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THE LAW OF BRA VAIS

This law, proposed by Bravais on speculative grounds, only received
general acceptance after Georges Friedel (1904, 1905, 1907) proved it
to be substantiated by observation. With certain restrictions the law
states that, for any crystalline species, a translation lattice can be found
such that: (1) The observed crystal faces are parallel to the net planes
with the highest reticular densities (or smallest mesh areas); (2) the
greater the reticular density (or the smaller the mesh area) the more
important the corresponding form.

The importance of a form is estimated from its size, frequency of oc-
currence, and presence as a cleavage form. The reticular density of a net
plane hkl is defined as the number of lattice points (nodes) per unit sur-
face. It is inversely proportional to the reticular area, or area S of the
smallest mesh in the net, and directly proportional to the interplanar
distance d, since S. d = V, where V, the volume of the smallest unit cell,
is a constant for any lattice.

Morphologists of the French School have advocated the acceptance
of the lattice indicated by the Law of Bravais, in preference to any other
lattice that would also give the observed forms reasonably simple Miller
indices. The lattice chosen on this basis has been called the "Hatiy-
Bravais lattice" or "morphological lattice," in contradistinction to the
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"structural lattice" or true translation lattice, determined by x-ray
technique. This nomenclature stresses the baffling fact that the two lat-
tices are not always geometrically similar.

Known objections and restrictions to the Law of Bravais include the
following:

(1) The forms present on a crystal do Dot depend Qnly on fa:ctors
within the crystal, but on external factors as well (conditions pf crystal-
lization). A statistical survey of morpholo~p.cal dat&(locality persistence,
in Niggli's sense) usually suffices to detect the influence Oftixternal
causes, which can then be left out of consideration.

(2) Even in the most favorable instances the law holds for dominant
forms only. Minor forms are always irregularly scattered down the list
of decreasing theoretical importance.

(3) Frequently the best lattice that can be arrived at leads to an order
of importance not wholly satisfactory for the dominant forms and it
may even assign small mesh areas to unknown or insignificant forms.

(4) Cleavage forms do not always coincide with the largest and most
frequent crystal forms, and conversely.

(5) Complementary merohedral forms have the same mesh area, yet
do not always show equal morphological importance.

These objections have given the Law of Bravais the status of a first
approximation. G. Friedel, who conceded this point, foresaw an explana-
tion for the encountered anomalies in the "perturbing influence" of the
motif (the contents of the unit cell).

In this paper we propose to state a law1 that takes into account one of
the important properties of the motif-its symmetry.

SPACE GROUP SYMMETRY

The 230 space groups were derived by combining, in all possible ways,
the different symmetry operations: translation, rotation, and reflection
(or inversion). This process involved, among others, two composite sym-
metry elements, which had not been previously recognized (although
they are actually implied in some of the 14 Bravais lattices), namely:
the screw axis (Sohncke) and the glide plane (Fedorov, Schoenflies,
Barlow).

In this paper we shall not concern ourselves with those screw axes and
glide planes that are inherent in the translation lattice,2 since their ef-

1 A preliminary communication was presented at the January meeting of the Academie

des Sciences in Paris (1937).
2 Glide planes and screw axes occur in all the centered modes of all latices, and also

in the hexahedral (primitive) mode of the cubic, tetragonal, and hexagonal lattices (we

consider the rhombohedral lattice a mode of the hexagonal). The only lattices devoid of
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fect is already taken into account by the Law of Bravais. We shall deal
only with screw axes and glide planes that can be combined with a
translation lattice, in addition to those it may already possess. The
distinction between the two kinds of screw axes or glide planes is made
in the Hermann-Mauguin notation: those that exist in the lattice itself
are implicitly expressed by the Roman capital indicative of the transla-
tion group, the others are explicitly symbolized. The effect of the former
is to bring a node into coincidence with another node (which could also
be reached by applying a translation to, and which is in parallel orienta-
tion with, the first). The effect of the latter is to produce additional points
within the lattice, points, however, which are not lattice points ( nodes)
since they cannot be obtained from any node by translation alone, but
only by a translation accompanied by either a rotation or a reflection.
Additional points produced by a screw axis are congruent to the true
lattice points (nodes), although not in parallel orientation with them;
additional points produced by a glide plane are enantiomorphous to
lattice nodes. For convenience, in case there are additional points result-
ing from the action of screw axes and glide planes, we shall term "lattice
equipoints" the nodes of the Bravais lattice and "space group equipoints"
the additional points.

At this juncture one should recall that a node of a Bravais lattice
stands for a whole motif (the contents of a complete unit cell, regardless of
how matter may be distributed in it) and that the symmetry of the motif
cannot exceed that of the parallelopiped outlined by the cell (holohedry),
but may be inferior to it (merohedry). When screw axes and glide planes
are present the motif (still represented by the "node") may be thought
of as split into several fractions or "submotifs" derived from each other
by the available screw rotations and glide reflections; any of these sub-
motifs may be represented by the "lattice equipoint," the others are
represented by "space group equipoints."

The Law of Bravais defines reticular density in terms of nodes only.
It is our purpose to show that, when a node is replaced by a "lattice
equipoint" and one or more "space group equipoints,"the reticular
density must be defined in terms of "equipoints" for certain faces: the
faces perpendicular to a screw axis and some of the faces perpendicular
to a glide plane. Inasmuch as the faces affected in this way are determined
by the kind and amount of space group symmetry, they become, con-

inherent screw axes and glide planes are the triclinic (P), the hexahedral monoclinic (P),
and the rectangular hexahedral orthorhombic (P). The figures in the International Tables
jor the Determination of Crystal Structures (Chapter V, Space groups) illustrate the
presence of screw axes and glide planes in the lattices mentioned.
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versely,~~~i<t!.r?-4icative of such symmetry. Hence, if the symmetry of
the space group is known, its influence on the form development can be
predicted and checked; vice versa it is possible to ascertain with which
space group (or set of space groups) observed morphological features are
compatible.

