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ABSTRACT

The law of complication, advanced by Goldschmidt, rests on an empirical basis. In
this paper, the law is investigated rationally. It is shown that if missing terms are neg-
lected, any zone of any crystal must conform to the law of complication for purely geomet-
rical reasons. A transformation to ordinary Miller indices makes it obvious that the law
implies the fundamental property of permutable axes. Strictly permutable, non-identical
axes are only encountered in certain zones of certain classes of isometric, tetragonal and
hexagonal crystals, because this condition requires a properly located symmetry element
through the dominant node, 1. A re-examination of Goldschmidt’s evidence for the reality
of the law of complication indicates that this evidence points only to the statistical reality
of the law, and that individual zones of a given crystal species do not, in general, conform
to the law except in the special symmetry cases given above.

Two factors enter into mechanism of controlling the permutability of axes in a zone:
the lattice frame, which limits the slopes of crystal faces to definite values but which does
not prohibit any crystal from conforming to the law of complication, and the growth en-
vironment of the crystal. In any individual instance, the latter factor supplies the mecha-
nism for making the axes of a zone non-permutable. A statistical study of a given crystal
species from all environments, however, gives a mass of data from which the specific effect
of any individual environment is, at least partly, eliminated. Under these circumstances,
the data may fit the crystal species into the law of complication. Junghann’s addition-
rule aspect of the law of complication, although it implicitly includes Goldschmidt’s (essen-
tially) reciprocal term law, is a still poorer approximation because it is, without theoretical
justification, still more specific.

INTRODUCTION

Peacock! has recently refocussed attention upon the law of com-
plication because of its application in the calaverite problem.? This im-
portant generalization is due to Victor Goldschmidt,?® and is based
primarily upon a statistical study of the frequency of occurrence of
crystal faces. Goldschmidt noticed that, referred to the Goldschmidt
gnomonic projection coordinates, a zone, 0 - - - o, contained the face p
and its reciprocal 1/p with equal frequency, the simpler values of p oc-

! Peacock, M. A., Calaverite and the law of complication: Am. Mineral., vol. 17, pp.
317-337, 1932.

2 Goldschmidt, Victor, Palache, Charles, and Peacock, Martin, Uber Calaverit: Neues
Jahrb. Min., etc., Bl. Bd., 63-A, pp. 1-58, 1932.

3 Goldschmidt, V., Uber Entwickelung der Krystalliormen: Zeit. Krist.. vol. 28, 1897.
I, pp. 1-35; 11, pp. 414-451.

702



JOURNAL MINERALOGICAL SOCIETY OF AMERICA 703

curring more often than the complicated ones, of course. This implies
that crystal faces occur in zones according to the following plans:
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The main point of the law of complication is that the dominant node, 1,
stands symmetrically between reciprocals.

Goldschmidt further showed that in zones not containing the faces 0
and «, the zones could be stretched to do so, so to speak, by a trans-
formation consisting of substituting p— p1/p2— p for each term, p, of the
original series, py- - - p- - - po. The zone so transformed, also conforms
to the law of complication. More generally, the transformation may be
used rather freely to bring segments of zones into harmony with the
law.

The law of complication is of current interest because of its applica-
tion by students of surface morphology to the fixing of the axial ratio.
As it stands, it is completely empirical. Goldschmidt was inclined to
extend the law to cover the fields of music, color, and planetary astron-
omy, which lent it a distinctly mystical flavor. It is the partial purpose
of the present paper to give a rational analysis of the law of complica-
tion and to show that it rests on a purely geometrical basis in so far as it
concerns crystals.

THE LaAw oF COMPLICATION

Possible Indices. Suppose that in any crystal the basal pinacoid and
the unit dome are so chosen that the maximum value of % which appears
in indices is the same as the maximum value of /. As an elementary in-
stance, suppose the maximum value of %z and / does not exceed 3. Omit-
ting the % index number by confining attention to the pinacoidal profile
of a zone, the only possible indices which can appear are those formed by
taking all combinations of =0, 1, 2, 3, with[=0, 1, 2, 3. More generally,
suppose the maximum value of % and ! does not exceed #. Then, the sum
total of all indices which can possibly appear on the crystal can be con-
veniently represented by the square array:
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Several of the above combinations are identical. The only distinct ones are the.following:
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If a gnomonic projection is made of the crystal and the plane of projec-
tion chosen normal to the ¢ axis, as established in the first paragraph of
this section, the possible Goldschmidt indices, p, corresponding to those
given by square array, (2) are obtained by taking each index in (2), re-
ducing it so that the / index number becomes unity, and writing only the
other number corresponding to the reduced % index number, thus:
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The order of occurrence of these faces in the zone is as follows:
p=>22¢tc. 13121323 ctc. 55 (4)

The exact positions of the fractions involving #, with respect to the
definite numbers of the sequence, depends upon the value of #. The
symbol etc. stands for terms involving numbers between 3 and #. Regard-
less of the value of #, or the terms between 3 and #, however, array (3),
from which this series is derived, indicates that any term whatever has
a reciprocal an equal distance on the other side of the NW-SE diagonal.
In other words, reciprocals are symmetrically placed about the dominant
node, 1. This zone sequence, then, is identical with the complication
series V,.

This section may be summarized as follows: with the proper choice
of axes (proper choice of basal pinacoid and unit dome, say) the collec-
tion of all possible poles of a zone in the gnomonic projection must obey
the law of complication for purely geometrical reasons. This statement,
and the development given above, neglects the possibility of missing and
extra terms, which are also well known in actual crystals. These will be
discussed subsequently.

