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ABSTRACT

The inspective equi-inclination treatment of hexagonal crystals in general is outlined.
The lattice type may be determined with great ease merely by inspecting an appropriate
n-level equi-inclination photograph. The reciprocal relations in the hexagonal system are
also discussed. These are vital to an accurate unit cell determination and have not previ-
ously been discussed in this connection.

Two previous investigations have assigned tourmaline to space groups based upon a
hexagonal lattice. This equi-inclination study plainly shows that it is based rather upon
a rhombohedral lattice. The space group is unequivocally determined. The cell data for
tourmaline from the Etta Mine, South Dakota, are as follows:

Diffraction symbol: 32/m R3— —
Lattice: rhombohedral

Crystal class: Csy

Space group: Cs.% R3m

Cell dimensions: rhombohedral referred to simplest hexagonal cell
2=9.500 & A=15.9284
a=66°05" C= 7.131
C/Ad= 0.4490
Formula weights of
o)
R (?i ‘ B:SieOn |OH
F |4
per cell: 1 3

INTRODUCTION

The unit cell and space group of tourmaline were first investigated by
Miss Kulaszewski,! who based her studies mainly on Laue photographs
made from thin slips cut parallel to (0001), (1011), (5052), (0111), (1010),
and (1120). These photographs were supplemented by oscillation spec-
trograms from these same slips, made with MoK radiation. She gives
the following cell dimensions, referred to hexagonal axes, for clear rose-
red tourmaline from Pennig, Saxony:

a = 16.238
c= 17.26

1 Kulaszewski, Charlotte, Uber die Kristallstruktur des Turmalins: Abkandl. math-phys.
Ki. Sichn. Akad. Wissen., vol.38, 1921, included in Rinne, Friedrich: Rontgenographische
Feinbaustudien, 4, pp. 83-117.
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Miss Kulaszewski’s indexing of reflections (a monumental undertaking
compared with the ease of attaining the required information by the in-
spective equi-inclination method) shows fulfillment of the analytical con-
dition for the rhombohedral lattice,

h—i—1 .

— ‘E —— = an 1nteger,
by only 419, of the indices of reflections recorded from spectrograph
photographs and by only 48.59, of those recorded from the Laue photo-
graphs. She accordingly selected the hexagonal lattice as the correct one
for tourmaline. On the basis of reflection data, she assigned this mineral
to either space group Cs,! or C3,?, between which it was impossible to
distinguish.

These results were confirmed by Machatschki,? who employed the ro-
tation method and the spectrometer method. Molybdenum radiation was
used with the latter technique but no statement of the radiation used
with the rotation method is given. He records the following axial data:

Black tourmaline, Pale red alkaline- Pale red tourmaline,
Grundesund, Séndeled, earth tourmaline, Pala,
Norway. San Diego, California. California.
a= 16.02 A 15.81 & 15.87 A
c= 7.22 7.10 7.13

Machatschki agrees with Miss Kulaszewski in finding many reflections
eliminating a rhombohedral lattice, but with the proviso that the index-
ing of the reflections is somewhat uncertain due to the extreme length
of the g-axis. The hexagonal cell contains 3 formula weights of
XY;B;sSigHxOs1. Space groups Cs,® and C3,* are eliminated on the basis
of the appearance of odd orders of the basal reflection. Since the crystal
class (3, only has the six space groups Cs,!'2%458 the last two of which
are based upon a rhombohedral lattice, Machatschki implicitly agrees
with Kulaszewski in assigning tourmaline to the two uneliminated hexag-
onal space groups Cs,! or Cy,?, with the proviso mentioned.

Dr. J. D. H. Donnay called the attention of one of the writers to the
fact that while the x-ray investigations of tourmaline had apparently
assigned the crystal to a hexagonal lattice, the surface development
points to a thombohedral lattice, and he suggested that this discrepancy
be investigated here by the equi-inclination?+45 Weissenberg method. A

2 Machatschki, Felix, Die Formeleinheit des Turmalins: Zeits. Krist., (A) vol. 70,
PP- 224-228, 1929.

% Buerger, M. J., The Weissenberg reciprocal lattice projection and the technique of
interpreting Weissenberg photographs: Zeits. Krist., (A) vol. 88, pp. 356-380, 1934,
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reinvestigation of the unit cell and space group of tourmaline was accord-
ingly undertaken. Since hexagonal crystals have not been previously
treated by the inspective method, this investigation constitutes a type
case for the determination of the cell characteristics of crystals of this
system without indexing procedure.

MATERIAL

The writers are indebted to Dr. Harry Berman of Harvard University
for the gift of a number of suitable tourmaline crystals from the Etta
Mine, South Dakota. This material consists of small crystals, less than
1 mm. long, and of about $ mm. in cross sectional diameter. The habit
tends towards hexagonal prisms, without well-developed terminal faces.
The refractive indices are as follows:

w = 1.658 + .002
e = 1.633 + .002
w—¢e= .025

While neither density nor analysis is available for this material, a density
of 3.09 is suggested by a comparison of these optical properties with those
compiled by Larsen and Berman.$

METHOD

The general methods have already been described.? 4% Unfiltered cop-
per radiation from a Hadding x-ray tube was employed.