THE EFFECT OF A SCREW AXIS

A screw axis, represented by the symbol pq in, the Hermann-Mauguin
notation, is a p-fold axis of symmetry, the operation of which is the prod-
uct of a rotation through 27[/ p and a displacement by a fraction ql p
of the shortest translation parallel to the axis. The displacement is
known as the screw component. The crystallographically possible screw
axes are: 21; (31, 32); (41,43); 42; (61,65); (62,64); 63. Enantiomorphous
screw axes, here collected between parenthesis, may be considered as
having the same screw component but opposite screw senses. The frac-
tion qlp, therefore, will always be of the form 11n, with n=2, 3, 4, or 6.

Consider any two successive lattice planes perpendicular to a screw
axis. Let d be their spacing. These two lattice planes will be interleaved
by (n-1) other planes brought about by the action of the screw axis,
thus resulting in a system of parallel, equidistant planes with the spacing
dl n. The lattice planes contain "lattice equipoints" only, the interven-
ing planes "space group equipoints" only. The arrange~ent of equipoints
in any two successive planes of the complete system is the same except
for the 27rIp rotation. All the planes of the system will, therefore, be
geometri~ally equivalent insofar as concerns the crystal form (pinacoid)
that parallels them. For such a pinacoid, the faces of which are perpen-
dicular to a screw axis, the "effective" spacing isdl n instead of d. Formally,
by virtue of the relations between spacing, reticular density, and mesh
area, it is equivalent to consider that the reticular den"ity should be
divided by n or the mesh area multiplied by n. Either one of these arti-
fices will adequately express true morphological importance. No other
crystal forms, besides the pinacoid just discussed, can parallel equidis-
tant planes containing equipoints of t"\1esame sort only; their morpho-
logical importance, therefore, cannot be altered. These conclusions are
verified by observation. -

The reticular area 5 is given by the formula

5~kl= h25~oo+k25~10+[25~ol
+2(hk51005010 cos p+k150105001 cos A+lh50015100 cos /1-),

in which 5100 = bc sin a, 5010= ca sin 13,5001 = ab sin ')I; and A= (010): (001),

/1-= (001): (100), p= (100): (010). Hence, the value of 5 will be multiplied
by any number n if all three indices are multiplied by n. We propose
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generally to adopt this convention and to designate by the symbol
(nh. nk. nl) any face (hkl) normal to a screw axis, with screw component
din. The classical symbol (hkl) merely indicates the face direction. The
Auggesti':d S}':1I1bol (ihh. nk. nl) acquires a further value-that ofa quanti-
~tatlveesthriate ofllie form importance, since the mesh area. S J~ dire<;,tly
obtainable from the ,umultiple indiJ;:-es"(by introducing them as such in
the formulag!~g S or so-caU~d uquadratidQtmP S2). The ~iller,,ndta,,.
liQn, thushllt little modified, assumes g~eatly en1H~nce,p-,1pQrphQlogicaJ
Isignificancel '

Example of Ihe~i;i'ew A:ris Eifed: L071IQuartz. HexagonaJ trapezohedml
c]a:s:s (D;i=3 2). Axial ratio: cla=1.1000. As deriiandedhy the Law of
Bravais and confirmed by x-ray determination,4 the translation lattice
is hexagonal (not rhombohedral) and the point group symmetry must be
considered holoaxial tetartohedral (not holoaxial hemihedral). ao=4.89
A.D., co=5.38 A.D. The space group is one of the enantiomorphous pair
D34=C312 and D36=C322.

The 3-fold symmetry axis is a screw axis, whose screw component is
co/3. The basal pinacoid must be written {0003 J instead of (0001 J . Its
mesh area is trebled, or its reticular density divided by 3. In the Bravais
sequence of theoretical importance, the base came first (SOOO] = 1.13). In
the modified list, it goes down to the eighth place (Soo03=3.39), after
1010, 1011, 1120, 1012, 1121, 2021, 1122 (no distinction is made here
between merohedral forms).

Thus is explained the extreme rarity of the basal pinacoid in quartz,
on~ o~ the most ~triking morpholOgical. characters.Qf t1tc,spe(';ies !<ti<l;il...
flagrant ,anomaly to the Law of Bravais.

8 H. U;ngenw.Pt (19:f5), h1 order t() stfeSii the 1JDi!:Yof the heJQLgQDalllyst~ JeWlt,~to;
in fh.e Ilght,ofrecently discovered examples of syntaxy, proposed w:tIJi.t:the 4-iIidex_
Brav-a:~ symb~\!I (hlitO, iilightJy'ttI(!ilifi@ by the, omission of -the Ulin1.is~gU ove:r the-third
index, for crystals having a rhombohedral lattice, with the provision that all four indices
should be multiplied by 3 when the sum h+i+l is not a multiple of 3. Examples: (0003),
(3030). This amounts to considering the rhombohedral lattice a mode of the hexagontll
lattice. M. A. Peacock and M. C. Bandy (1936) followed the suggestion in calling the
cleavage of their new mineral ungemachite (0003} {1111.

