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Arsrnacr

To supplement the work of investigation of the characteristics of deformation of the
calcite aggregates, limestone and marble, some experiments of the deformation of single
crystals of calcite under conditions of high confring pressure have been performed. The
change in properties with pressure is remarkably different from those observed in the ag-
gregates which suggests the possibility that a considerable portion of the deformation of
the aggregates takes place by inter-crystalline deformation. The mechanism of deformation
of single crystals does not change with pressure alone, and 10f2 twinning is the dominant
means of deformation. It is found that twinning occurs on those twin planes where the
deforming force resolved on the plane and in the direction and sense of twinning is a maxi-
rnum.

INrnorucrroN

In order to understand the mechanism of deformation of crystalline
aggregates it is necessary first to know the mechanism of the component
crystals. A few experiments have been made on the deformation of
calcite single crystals under conditions of high confining pressures in

tn"?t:i'^e

Frc. 1. Stress-strain curves for single crystals of calcite deformed under confining
pressures to 1 to 10,000 atmospheres, showing the work hardening of crystals deformed
under high pressure.

* Paper No. 43, published under the auspices of the Committee on Geophysics, with the
cooperation of the Society of Fellows of Harvard University.
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the laboratory and the results are presented in this paper to supplement
the data already published on Iimestone and marble.l

TncuNrqua

These experiments were performed in a high pressure cylinder of the
type described in an earlier paper2 designed to permit observation of
the behavior of specimens when surrounded by a confining pressure
exerted by a liquid, and then deformed by a difierential force applied
Iongitudinally to the specimen. The strain (shortening of the specimen)
is measured directly by an extensometer, and the differential pressure
is obtained by measuring the force on the piston in contact with the
specimen and subtracting from that the components due to the hydro-
static pressure and the friction of the packing.

Frc. 2. The increase of strength with confining pressure for calcite single crystals.

The crystals from which these specimens \Mere cut were clear Iceland
spar, free from cleavage flaws and also free from any twinning that could
be detected visibly. The cleavage fragments were in part obtained from
Ward's Natural Science Establishment, and in part were donated by
the Harvard Mineralogical Museum.

AII the specimens dealt with in this paper were either cylinders or
prisms oriented with their long axis parallel to the intersection of two
cleavage faces, this direction being selected for ease of preparation. The
cylinders were about -1 cm. in diameter and 2 cm. long.

1 Griggs, David, Deformation of rocks under high confining pressures: four. GeoI.,
vol. 44, pp. 541-577, 1936.

z lbi.il., p. 545.
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30 DAVID GRIGGS

No jacket was applied to the specimen. The liquid (kerosene) was in
direct contact with the crystal surface.

AII the experiments were carried out at room temperature, and at a
constant rate of deformation (.005 cm./min. approximately) so that the
effects of time and temperature were not measured, but eliminated.

Cnanacrnnrsrrcs oF DBlonuauoN

The change in the mechanical properties is shown in the accompany-
ing graphs, Figs. 1-3. Figure 1 shows the stress-strain relations as a
function of confining pressure. It is interesting that although the plas-
ticity of the crystals is increased by the confining pressure, this effect

conrllggf,lEYure

Frc. 3. Comparison of the change in ductility with the pressure in t-he case of calcite
single crystals and in the case of Solenhofen limestone.

is not so great as the increase in strength. Thus, for example, as can be
seen from Figs. 2 and 3, the ductility is increased 5.83 times by a confin-
ing pressure of 10,000 atmospheres, while the ultimate strength is in-
creased 20.30 times by the same confining pressure.

Curiously enough, just the opposite is true of the Solenhofen limestone,
and the figures will be given here for comparison. Ductility is increased
46.0 times by a confining pressure of 8910 atmospheres, while the
strength is increased only 4.7 times.

The break in the 8000 atmosphere stress-strain curve is not com-
pletely understood. Conceivably it might be due to something giving
way within the apparatus, but there was no other indication of this. If
it is a true curve of the crystal's behavior, then we have a close approxi-
mation to the behavior of many metals at the yield point. This would
not be surprising, because calcite aggregates have been shown to have
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many properties in common with metal aggregates, but it is very inter-
esting if it occurs thus just as a transient phenomenon during the change
in properties as confining pressure is increased.