TaE CrysTaL CLass

The ¢c-axis, 0-layer equi-inclination photograph displays the plane sym-
metry* Cq;, while the #-level photographs all display the plane symmetry
(3. 0-layer photographs about each of the two possible hexagonal ¢-axes
display the plane symmetries Cs; and C3, respectively. These data fix
the centro-symmetrical point-group as Dyq. These z-ray data permit the
symmetry of tourmaline to be either C,, D, or D4, The absence of two-
fold axes in the morphological development and other physical proper-
ties of tourmaline crystals definitely fixes the correct crystal class as Cj,.

4 Buerger, M. J., The application of plane groups to the interpretation of Weissenberg
photographs: Zeits. Krist., (A) vol. 91, pp. 255-289, 1935.

5 Buerger, M. J., An apparatus for conveniently taking equi-inclination Weissenberg
photographs: Zeits. Krist., (A) vol. 94, pp. 87-99, 1936.

8 Larsen, Esper S., and Berman, Harry, The microscopic determination of the non-
opaque minerals: U. S. Geological Survey, Bull. 848, p. 248, 1934,
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THE SPACE LatTtIicE TYPE

A c-axis rotation photograph provides a rough estimate of the identity
period along this axis, which in the case of the Etta tourmaline proved
to be about 7.03 A long. With this unrefined value, the equi-inclination
settings and screen settings may be found.® A series of equi-inclination
photographs for rotations about the c¢-axis permit one to resolve the
reciprocal lattice into stacks of plane reciprocal lattices normal to the
c-axis.* The analysis of this stacking unequivocally fixes the space lattice
type. Both the hexagonal and rhombohedral lattices consist of stacks of
equilateral triangular nets normal to the ¢-axis. In the case of the hexag-
onal lattice, the nets project on a plane parallel with the net plane in
exactly superposed position, Fig. 1. In the case of the rhombohedral
lattice they project in such a way as to be displaced by % of a long mesh-
diagonal for each succeeding layer. The equi-inclination Weissenberg
projections of these layer sequences are unique, and characteristic por-
tions are shown in Fig. 1. The displacement of the cells in the rhombo-
hedral case is along one of the two nonequivalent position-symmetry
lines of the photograph of the zero layer, or along the one set of unique
position-symmetry lines of the #-layers. Figure 1 illustrates the point
(reflection) environment of this line for the hexagonal and rhombohedral
cases.

In Figs. 2, 3 and 4 are illustrated the equi-inclination photographs for
the c-axis rotation in the case of tourmaline. The conditions plainly cor-
respond with those illustrated for the rhombohedral lattice in Fig. 1.
Tourmaline is accordingly based upon a rhombohedral, not a hexagonal
lattice.*

THE SpaceE GrouUP

There are only two possible space groups for a crystal having the point
group symmetry Cj, and based upon a rhombohedral lattice, namely
Cs,® and C3,%. The differences between these, and the criteria to be sought
in distinguishing them, are plainly indicated by their orientation sym-
bols R3m and R3¢ respectively. In the first case the vertical symmetry
planes appear as mirror planes, in the second case, they appear with glide
component ¢/2. To distinguish between them it is merely necessary to
investigate the character of the symmetry plane, which is done by com-
paring the 0- and »-level reciprocal lattice planes parallel with it. If these
have identical translations, a mirror plane is indicated, while if the ¢

* Since this conclusion was at variance with earlier results, we also took the trouble to
reconstruct? the reciprocal lattice for a 180°wrange for the0,1,2, and 3 levels. The reciprocal
lattice so obtained confirms the conclusion that the direct lattice of tourmaline is rhom-
bohedral.
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translation is doubled on the 0-level, a glide plane with glide component
¢/2 is indicated.

In the case of tourmaline, the former condition proves to be the case,
which unequivocally fixes the space group for tourmaline as Cj,%, R3m.

REcrprocAL RELATIONS IN THE HEXAGONAL SYSTEM

Cell dimensions of rhombohedral crystals are convenien tly derived by
first referring the crystal to hexagonal coordinates and then transforming
to thombohedral coordinates. A knowledge of the relations between re-
ciprocal and direct lattices is of fundamental importance in the determi-
nation of the dimensions of the direct lattice. These relations have been
discussed from this viewpoint for all important cases” except the hexag-
onal ones. :

The reciprocal relations for the hexagonal system are illustrated in
Fig. 5. It will be observed that the reciprocal of a hexagonal lattice is
another hexagonal lattice whose orientation is rotated 30° from that of
the first. The reciprocal of a hexagonal coordinate system to which a
rhombohedral crystal has been referred, however, is another hexagonal
coordinate system of identical orientation. This is to be expected because
the reciprocal of a rhombohedral lattice is another rhombohedral lattice
of different dimensions but identical orientation.

