CRYSTALLOGRAPHY OF MEYERHOFFERITE

CHARLES PALACHE,

Harvard University, Cambridge, Mass.

The calcium borate meyerhofferite was first described by W. T. Schaller (1916) and nothing has since been published concerning its crystal form. Numerous specimens of this and other borates were collected at the original locality by W. F. Foshag and F. A. Gonyer in 1930. A series of these was presented to the Harvard Mineralogical Museum, and examination of this material has revealed new crystallographic data which seem to merit publication, especially as they seem to justify a modification of Schaller's original crystal elements.

His description of meyerhofferite was based on crystals formed on or within fibrous pseudomorphs after inyoite. Similar pseudomorphs of great perfection are included in the new collections. There are also masses of interlaced glassy crystals of meyerhofferite embedded in a hard yellow clay, their interstices filled by snow-white fibrous aggregates of a later generation of meyerhofferite. It was from these masses that the newly studied crystals were obtained. Most of the hundreds of crystals examined were of the simple form described as typical by Schaller: prismatic crystals terminated by three forms in the macrodome zone and a single pyramid. A small number of the crystals, however, presented other terminal faces including a number of pyramids.

Meyerhofferite is triclinic and Schaller so orientated the crystal that the single observed pyramid should be $\{111\}$. This position unfortunately made the basal pinacoid $\{001\}$ slope to the rear. With the finding of pyramids in other quadrants of the crystal there seemed no good reason for maintaining this unusual position, so that the crystals of meyerhofferite are described in this paper as rotated 180° about the vertical axis from the position of Schaller.

It was observed that many of the more highly modified crystals showed a more or less curved solution surface in a quadrant diagonally opposed to that containing the common pyramid. This rounded surface sometimes developed into two facets, still rather imperfect in quality; but crystals were finally found in which these faces were measurable on the goniometer. It would appear that the general direction of what has been here adopted as the pyramid {111} is peculiarly sensitive to solution attack.

Fourteen crystals were measured completely. The perfect cleavage parallel to $\{010\}$ was rarely absent and served as a means of establishing the v_0 of each crystal. The prism zone was generally of good quality and

CRYSTALLOGRAPHY OF MEYERHOFFERITE

in no case was any prism form observed besides $\{110\}$ and $\{1\overline{10}\}$. The position angles of the forms present on the 14 crystals were collected and their mean values taken. These average angles were very similar to the average angles recorded in Schaller's paper. It was therefore regarded as best to combine the two sets of measurements in an average, weighted for the number of observations of each form. In Table 1 these figures are shown, Schaller's values for ϕ being adjusted to the new position above mentioned. Table 2 contains the observations of new pyramids of which one, $u\{\overline{111}\}$ was found frequently and in excellent position.

			Schaller		ller		Palache					Weighted mean				ean
Form		No. of measure- ments	ф		ρ		No.	φ		ρ		No.	φ		ρ	
с	001	6	90°	'13'	11°	48'	5	89	27'	11°	56'	11	899	°52′	11'	'51 <u></u> 1∕
a	100	26	93	12	90	00	14	93	05	90	00	40	93	$09\frac{1}{2}$	90	00
m	110	19	54	15	90	00	11	54	19	90	00	30	54	$16\frac{1}{2}$	90	00
М	1 T 0	13	129	49	90	00	18	129	39	90	00	31	129	43	90	00
y	101	9	93	00	50	22	12	92	29	50	26	20	92	$41\frac{1}{2}$	50	$24\frac{1}{2}$
t	T 01	9	- 85	59	38	35	12	- 85	$49\frac{1}{2}$	38	22	21	- 85	53 <u>1</u>	38	27 <u>1</u>
Þ	<u>11</u> 1	9	-132	26	46	54	15	-132	30	46	53	24	-132	28 1	46	53

TABLE 1. MEASURED ANGLES OF MEYERHOFFERITE

TABLE 2. MEASURED ANGLES OF NEW FORMS ON MEYERHOFFERITE

Form		No. of	0.14			Range
		faces	Quanty	φ	ρ	φρ
u	T 11	5	excellent	- 43°20'	48°53′	43°27′-43°08′ 48°42′-49°07′
0	111	2	poor	57 58	54 05)	Many other observations in this general
E	212	1	poor	76 32	51 13)	vicinity-faces rounded.
D	212	1	good	-112 55	40 22	

On the basis of these combined data, elements were calculated with results which are presented in the heading of Table 3. The new elements correspond very nearly to those of Schaller as was to be expected. The same is true of the position angles of the forms which appear in the same table. Those forms described by Schaller, which he found but once have been omitted from this table. The table also contains the angles made

CHARLES PALACHE

by each form to the three pinacoids, B, C and A, a negative sign before B or A indicating that the face is nearest to the negative end of the normal to (010) or (100), respectively.