The writer was surprised to find that the ductility of single crystals of
calcite at high pressure was so much lower than that of the aggregates.
Marble has been deformed 24/6 without rupture at 10,000 atmospheres
and Solenhofen limestone has been deformed more than 30/p at the
same pressure without rupture, but as shown, the single crystals of cal-
cite ruptured after only 7/e deformation at 10,060 atmospheres.

MBcrrawrsu ol DBronuerroN

In a single crystal it is relatively easy to determine the mechanism of
deformation. The fi.rst thing which is noticed is that the specimen which
was originally a cylinder has been changed so that its section is an ellipse.
Figure 4 shows half of this elliptical section in the cylinder deformed at
10,060 atm. In this case the ratio of the long to the short axes was 1.18.

When the thin-sections of Figs. 4 and 5 are set up on the universal
stage and the angles between the planes of deformation and the optic
axes of the crystals measured, it is found that all the noticeable defor-
mation took place on twin planes of the 1012 type.

The actual crystal strength may be determined by resolving the com-
pressive force on the twinning plane and in the direction of the twinning,
by the formula:

Resolved shear stress:P sin a cos a cos d

where P:compressive pressure, a:angle between the direction of com-
pression and the normal to the twin plane, 6:21gle between the projec-
tion of the direction of compression and the direction of twinning.

In the case studied, this resolved shear stress is equal to .I92 of. the
compressive pressure on the operative twin plane, and the values of
crystal strength are shown in Fig. 2.

It has been shown in the case of metal crystals that this resolved shear
stress is the critical factor governing translation and twinning.3 Thus,
twinning occurs on those twin planes on which the resolved shear stress
is a maximum. In the present experiments there was not suficient variety
of orientation to give much evidence for this. rrowever, investigation of
the twinning in marble has shown that this ,,Law of Maximum Resolved
Shear Stress" governs calcite twinning.

A caution to anyone calculating this stress is that it must be not only
in the right direction, but in the right sense to produce twinning. This

3 Gough, H. J., Crystalline structure in relation to failure of Metals: Edgar Marburg
Lecture, Am. Soc. Testing Materials, vol. 33, pt. II, p. 22, 1933.
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Frc. 4. Photograph of thin-section of single calcite crystal normal to the cylinder axis

after deformation at 10,000 atmospheres, showing three sets of twins and cleavage. Magni-

fication 8.5. Nicols uncrossed.

Frc. 5. Photograph of thin-section of calcite crystal parallel to the cylinder axis after

deformation at 10,060 atmospheres, showing ofisets by the dominant twinning, also other

twins and cleavage. Magnification same as above, nicols uncrossed axis of compression is

horizontal.
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is, of course, obvious from geometrical considerations of the twinning
deformation. It is not a necessary condition governing slip, however, since
slip may occur in both senses in a given direction in general.

SrcNrrrcaNcE or, THE Rpsur-rs

Perhaps the most significant observation in this investigation is the
low ductility of the single crystals as compared to aggregates of the same
crystals. This might immediately lead one to suspect that deformation
in aggregates takes place partly through inter-crystalline deformation.
rt is dificult to determine the relative amounts of intra- and inter-crys-
talline motion, and at present, this question must be left unanswered,
but it is hoped that petrofabric study of deformed marble which Mrs.
E. B. Knopf is undertaking in cooperation with the writer may give the
complete answer.

This study,has shown at least some of the rules of intra-crystailine
deformation, and has indicated that at high pressure, the 10T2 twinning
is still the most important mechanism of deformation. No pure transia-
tion (slip) was noticed, and if present at all, was a very minor factor.

It is possible that the conditions of molecular stability may be altered
materially by increased temperature and that under conditions similar
to those existing in metamorphism, other mechanisms of crystal defor-
mation become operative. The writer is undertaking a series of high
temperature experiments which may give some light on this problem.
rt is not thought probable that long continued stresses such as might
exist in geologic deformations would induce any difierent reaction, so
the effect of time alone is discounted as affecting the nature of the de-
formation. It would certainly affect the amoumt of deformation, and
hence the ductility. rt is hoped that this factor may be investigated also
in the near future.

ft is a pleasure to acknowledge the invaluable help of professor p. W.
Bridgman in all the high pressure work. This investigation was made
possible by a joint grant from the committee on Geophysical Research
and the Society of Fellows of Harvard university. The writer is also
indebted to the Harvard Mineralogy Department for many of the speci-
mens of calcite, which are dificult to obtain.