The determination of the length of a direct cell axis consists of:

(1) Measurements of the film equivalents of one or more reciprocal axes.
(2) The calculation of the actual reciprocal axes from these measurements.
(3) The transformation of these reciprocal axes to the corresponding direct axes.

In the case of the determination of the a axes of hexagonal crystals,
this consists of the measurements of the x values of the spots along either
one of the two position symmetry lines of the equator photograph for the
¢ axis rotation. Either the long diagonal identity period or the short
diagonal identity period along the diamond reciprocal cell may be so
measured. The resulting transformation to direct cell axes from one of
these reciprocal measurements is indicated in F ig. 5.

In the case of the determination of the ¢ axis by this general method,
the following points should be remembered. The equator photograph of
any zone containing the basal pinacoid may be used. In rhombohedral
crystals, only the orders of (0001) divisible by 3 can appear as reflections
due to the rhombohedral centering (Fig. 7), and, if the possible vertical
symmetry plane is a glide plane, only orders of (0001) divisible by 6 ap-
pear. Missing equatorial spectra also occur in the hexagonal crystals due
to space group symmetry operations.

" Reference 4, pages 276-283.
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REFINING OF LATTICE DIMENSIONS

In another place, one of the writers has called attention® to the possi-
bility of refining lattice dimensions derived from measurements made on
photographs taken with a single crystal, by means of the method which
Bradley and Jay® applied to powder photographs with great success. The
writers give examples of this technique applied to the refining of the lat-
tice dimensions of the Etta tourmaline. Measurements were made of the
film equivalent of the identity period along the short diagonal of the
reciprocal lattice. These measurements transform to the direct hexag-
onal axis with the aid of the relation:®

8 Buerger M. J., The x-ray determination of lattice constants and axial ratios of
crystals belonging to the oblique systems: Am. Mineral., vol. 22, pp. 424-425, 1937.

® Bradley, A. ., and Jay, A. H., A method for deducing accurate values of the lattice

spacings from z-ray powder photographs taken by the Debye-Scherrer method: Proc.
Phys. Soc., vol. 44, pp. 563-579, 1932.
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2N 7N
4,0 = —= -
2sin @ . x 360
2sin [ —-
2 21TTF

These calculations are conveniently arranged in tabular form as shown
in Table 1. The plotting of the drift of the observed lattice constant

7160}
ol

& 140k
130

C0s? o

Frc. 6

against the film position of the spot, in the form of cos® 0, is shown in
Fig. 6. This procedure leads to the following refined cell dimensions for
the Etta tourmaline, referred to a hexagonal frame:

15.928A
7.151

0.4490.

ml O
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TRANSFORMATION FROM HEXAGONAL COORDINATES TO
RuoMBOHEDRAL COORDINATES

In Fig. 7 the projection of part of a rhombohedral lattice upon (111)
=(0001) and a section along (101) = (1120) are shown. From these it is
apparent that a crystal based upon a rhombohedral lattice can be re-
ferred to a cell having hexagonal identity periods. If the hexagonal

,.-"brojecﬁon of
* (100 on (100

plan

, 001)= 1120)

l ! cross section
T along wol=w20

Fic. 7

identity periods are designated 4 and C, it is evident from Fig. 7 that
the rhombohedral identity period is related to it as follows:

- (3+)

from which, R
a = 3I\3ATF C. ey

Figure 7 also shows one of the rhombohedral faces of the thombohedral
unit cell projected on a plane parallel with itself. From this projection it
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can be seen that the rhombohedral interaxial angle, o, may be derived

from the following relation:
o A/2

sin — =

(2)

a
Substituting in (2), the value of a given by (1) yields the useful relation:
@ 64

sin — = —— .
2 /3474 C?
Another form of this relation may be obtained by substituting the value
of sin /2 given by (3) in the trigonometric identity:

3)

[24
2 sin? o =1 — cos a. “4)

This gives the rhombohedral interaxial angle in a form dependent only
on the hexagonal axial ratio, C/4, thus:

() -

a=cos!t | ——— (5)

(5)+e]

When these transformations have been applied to the hexagonal di-
mensions of the Etta tourmaline cell, the following rhombohedral cell
dimensions result:

a = 9.500 A
a = 66°05’
DiscussioN

While the cell dimensions given here are comparable with those of
earlier investigators, the other results differ radically in referring tour-
maline to a thombohedral lattice rather than to a hexagonal lattice. This,
of course, completely changes the space group of tourmaline and has a
radical effect on any attempt to derive the crystal structure of tourma-
line. The writers are continuing this aspect of the investigation.

It is believed that the earlier investigations went astray because their
methods (Laue and rotation) were not sufficiently powerful to resolve
reflections for a crystal with such a large 4 axis (about 16 A). The short
wavelengths of tungsten and molybdenum radiation employed contribut-
ed to the difficulty of resolving reflections, but it is doubtful whether
longer radiation would have helped greatly with the rotation method.
The long axis is, however, ideally handled with the equi-inclination
Weissenberg method.