J. D. H. Donnay (1936) proposed to extend the practice to all systems where the lattice
may have more than one mode. Examples.-In the body-centered mode of the cubic lattice,
multiply all three indices by 2 if their sum is not even: (110), (200), (211), (222), etc. In
the face-centered mode, double all three indices if they are not all odd: (111), (200), (220),
(311), etc. Such a procedure expresses the Law of Bravais'only.

In the present paper we generalize the symbolization so as to include the effect of screw
axes and glide planes.

4 All the structural data quoJed''i~ this paper are taken from Strukturbericht, where
more specific references m<!,ybe found.

.
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TnB Ellpcr ol a Grrnr PraNn

A glide plane is a plane of symmetry, whose operation is the product
of a reflection in the plane and a displacement parallel to the plane. The
displacement is known as the glide component. The possible glide com-
ponents are (in vectorial notation): i a; i b; * c; i (a*b), * (b*c),

*  (c*a) ; |  (a+b) ,  |  (b+c) ,  i  (c+a) .  The Hermann-Mauguin notat ion
of a glide plane is obtained by replacing, in the point group symbol, the
letter m indicative of a reflection plane of symmetry by one of the let-
ters o, b, c, n, d, chosen according to the type of glide component.

Consider a glide plane in an othorhombic primitive lattice (hexa-
hedral mode), parallel to any one of the coordinate planes, for instance
(100). Let the glide component be parallel to either one of the two co-
ordinate axes in the plane, for example Ib. The effect of theglideplane
will be to bring space group equipoints into the centers of the (001)
meshes. (See Fig. 1, where the glide plane is parallel to the plane of the
figure, the lattice equipoints are represented by white circlets, the space
group'equipoints by black dots.) The space group equipoints are in
enantiomorphous relation to the lattice equipoints. No new points are
introduced between successive (001) planes-the spacing of the latter
remains unchanged. In the (001) planes the motif comprises both the
lattice equipoint and the space group equipoint derived from it by glide
reflection-the translation net of (001) remains what it was, its mesh area
has not changed, neither has its reticular density. The same observation
applies to all planes that contain both space group equipoints and lattice
equipoints, e.g., the system of planes (021).

Among the systems of net planes (0fr1) perpendicular to the glide
plane, there are some that contain one kind of points only, either lattice
equipoints or space group equipoints, e.g., the system of planes (011).
In any such system of planes, true lattice planes (beset with lattice
equipoints only) alternate with other planes (occupied by space group
equipoints only). Any two successive planes can be considered geomet-
rically equivalent since they contain identical nets with motifs similar
in all respects except for the fact that they are mirror images of each
other (the motif of true lattice planes being represented by a lattice
equipoint, that of intervening planes being figured by its enantiomor-
phous "space group equipoint"). For any crystal face that parallels such a
system of planes, the "effective" interplanar spacing should be taken as
one half of the distance between true lattice planes if it is to express
morphological importance; one may as well say that the reticular den-
sity should be halved or the mesh area S doubled. According to the pro-
posed symbolization the indices should be multiplied,by 2, so that (011)
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is to be written (022). More generally, all the planes (Dkl) that contain
points of the two difierent kinds are those that fulfill the condition k: 2n.
Those that do not satisfy this condition must have their indices multi,
plied throughby 2. Since Z:0 for all planes perpendicular to the glide
plane, the condition may be written h+k:2n, which is the criterion of
a lattice centered on (001). We may thus express this result by saying
that the lattice acts as a C-centered lattice for all faces in the zone

[1oo].
If, in the above example, the glide component had been taken equal

to I c, the lattice would have acted as a 3-centered lattice for all faces
in zone [100].

When the glide plane is parallel to (010) and the glide component is

I c or ! a, the lattice acts as if ,4 -centered or C-centered, respectively, for
all faces in zone [010]. Again, if the glide plane is (001), the effective
lattice for the faces of zone [001] will be either B-centered or,4-centered
according as the glide component is I a or I b.

A glide plane n, whose glide component is one half the resultant of
the two primitive translations in that plane, e.g., | (a*b), transforms a
P lattice (primitive) into an 1 lattice (body centered) insofar as faces
perpendicular to n are concerned.

Similar propositions could be established for all space groups where
glide planes occur, invariably leading to the recognition of certain planes
(among those perpendicular to the glide plane) whose morphological
importance is to be decreased. Such a diminished importance is expressed
by a multiplication of the indices so as to comply with the restrictions
imposed by the presence of the glide planes. These conditions may be
combined with others, resulting from the occurrence of screw axes, or
due to the difierent types of centering of the lattice. It is easily seen that
such combined conditions are precisely those that the various orders of
r-ray reflections must fulfill in order to escape destructive interference
(systematic "extinction," Ausliischung). These conditions, worked out
by structural crystallographers, are directly available in any table of
"space group extinctions." Ov

Our conclusions as to the effect of a glide plane are verified by observa-
tion. A

Etcample oJ the Glide Plane Ef ect: Orthorhombic sulfur . Rhombic dipyra-
midal or orthorhombic holohedral class (Dro:2/m 2/m 2/m). Axial
ratios-a:.b;c:0.8131:1:1.9034. As demanded by the Law of Bravais
and confirmedby r-ray determination, the translation lattice is all-face
centered (rhombic octahedral mode). ao:10.6I A.U., D0:72.87 L.IJ.,
co:24.56 A. U. The space group is Drft:p664.

