the sample used for analysis. The mineral is homogeneous, tin-
white inclining to silver-white; distinctly anisotropic in the crystal sec-
tion, which was cut roughly parallel to [001]. A polished section of anti-
monial silver from Cobalt, Ontario, was examined for comparison. The
section showed anisotropic dyscrasite, verified by an x-ray powder
photograph which conformed exactly to Machatschki’s data (1928), and
a lighter isotropic material which is presumably silver with some anti-
mony in solid solution. In separate specimens no clear difference could
be noticed in the appearance of goldschmidtine and dyscrasite in re-
flected light. X-ray powder photographs on samples extracted with the
useful micro-drill devised by Harcourt (1937) afford a sure means of
distinction.

SUMMARY

Goldschmidtine—Ag.Sb, is a distinct mineral hitherto confused with
dyscrasite—AgsSb. Lattice: orthorhombic; base-centered. Class: di-
sphenoidal. Geometrical elements: a:b:c=0.6312:1:0.6860. Forms:
c[001}, 5{020}, m {110}, /{023}, {022}, p{021}, g[041}, h{061}, {114},
w{113}, z{112}, y{111}. Habit: stout prismatic with ¢ b m dominant.
Twinning: on (110), also on (100) and (001). Space group: C222,. Base-
centered structure cell: ap="7.75 A, by=12.32 A, cy=8.42 151, all £0.054;
@otbotco=0.629:1:0.683; contains AgsShie. Cleavage: none; parting (?)
{110}. Hardness: 2}. Specific gravity: 6.83 (meas.); 6.92 (calc.). Tin-
white to silver-white with metallic lustre; lead-gray when tarnished.
Polished surfaces homogeneous, anisotropic. Analysis (Gonyer): Ag
64.78, Sb 35.01, S 0.06=99.85. Occurrence: with galena, native silver
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or antimonial silver and ruby silver, in calcite on a specimen from
Andreasberg, Harz. Name: after Victor Goldschmidt [1853-1933] of
Heidelberg.

Goldschmidtine is used to exemplify the method of determining the
structural lattice from the crystal form, by applying the Harmonic-
Arithmetic Rule to the gnomonic projection of the observed forms.
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