NEW MINERAL NAMES

Aminoffite

Name: In honor of Dr. G. Aminoff.

Chemical Properties: A hydrous silicate of calcium, beryllium and aluminum: \(\text{Ca}_2\text{Be}_9\text{Al}_5\text{Si}_8\text{O}_{26}(\text{OH})_4 \cdot 12\text{H}_2\text{O} \). Analysis (by F. A. Gonyer): \(\text{SiO}_2 42.49, \text{Al}_2\text{O}_3 4.41, \text{BeO} 6.20, \text{Fe}_2\text{O}_3 0.31, \text{MnO} 0.19, \text{CaO} 40.27, \text{H}_2\text{O} 6.45; \text{Sum} 100.33 \). Insoluble in acids. Infusible.

Crystallographical Properties: Tetragonal \(c = 0.7116 \). \((111),(001) = 45^\circ11'\). Forms \((111)\) and \((001)\). Habit simple pyramidal, \(a = 13.8 \AA, c = 9.8 \AA \). Space group \(I 4/m m m \).

Physical and Optical Properties: Clear and colorless; luster vitreous. Uniaxial, sometimes anomalously biaxial. Negative. \(\omega = 1.647, \epsilon = 1.637 \). Brittle. Cleavage (001) poor. Fracture conchoidal. \(\text{Hd} 5.5. \text{G} 2.94 \).

Occurrence: Found as small crystals in veins or cavities in massive magnetite or limonite.

Relationships: Related to meliphanite (Ca, Na)\(_2\)Be(Si, Al)\(_2\)(O, F)\(_7\).

W. F. Foshag

Scheteligite

Name: In honor of Prof. Jacob Schetelig, late director of the Mineralogical Museum in Oslo.

Chemical Properties: A titanate, tantalate, columbate and tungstate of calcium, manganese, etc.; \(\text{(Ca,Fe,Mn,Sl,Bi,Y)}_{0.1} \cdot (\text{Ti, Ta, Nb, W})_{0.9}(\text{O, OH})_2 \). Analysis (by V. Bruun): \(\text{CaO} 10.73, \text{FeO} 1.88, \text{MnO} 6.19, \text{Sb}_2\text{O}_3 7.77, \text{Bi}_2\text{O}_3 2.54, \text{Y}_2\text{O}_3 6.00, \text{TiO}_2 18.73, \text{TaO}_2 20.00, \text{WO}_3 5.00, \text{Nb}_2\text{O}_5 8.65; \text{loss on ignition} 2.00, \text{SiO}_2 \) calculated as microline, 9.70; \text{Sum} 99.19. Soluble in hydrofluoric acid.

Crystallographical Properties: Orthorhombic, with rough pyramid faces.

Physical Properties: Color black. Streak pale yellow to grayish; in thin section reddish brown. Fracture conchoidal. \(\text{Hd} 5.5. \text{G} 4.74 \).

Occurrence: Found as small embedded crystals in a pegmatite at Torvelona, Iveland, Norway, together with tourmaline, bismuth, alvite, euxenite, monazite, thortveitite, beryl, etc.

W. F. F.

Magallanite

W. F. F.

Gahno-spinel

Some pale blue to deep blue gem spinels from Ceylon have indices of refraction of 1.7153–1.7469 and specific gravities of 3.584–3.981. They are intermediate between spinel and gahnite and contain zinc. The name "gahno-spinel" has been proposed.

W. F. F.
NEW MINERAL NAMES

\section*{β-Ascharite}

Chemical Properties: A hydrous magnesium borate: MgHBO₃. Analysis (E. N. Egorova, analyst): SiO₂ 0.20; Al₂O₃ 0.30; Fe₂O₃ 0.13; MnO none; MgO 46.70; Na₂O 0.20; K₂O 0.26; B₂O₃ 40.85; Cl 0.11; SO₃ 0.69; CO₂ None; H₂O+: 10.95; H₂O − 0.32. Sum 100.39. Insoluble in water, slowly soluble in acids. B.B. fuses to an enamel.

Crystallographic Properties: Orthorhombic?

Physical and Optical Properties: Color white, luster chalky. Biaxial, 2 V small. α = 1.575, β = 1.642, γ = 1.646. Parallel extinction; X parallel to elongation of the fibers. H. 3.5. G. 2.65.

Occurrence: The principal industrial mineral in the Lake Inder borate deposits, near the Ural River, about 150 km. north of the Caspian Sea. Found as chalky masses of fine fibrous habit or massive. Differs from the ascharite of Germany (here called α-ascharite) in optical properties. Closely related to camsellite.

\section*{Inderite}

Ibid.

Chemical Composition: A hydrous magnesium borate: Mg₃B₂O₇·15H₂O. Analysis (by E. N. Egorova): SiO₂ 0.13; Al₂O₃ 0.02; Fe₂O₃ 0.33; MnO none; CaO 0.16; MgO 14.65; Na₂O 0.17; B₂O₃ 36.20; CO₂ 0.17; H₂O+: 48.20; H₂O − 1.03. Sum 100.03.

Physical and Optical Properties: Color white, luster vitreous. Biaxial, 2 V large. β = 1.488, γ = 1.504, Z/ç = 5°. G = 1.80.

Occurrence: Found as small nodules or aggregates of minute needles.

\section*{Gedoitsite}

A name proposed for an artificial crystalline aggregate produced by adding sodium aluminate solution to sodium silicate solution and allowing the resultant precipitate to stand for several years. The final product is chiefly crystalline, isotropic, with n = 1.483.

\section*{Correction}

In the editor’s report for 1937 (*Am. Mineral.*, vol. 23, p. 162) the statement is made that the current volume describes six new minerals. The correct number is seven. The new mineral species “ellestadite” was inadvertently omitted and should be added to the list.