The space group criteria include the conditions expressing the all-face
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centered mode of  the la t t ice,  namely:  h+k:2n,  k*1, :2n,  l lh :2n,  or
in other words "2, k,l either all odd or all even." For planes whose in-
dices include at least one zero this condition becomes t'indices all even."
In addition to this 6.rst criterion the presence of the glide planes d de-
mands, for those planes whose indices contain at least one zero, that the
sum of the indices be a multiple of 4, namely: planes (0fr1) with kf l:4n,
planes (Z0l) with l!h:4n, planes (hk\) with hlk:4n.In accordance
with our symbolization by means of "multiple indices" the list of crystal
forms according to the Law of Bravais will only contain symbols with
indices all odd or all even (indices not all odd are made all even by mul-
tiplying through by 2). The first two columns of Table 1 (headed ((B-F"

and "Com") give the Bravais list in such a form. In order to take the glide
plane efiect into account, form symbols whose indices include at least
one zero, and which are already doubled by virtue of the all-face cen-
tered lattice (Law of Bravais), should be multipliedby 2 again if neces-
sary to make the sum of their indices a multiple of 4. The mesh area of

T,r.er,n 1. Onrnonrrounrc Sur,lun

Space group: Dzn2a: Fdd.d,

453

B-F Com D-H

*o24

1 1 3
022

202

1 1 5
2ZO

131
133
026
224
3 l l
206

040
t17
J I J

B-F Com D-H

135
3 1 5

B-F Corn D-H

002

020

244
1 5 1
228

*317
*420

*  153
422
335

*0 .2 .10
*246

*424
*139

155
*048

+2.0 . t0
*406

?  1 . 1 . 1 1
. . 4
J J I

s19
?o62
*426
*351
*51 1
*248
* 1 5 7

+064
*353
*5  13
442
260

408
*0.4.10 -

331
* a 1 n

*208
*737

400
119

* Lnl

204

*042

N.B. Crystal forms that have not been observed on sulfur are preceded by an asterisk
(*). Doubtful forrhs are shown by a question mark (?).
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such forms is thus quadrupled by the new law instead of simply doubled
as it was by the Law of Bravais. The new sequence is shown by the last
two columns (headed "Com" and "D-H") of Table 1. The second col-
umn in this table contains the forms common to both sequences of de-
creasing theoretical importance (Bravais-Friedel, on the on: hand;
Donnay-Harker, on the other).

The example of sulfur was given by G. Friedel (1926, p. 133) to illus-
trate the finding of the translation lattice by means of the Law of Bra-
vais. Friedel stresses the presence of certain anomalies in the list, namely
the fact that the forms [012] and {102} are unknown5 for the species,
in spite of their relatively small mesh areas. The next two gaps, those of

{021} and {014}, occurring among observed forms, are just as anoma-
lous. Moreover the order of the forms does not fit the facts satisfactorily:

{001 } occupying the first rank implies a tabular habit, which has been
observed occasionally, but is by no means representative of the majority
of sulfur crystals; the other two pinacoids are also placed too high in the
sequence with respect to their minor morphological importance.

The modified law (see Table 1), doubling again the mesh area of the
forms in the first column, causes them to recede in the list to ranks more
in keeping with their observed importance. The pinacoids become [ 004 ] ,
{040} ,  and {400}.  The f i rs t  four  miss ing forms become {048},  {408} ,
{084}, and {0.4.16}, and are relegated far down the l ist. The rhombic
dipyramid { 111} takes first place, as one would expect of the habit-
controlling form. The first unknown form is the 20th in the new list,
against the Sth in the Bravais sequence.

SratBunNr nltl DrscussroN ol rrrE GENERALTzED LAw

The relationship that exists between the systematic "extinctions"
of certain orders of r-ray reflection in a given space group and the dimin-
ished importance of corresponding crystal forms permits the following
statement of the law:

The morphological importance of a crystal Jace is inlersely proportional
to its reticular area S iJ the Lattice is of the hexahedlal, mode (no centeri.ng)
and. I'he space group symmetry does not contain any screw axis or glid,e plane.
The efect of lattice center'ing, screw alces, and. glide planes is corrected,Jor if
the face ind.ices are repl,aced., in the S formula, by the "multiple inilices" of
the lowest oriler of r-ray refl,ection compatible with the space group symmetry.

Instead of considering the mesh area of a plane, it is largely a matter of
personal preference to consider its reticular density or its spacing to the

6 The form [102], it is true, has been reported since, but it remains a rnorphologi:al
rarity.
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next parallel plane in the system, either one of the last two quantities
being inversely proportional to the mesh area.

The law includes the Law of Bravais as a particular case, when, re-
gardless of lattice centering, the space group symmetry is devoid of
screw axes or glide planes. It is an extension of the Law of Bravais in
the sense that it rests on the same kind of geometrical considerations.
The difference is that the reticular constant of a face (its mesh area,
reticular density, or interplanar distance) is no longer calculated in the
translation lattice, but in a variable system of points, changing with the
face or zone considered. For instance, in the tetragonal space group
D4h3=P 4/n b m, where the translation lattice actually is primitive
tetragonal, the reticular constant is computed as if the lattice were body
centered (1) for faces (hkO), base centered (C) for faces (Okl), simple (P)
for faces (hhl), while. iQI"!aces (ftkl}-and this is a geIlera~ rul~-::Jhe..retic-
ula,!".constant is. still to be determined in the true:~l"aI1.s1it!i()nJ3-tt;k~.

The new law thus brings out the fundamentil importance. of zonal
development in crystal morphology, a fact which had been anticipated
by previous crystallographers (Baumhauer, 1903-1905; Ungemach,
1934 and 1935). It confirms the interest of the investigation of "form
series" (Baumhauer's Zielreihen, Ungemach's series zonaires, Eeacock's
Harmonic-Arithmetic Rule, 1936).