		T	ABLE	3. Meye	RHOF	FERITE-	Ca ₂ B	$_{6}O_{11} \cdot 7H_{2}O_{11}$)		
	Triclinic; pinacoidal—I										
	a:b	c = 0.7	7904:	1:0.776	3. a=	= 90°41′	$\beta = 1$	01°51′	$\gamma = \delta$	86°44′	
	po: 00	$r_0 = 0.9$	0837:	0.7610:	l: λ=	= 89°49′.	$\mu =$	78°10 1 ,	v = 0)3°11 ¹ /	
	$p_0' = 1$	1.0051		$q_0' = 0.$	7775	$x_0' =$	=0.20	098	$v_{\theta}' =$	0.0003	
\mathbf{F}	orm	<	þ		0		A		В		С
с	001	89	'55 <u>1</u> '	11	°51′	78	$^{\circ}10\frac{1}{2}'$	89	° 59′	0	°00′
b	010	0	00	90	00	93	$11\frac{1}{2}$	0	00	89	59
a	100	93	$11\frac{1}{2}$	90	00	0	00	93	$11\frac{1}{2}$	78	$10\frac{1}{2}$
h	370	20	12	00	00	62	201	20	12	04	0.01
1	350	29	40 50	90	00	54	101	29	40	04	24
417	110	54	17	90	00	29	142	30	39 17	02	04 021
110	110	31	17	90	00	30	542	34	17	00	202
п	520	75	$44\frac{1}{2}$	90	00	17	27	75	$44\frac{1}{2}$	78	31
S	310	78	$33\frac{1}{2}$	90	00	14	$38\frac{1}{2}$	78	$33\frac{1}{2}$	78	$23\frac{1}{2}$
r	810	87	39	90	00	5	$32\frac{1}{2}$	87	39	78	$09\frac{1}{2}$
h	310	107	26	00	00	14	1/1	107	26	79	191
70	430	122	201	90	00	20	142	107	20	80	42 <u>2</u> 02
M	110	122	43	90	00	36	31	122	472	80	551
	110	1-/	10	20	00	00	01	147	10	00	552
v	350	143	25	90	00	50	13	143	25	82	59
у	101	92	38	50	32	39	28	92	02	38	42
t	101	- 85	$56\frac{1}{2}$	38	$30\frac{1}{2}$	128	$30\frac{1}{2}$	92	$31\frac{1}{2}$	50	20
f	605	- 86	07	44	5/1	133	54	02	44	56	44
ø	504	- 86	00	46	10	136	181	02	47	58	081
0	111	59	15	54	411	47	10 ₂ 231	65	201	44	47
		0,	xv	01	112	11	202	00	202	11	
E	212	74	39	51	$31\frac{1}{2}$	42	05	78	$02\frac{1}{2}$	49	49
u	111	- 43	351	49	$01\frac{1}{2}$	123	23	56	51	57	39
Þ	<u>11</u> 1	-132	$15\frac{1}{2}$	47	$00\frac{1}{2}$	120	52	119	28	56	$12\frac{1}{2}$
D	212	-112	$43\frac{1}{2}$	40	43	125	55 <u>1</u>	104	24	51	49

The orientation of the indicatrix, determined by Dr. F. H. Pough from a single crystal mounted on a universal stage, is as follows:

	φ	ρ	
Х	165°00′	62°00′	$2V = 78^{\circ}$
Y	45 30	47 00	
Z	- 83 00	55 00	

646

CRYSTALLOGRAPHY OF MEYERHOFFERITE

A stereographic projection of the indicatrix is given in figure 3.

The structural lattice constants have been determined by Mr. George Switzer upon these newly studied crystals. Because of the quality of the material it was possible to determine all of the unit cell dimensions by x-ray methods with considerable accuracy. Rotation, zero-layer and first-layer Weissenberg photographs were taken with c[001] as the axis

FIG. 1. Meyerhofferite: typical crystal in new position.FIG. 2. Meyerhofferite: more complex crystal, showing two new forms o{111} and E{212}.

FIG. 3. Meyerhofferite: stereogram of the optical indicatrix. (After F. H. Pough.)

of rotation, and rotation and zero-layer photographs about the a[100]and b[010] axes. From the zero layer photographs about each of the three crystallographic axes, two values for each of the unit spacings betwen the pinacoidal planes were obtained, and also the planar spacings of (110), $(10\overline{1})$, and (011). From the average values of these spacings were then calculated the reciprocal lattice constants a^* , b^* , c^* , α^* , β^* , γ^* , which in turn yielded the following unit cell dimensions:

$a_0 = 6.60 \ (\pm 0.02)$ Å	$\alpha = 91^{\circ}00' \ (\pm 0^{\circ}05')$						
$b_0 = 8.33 \ (\pm 0.02)$	$\beta = 101^{\circ}31' \ (\pm 0^{\circ}05')$						
$c_0 = 6.48 \ (\pm 0.02)$	$\gamma = 86^{\circ}55' (\pm 0^{\circ}05')$						
$a_0: b_0: c_0 = 0.792: 1:0.778$							

The unit cell volume then becomes 348.83 cubic Å, and with the density 2.12 given by Schaller (1916), the molecular weight of the unit cell M = 448.18.

Table 4 gives the atomic content of the unit cell, using the average of two analyses by Schaller.

TABLE 4. ANALYSIS OF MEYERHOFFERITE AND CONTENT OF UNIT CELL

	1	2		4	5	
CaO	26.45	25.30	0.4512	$2 \times .226$	2.17	2
B_2O_3	46.40	46.09	0.6618	$3 \times .221$	2.97	3
H_2O	28.76	28.61	1.5895	$7 \times .227$	7.12	7
			1.42			

1. Analysis by W. T. Schaller (1916).

2. Analysis calculated to 100%.

3. Molecular ratios.

4. Atomic content of the unit cell, from M = 448.18.

5. Theoretical unit cell content, expressed by the formula $(Ca_2B_6O_{11} \cdot 7H_2O)$.

Reference

Schaller, W. T. (1916): Mineralogical Notes, Series 3. U.S. Geol. Survey, Bull. 610, pp. 41– 55.