The law cast in the above statement may, up to a certain pointj;be
said to bridge the gap that existed between structural and morphologi-
cal crystallographies. It is a further step in the elucidation of the control
that the internal pattern of a crystal exercises on its bounding forms.
Yet it does not involve any consideration of the special positions that
the atoms may occupy, nor does it take into account their nature, their
charge, their bonds, or any other physical concept. It only makes use
of the "empty frame" of symmetry elements in the cell-it is, in essence,
purely geometrical.

Since ~factors are ignored that may well be expected to play
a role in the development of crystal forms, the law can claim no other
value than that of an improved approximation. Not all the anomalies
will be eliminated, as it is easy to foresee that several consequences of
the law will not be verified. (1) If space group symmetry were the only
influential factor, then all crystalline species belonging to the same space
group of the isometric system (where the axial ratios and angles are con-
stant) would have an identical list of forms arranged in the order of de-
creasing importance, or the same "morphological aspect," as we propose
to call such a sequence. (2) Several space groups obey the same general
conditions of systematic extinction, thus leading to the same "morpho-
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logical aspect" for, say, merohedral as well as holohedral species. (3)
The generalized law does not discriminate between complementary
merohedral forms in all cases. (4) Anomalies may also result from the
fact that no provision is made for differences in the conditions of crystal-
lization (rate of cooling, presence of foreigl!ions in the solution, and the
like) in spite of the attempt fOeIiminatesuch external factors by a crit-
ical examination of available morphological data.

In his masterly work on the subject, Friedel (1907) proved that the
influence of the Bravais lattice is so preponderant that it rarely becomes
obscured by that of the motif. Now a painstaking survey of a great many
crystalline substances for which the space group is known conclusively
shows that, although the symmetry of the space group cannot be the
only factor either, it so outweighs all the others in influence that its
efI(:ct, In tlie large ~jority of cases, is not obliterated by the action of
the disturbing agents. This result, incidentally, will rehabilitate the sym-
metry (or pseudo-symmetry) of crystals as one of their most significant
properties, a notion which of late had lost more and more credence
among structural crystallographers.

Apart from any merit that may be conceded or refused to our specula-
tions on the effect of screw axes and glide planes, the outcome of our
statistical survey warrants considering the generalized form of the Bra-
vais principle as a law of observation, valid independently of any theory.

This law leads to the recogni!ion of a great many more "morpho-
logical aspects" than did the Law of Bravais. We define a "morphological
aspect" as a possible list of decreasingly important forms for any set of
axial elements (axial ratios and interaxial angles) in any given crystal
system. For instance, in the isometric system, the Law of Bravais led to .
3 morphological aspects; the present law leads to 17. These are invariable
since cubic axial elements are constant. A "morphological aspect" cor-
responds to a certain set of general extinction conditions, which charac-
terize one space group or may be common to several space groups. There
are, therefore, as many "morphological aspects" possible as there are
different sets of systematic space group extinctions. They will be pre-
sented, for each crystal system, in later publications.

The next sections will illustrate by examples (chosen among isometric
substances) the separation of complementary hemihedral forms and the
determination of the space group from morphological data. An anoma-
lous case, that of sodium chloride, will also be discussed.

DISCRIMINATIONBETWEEN COMPLEMENTARY MEROHEDRAL FORMS

Since the Law of Bravais is based on the consideration of the lattice
only, it cannot make any distinction between complementary merohe-
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dral forms. The introduction of space group symmetry enables one to

separate (in some cases, at least) complementary hemihedral forms.

Example: Pyrle, FeSz. Isometric system' Diploidal or parahemihedral

class (?o: Z/m 3). ao:5.40 A.U. The translation Iattice is hexahedral
(no centering). The space group is T6o:po3.

None of the three Bravdis lists available in the isometric system,

corresponding to the three possible lattice modes, is very satisfactory.

The agreement with observed form importance is the least bad in the

hexahedral mode (simple cubic lattice), which places l0l2l at the fourth

rank. In spite of many anomalies, the correct translation lattice was

thus arrived at by the Law of Bravais.
According to the space group criterion the forms {0fr1} must satisfy

the condition h:2n.If they do not their indices are doubled. This condi-

tion separates some complementary pyritohedra; for instance, {021}
should have more importance than {012}, which is to be written {02a}'
The Bravais sequence and the modified list are compared in Table 2.

Thefirst column (headed "Bravais-Friedel") gives the Bravais list, which

does not discriminate between complementary forms. The second column
(headed "Donnay-Harker") gives the new order, in which most of the

complementary pyritohedra are separated. The third column (headed

"Comparison") presents the data in the same manner as Table 1 for

sulfur. In the modified sequence the f.rst three forms are the three most

important forms, the first two are the only cleavages (imperfect though

they may be). The dominant forms in artificial pyrite crystals are the

cube and the octahedron (Groth, I92I, p. 257:. "Die nach verschiedenen

Methoden erhaltenen Krystalle zeigen meist (100) and (111)").

Two complementary.pyritohedra will have equal importance when

their symbols contain two odd indices besides the zerol they will be

separated if only one of the indices is odd. The data recorded in the stand-

ard compendia of mineralogy are insuftcient to check the validity of

this prediction of the law. Discrimination between positive and negative
forms is often uncertain. Hintze (1904) does not attempt to make the

distinction. V. Goldschmidt (1920) makes it for a few forms only. Strti-
ver's suggestion that the distinction between poSitive and negative forms
be drawn only if two forms of different sign occur together, in which

case the larger and more brilliant one is to be taken as positive, is an

arbitrary criterion, at best unsatisfactory. The verification of the law is

fortunately made possible by H. Ungemach's valuable observations"on
form importance in pyrite crystals.G ft is remarkable that information

6 Unpublished data of the great French crystallographer and mineralogist (1880-

1936), found in the note books he bequeathed to J. D. H. Donnay. The observations

are graphically recorded on a work sheet, a gnomonic projection of pyrite showing the
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can thus be obtained on the first eleven pairs of pyritohedra that are to
be separated by the space group criterion. Here are Ungemach's d.ata:
{021,} overwhelmingly more important than l0I2:024|; {0231vastly
more than [032:064] ;  {0a1}  much more than {014:028};  {043}  prob-
ably more than {034:068};  {025}  less important  than {052:0.10.4}
(anomaly) ;  {061}  known, {0tO:0.2.121 unknownl  {045}  much more
important  than {054:0.10.31 ;  1027 }  unknown, lO72:0.14.4}  known
(anomaly); {065} much more important than {056:0.10.121; the next
four  pyr i tohedra,  {081} ,  {018:0.2.16} ,  I0+7]1,  | .074:0.14.8}  are
known, but are minor forms whose relative importance cannot be esti-
mated from Ungemach's projection (they are all represented by small
points). The first three pairs of complementary pyritohedra show perfect
agreement between facts and theory. Notice that {023} is a negative
form, predominant over its positive complementary.

A strange fact is revealed by an inspection of the pyritohedra with two
indices odd, which should have equal morphological importance: the
two complementary forms coexist in three cases only, {075}, {0.15.11},
10971; the negative form is found alone once, ii0.7.lL| ; the positive
form occurs a lone in four teen cases,  {091} ,  {0711,  {0.12.3} ,  {051} ,
{0 .11 .3 } ,  {031 }  ,  { 073 ] t ,  { 0 .11 .s } ,  {0 .15 .7 {  ,  { 0 . r3 .7 | ,  {Oes } ,  {0s3 } ,
{0.13.9} ,  {0.11.9} .  These data conf l ic t  wi th the theory.  I t  should be
noticed, however, that the pair {013:0261 {031:062} that is en-
countered first in the sequence of forms occupies the 37th rank!Agree-
ment can hardly be expected to prevail so far down the list. There also
remains the looming possibility that forms of uncertain sign may have
been labeled positive by Ungemach himself-this would explain the
avalanche of pcsitive forms!

The modified list of forms does not make any distinction between
complementary diploids, lhhll and lhlkl, the efiect of the glide plane
being restricted to faces perpendicular to it (one index equal to zero).

In conclusion, one should be well satisfied with the verification ob-
tained, wbich is vastly better than any agreement could be if due to
chance alone. A detailed morphological study of pyrite is, nevertheless,
badly needed to confirm or ascertain the sign of the hemihedral forms.

The case of pyrite is a first example of space group determination,
without the aid of *-rays, by means of the scantest morphological infor-
mation, namely: isometric system (whatever the class); {001}, {111},
[012f dominant (regardless of relative importance). Among the 17
possible "morphological aspects" of the isometric system, only one gives

relative importance of the forms by the size of the corresponding poles (the latter vary
from tiny pencil points to circlets five millimeters in diameter).
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Aspect Pa3 I B-F Common D-H

*146= 164 *017=071 \
*127=172} 345= 354f

255 117\
227} *155f
445 - - 064
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TABLE 2. (Concluded)

*027=072

)

*146= 164
*127=172

255

Bravais-Friedel
Lattice P

N.B.-Unknown forms marked by asterisk (*), doubtful forms by query (?).

top ranks to the three dominant forms; to that aspect the space group
Pa3 corresponds uniquely.

SPACE GROUP DETERMINATION BY MORPHOLOGICAL CRITERIA

A "morphological aspect" corresponds to one or more space groups in
a crystal system. Within a crystal class, however, a morphological
aspect corresponds to one space group only (or, at the most, to two enan-
tiomorphous space groups). Knowledge of the relative importance of
the crystal forms usually suffices to limit the possible space groups to a
very few, especially if the crystal class (point group) can be determined.
Even if the crystal class is not known it is still possible, in certain favor-
able cases, to determine the space group uniquely. Pyrite is one example.
Garnet is another. It will be given here as an illustration of the fact that
the dominant form, in an isometric crystal, need not be the cube, the
octahedron, or the rhombic dodecahedron, as demanded by the Law of
Bravais and implied by the French nomenclature: hexahedral mode,
octahedral mode, dodecahedral mode. Derivation of the 17 isometric
"aspects" has shown that either one of these three forms can be domi-
nant in all three lattice modes, except that the octahedron can never be
dominant in the dodecahedral mode, where, however, the leucitohedron
{112 J can take first place.

Examples: Garnet, AhCa3(Si04)3' Isomettic system. Hexoctahedral or
holohedral class. (Oh=4/m 3" 21m). ao= 11.8 A.U. Translation lattice,
body centered (dodecahedral mod~). Space group OhIO= Ia3d. Here are
the most salient morphological data, as given in Dana: the dodecahedron
{011 J and the trapezohedron [112 J are the most common simple forms;
the hexoctahedron {123 J comes next; the cube [001 J and the octahedron
{111 J are rare.

In order to account for the great importance of the leucitohedron
{112 J the Law of Bravais can only select the body centered lattice. This
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choice is confirmed by r-rays. Among the 17 isometric aspects only one

gives top ranks to the three most important formsl this aspect uniquely

determines the space grotP Ia3d'.
Many discrepancies between the facts and the Bravais sequence are

corrected by the new list (see Table 3, arranged like Table 1 for sulfur).

The Bravais list expresses the condition that the sum of the indices

must be even, which is imposed by the mode of the lattice' The new list

takes into account the aclditional restrictions of the space group . llkll
with ft and I even, t lhhll with.2h+t:4n. The cube, which came second,

is now fourth. The octahedron, which was fifth, goes down to the four-

teenth place. The leucitohedron comes first, followed immediately by

the dodecahedron and the [ 123] hexoctahedron.
Analcime, NaAISizOo HzO. This mineral is selected as an example of a

pseudo-symmetric species. The dominant "form" is, by far, the trapezo-

hedron \I l2l , which often occurs alone. Other "forms" that have been

observed: cube, dodecahedron, octahedron, tetrahexahedron {012 }, and

Teern 3. Ganxar
Space group: Onro-rort

B-F Com D-H B-F Com D-H B-F Com D-H

t4J

2 2 0
*  136

*017
*345

046
* 7 2 7
*255

*037

*015
233

134
*725 444

0 1 1
oo2

112

013
z z z

I Z J

024

N.B -Crystal f orms that have not been observed on garnet are preceded by an
asterisk (*).

trisoctahedron {233}. Of these the octahedron is c,:rtainly the rarest.

It is hard to assign relative importances to the remaining forms. The

only combination given by Hintze that shows five forms (apparently the

richest observed) may serve as an indication; its forms are, in order:

I l2 .Ol l .001 .012.233. I t  was found at  Fr iedensdorf ,  in  Hessen'

fncomplete though the data may be, they can be accounted for by

one of the morphological aspects only, the same as for garnet, namely:

112.022.123.004.024.233. ' '  '  (octahedron coming 14th in the l ist) '

The fact that { 123} has not been reported is an anomaly. It does not ob-

scure the otherwise perfect agreement.

022

004

035
J J A

244

026
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The pseudo-isometric character of the species being recognized, simple
data on habit and form development permit one to predict that the sym-
metry of the structure will closely simulate that of the space group
OhIO=I a3d. The results of the x-ray investigation have led to the recogni-
tion of a "pseudo-structure" (S61 type of Strukturbericht) based on a cu-
bic cell (ao= 13.7 A.U.) and space group OhiO=1 a3d. The confirmation is
striking.

Spinel, MgAI204. The most typical feature of this species is the pre-
dominance of the octahedron. The dodecahedron and the trapezohedron
{1131 come next in importance. The cube never is a "habit form."

Out of the 17 isometric aspects four give {1111 the first place. One is
the aspect of pyrite, corresponding to the space group Th6=Pa3, with
simple cubic lattice. This aspect i&immediately eliminated as it gives the

-cube second rank, the dodecahedron fifth rank, and {1131 seventh rank;
not to mention its characteristic hemihedry. It would also demand the
presence of {1231, which is unknown, as the first general form, whereas
{135I, typical of the F lattice, is observed instead. The other three as-
pects are: (1) the Bravais list for an all-face centered lattice; (2) the same,
slightly modified by symbolizing the cube {004} instead of {0021 and
making it retreat from second to fourth place; (3) the same list again,
but further altered by the "extinction"7 of all {Okl} forms for which the
sum of the indices is not a multiple of 4.

The Bravais list is not as good as either one of its two modifications,
on account of the rarity of the cube. The third list fits the facts better
that the second, since neither {024} nor {0461 are known, whereas
{026} is observed. Comparison between the three aspects is shown in
Table 4. The first aspeCt (headed "F" because it is the expression of the
all-face centered lattice) corresponds to five space groups, one in each
point group, namely: T2=F23, Th3= Fm3, Td2=F43m, 03=F43,
Oh"= Fm3m. The second aspect uniquely defines the space group O~
=F413. The third aspect is compatible with two space groups: Th4=Fd3
and Oh7= Fd3m. We have seen that the form development points towards
the last two space groups, even if the point group is unknown. Since the
diploidal class can be ruled out, Fd3m is the only possibility.

The x-ray results confirm the morphological conclusions. The ront-
genographically possible space groups are given as Fd3m, Fd3, and
F413, in Strukturbericht.

7 This use of the word "extinction," that recalls the correlated phenomenon in x-ray
diffraction, may be found convenient. In the first and second lists, (012), extinguished as
such by the all-face centered lattice, appears as {024}. It is extinguished as {024} and
occurs as (048} in the third list, owing to additional restrictions of the space group.
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TABLE 4. SPINEL, MgAhO.

F O'

111
002
022
113

111 111

133
"024
224

"115
135
244
026

"335
"117

}"155
"046
"246

022
113
004
133

"024

022
113
004
133

same
as

list
F

224
"liS

135
244
026

"335
"117\
"155f

"246

N.B.-Unknown forms are marked by an asterisk (").

PERSISTING ANOMALIES

Inasmuch as the law presented in this paper is of a strictly geometrical
nature only, it cannot be expected to hold in all cases. Some anomalies do
persis t.

Example: Halite, NaCl. The space group is kno~n to be Oh5=Fm3m.
The translation lattice is all-face centered, the motif is composed of a
sodium ion and a chlorine.ion, one half of the cube edge apart (which
explains why some authors describe the structure as composed of two
"interpenetrating lattices"). In this case the Law of Bravais and the
generalized law coincide (no screw axis, no glide plane). The new law is,
therefore, just as powerless as the Law of Bravais. The anomalies shriek.

As a natural mineral, NaCl usually occurs in cubes. The other forms
known are {011}, {1111, {012}, 11231. Artificially produced crystals
show various habits according to the conditions of crystallization (the
addition of urea to the solution produces octahedra, as is well
known) and several new forms, the principal ones being {1121 and
{1221; the others, {0141, {034}, {035I, {045 I, {233}, {345}. The cleav-
age, which is perfect, parallels the dominant habit form {0011. Only
three of the 17 isometric aspects will give the cube the leading rank (see
Table 5, first three columns): (1) the Bravais sequence for a simple
cubic lattice (Table 5, first column, headed "P"); (2) the aspect that
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corresponds to the space groups 7a5 and 0r,6, with an all-face centered
lattice; (3) the aspect that corresponds to the space grottp Z77, with a
body centered lattice. None of these is the one demanded by the law
(fourth column, headed "F"). The best agreement is found in the "P"
list. G. Friedel (1926, p. 144) had already stressed the anomaly. He
pointed out that, if one did not discriminate between Na ions and Cl
ions, the smallest cell would become simple cubic.

It is a curious fact that cadmium oxide CdO, which belongs to the same
space group as NaCl and has the same structural type, does obey the
law. The data given in Groth permit l isting the forms as follows: [111],
dominant; {001} next; {011} third; and last a trapezohedron, which has
not been measured, tentatively given in Groth (1906, p. 176) as {112} ?.
This list is in perfect agreement with the "F" sequence (see Table 5),
even to the last form if the trapezohedron is { 113 } , which it may well be.
Geometrical considerations are obviously insufficient to account for
such cases. The reason why cadmium oxide conforms to the law whereas
sodium chloride does not is probably to be sought in the less marked
ionic character of the cadmium oxide structure.

Tenr,n 5 Har,rrr, NaCl

Ta', Ont

001
0 1 1
1 1 1
412
1.12

1.22
-013
* 1 1 3
*023
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014\
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r ? l q l

1 1 1
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224
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* l  35
244
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' .J.t.)

* t  t  z )
*1ss/

N.B.-Unknown forms are marked by an asterisk (*).

It has been shown above that, when the motif is composed of two
"submotifs" enantiomorphous to each other or congruent but rotated
with respect to each other, the reticular constant (reticular density,
mesh area, or interplanar spacing) should be defined in terms of "equi-
points" (representing "submotifs") instead of lattice nodes (standing
for motifs) for all planes containing one kind of equipoints only (either
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lattice equipoints or space group equipoints). In the case of NaCl, on

account of the ionic character of the structure, the motif may perhaps

be thought of as composed of two "submotifs," one Na+, the other CI-'

Inasmuch as "submotifs" need not be in parallel orientation, it may per-

haps be justified to enlarge the tolerance by supposing that ions of dif-

ferent nature can play the r6le of "submotifs." In the case of the sodium

chloride structure, this hypothesis is particularly tempting; if the Na

ions are imagined to lie at the nodes of the translation lattice, they can

be considered as "lattice equipoints" while the Cl ions will become

"space group equipoints." In such an hypothesis all the planes witb

indices all odd will have their spacing halved (or their mesh area doubled)

and hence their indices muttiplied by two. All other planes have their

indices doubled a]tgdy by virtue of the all-face centering of the lattice.

The final result is thus to have all planes modified in the same manner,

namely by doubling the indices, which means that the sequence of forms

according to decreasing importance will be identical with that of a simple

cubic lattice (the edge of the unit cube halved). All anomalies would

then disappear.
we have shown that the tuo-d.imensional periodicity of a plane is lhe

efectiae Jactor ileterm.i,ning its morphological importonce, regarilless oJ what

the motif of the mesh may be lit need not be the same as the three-dimen-

sional motif of the lattice, but may be a submotif thereof, i.e., a part of.

the motif obtainable from the other parts by screw rotation or glide re-

flection. The working hypothesis introduced in interpreting the Nacl

morphology is that the submotifs need. not even be chemically identical.

SuuuanY

Independently of its theoretical justification the following law can be

considered a law of observation, including the Law of Bravais as a par-

ticular case:
The morphological importance of a crystal face is inversely propor-

tional to its reticular area S if the lattice is of the hexahedral mode (no

centering) and the space group is devoid of screw axes and glide planes'

The effect of lattice centering, screw axes, and glide planes is corrected

for if the face indices are replaced, in the S formula, by the "multiple

indices" of the lowest order of r-ray reflection compatible with the space

group symmetry.
Many anomalies of the Law of Bravais are accounted for; some per-

sist, since the law is purely geometrical, involving no physical considera-

tion. The influence of space Sroup symmetry is so preponderant, how-

ever, that it seldom becomes obscured by that of other factors. The law

introd.uces a distinction between certain complementary merohedral

Cr
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forms. It leads to the recognition of the various possible "morphological
aspects" in any crystal system. The law determines the relative impor-
tance of the forms for a given space group; conversely the space group
can be predicted from morphological features alone (without the help
of. *ray methods).

i \ t  
' '  /

Frc. 1.

Orthorhombic Primitive Lattice.
Glide plane (100) parallel to plane of figure.
Systems of Points:-

Lattice equipoints: Open circles O
Space group equipoints: Solid circles I
The space group equipoints are mirror images of the lattice equipoints.

Systems of Planes:-
(021) - -
(011) Through lattice equipoints - -
(011) Through space group equipoints
(012) Through lattice equipoints --
(012) Through space group equipoints
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