Permutable Axes. It appears that the law of complication is really a
complicated expression of something more simple and fundamental. If
one reverses the reasoning in the last section and assumes the law of
complication as empirically demonstrated, then sequence (4) may be
taken as a symbolic representation of the law. A rearrangement leads to
square array (3), from which a transformation to ordinary indices im-
mediately gives arrays (2) and (1). These arrays indicate that, if a face,
(hl), is present on a crystal, a face (Ik) is also present. In other words,
accepting the law of complication as a postulate, it implies that, so far
as crystal surface morphology is concerned, the crystallographic axes
may be permuted without affecting the indices of the faces. This conclu-
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sion is not at once obvious in the form of the law as given by Gold-
schmidt; the reason for this is that the gnomonic projection, used by
Goldschmidt for the expression of the law, is a distortion on which all
indices are reduced to make / equal unity. It is this distortion which
renders the law apparently complex. Indeed, the law of complication
might better be renamed, the law of permutable axes.

SIGNIFICANCE OF THE Law

An insight into the possible significance of “permutable axes” may be
gained by considering a cubic latticework: say, the two-dimensional
analogue of a simple cubic lattice. In a cubic lattice, the a; and ¢; axes
are symmetrically equivalent and therefore rigorously permutable in any
sense (neglecting the modifications introduced by point-group symmetry,
and considering only lattice symmetry proper). Hence, any face (/)
must necessarily be accompanied by a face (Jk), provided the crystal is
grown in an environment field at least as symmetrical as that of the
lattice. The two faces, (%) and (I%), are, of course, symmetrically located
on either side of the unit “dome,”” (11), which is Goldschmidt’s dominant
node in the law of complication.

If the cubic lattice is slightly distorted both with regard to angle and
lengths, it becomes a general two-dimensional lattice. Suppose, now,
that one assumes that with each lattice point is associated a sort of dis-
crete, self-contained, packet of atoms, both in the cubic and general
cases. Then, whether the packets pile together in cubic or general array
in any particular case will have very little control on which faces are left
exposed on the surface, for the significance of crystal system in this case
is mainly the type of packing required by the shapes of the packets them-
selves. In other words, with these simple assumptions, one might expect
that non-cubic crystals would show a sort of quasi-equivalence of ()
and (k) faces corresponding to those rigorously equivalent in the cubic
case.

If one modifies the simple assumptions just mentioned, and endows
the lattice-point packets with directional bonds, then practical equiva-
lence of (%) and (/%) no longer need hold for non-isometric crystals. This
is, indeed, borne out in the distribution of faces in actual crystals. The
very table used by Goldschmidt to demonstrate the statistical reality
of the law of complication, speaks plainly on this point. Three isometric
examples are cited, two with an analysis of the zone $0. Both of these
show ideal examples of the law of permutable axes, as they necessarily
must, for a; and a; are rigorously permutable for the two examples,
garnet and halite. The third example contains an analysis of the zone p1
in fluorite. The zone p1 implies reference axes, [011] and [100], which are
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not equivalent. The dominant node, 1, is flanked on one side by 2 and 3
and on the other with its reciprocals, but this is the limit of the ap-
plication of the law of complication, for there are, in addition, three
terms on one side of the dominant not having equivalents on the other,
and vica versa; this is to be expected in view of the non-equivalence of
the reference axes [011] and [100].

The effect of non-equivalence can be extended to the analysis of zones
of non-isometric crystals, for which Goldschmidt gives a list of 18 ex-
amples. Of these 18, used to prove the law of complication statistically,
only two are in rigorous accordance with the law individually: diopside
and copper vitriol. Every other example shows one or more terms with-
out corresponding reciprocals. Strictly speaking, then, the law of com-
plication is only a statistical truth. The reason for this is that, in a col-
lection of examples used for statistical study, a certain number of faces,
of a given particular type (k) will be present. Whether this index is
written (k) or (Ik), giving Goldschmidt indices, %/ or I/k respectively,
will depend on the convention of choosing the first or second axis as the
¢ axis. This is purely arbitrary in the general case, the triclinic system,
and the convention bears no relation to essentials in any other system.
In any statistical collection of crystals, therefore, there tends to be an
equal number of faces of Goldschmidt index p and 1/p. This is exactly
what Goldschmidt found, and it is on this basis that he suggested the law
of complication. It should be clearly understood that tkis is of no rigorous
application to any individual non-isometric crystal, or to an individual zone
referrable to non-equivalent axes in even an isometric crystal, or, in general,
to the case of an individual zone in which the symmetry of the crystal does
not require a symmetrical distribution of faces about the node 1. In general,
non-identical axes, can be rigorously permutable only in certain classes
of the isometric, tetragonal, and hexagonal system.

As a particular example of this feature, the Og zone of a pyrite crystal
of cubo-pyritohedral habit may be cited. The zone sequence is:

indices: 001 . . 021 010
q= 0 . . 2 o0 (5)

Not only is there no arrangement of reciprocals about the dominant node,
1, in this case, but the dominant itself is absent. Furthermore, the law
of complication is not necessarily followed by the crystal even when this
simple cubo-pyritohedral habit becomes more ornate by development
of additional faces. The truth of this can be instantly grasped by a glance
at the figures of pyrite collected by Goldschmidt.* The reason why

¢ Goldschmidt, Victor, A#las der Kristallformen, 6, 1920, Tafel 116, figures in the region
of 247-250, for example.
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pyrite does not adhere to the law of complication is that its point-group
does not contribute a properly located symmetry element through the
dominant node, 1, and therefore there is no strict requirement for
equivalent faces on each side of this node.

This non-equivalence of axes gives rise to missing or extra terms in the
complication series. Thus, in series (5) above, the term % is missing, or
the term 2 may be regarded as extra, depending on the viewpoint. In
many actual examples, the number of missing or extra terms is not large
and the correspondence of important simple terms with those required
by the ideal law of complication is good. Thus in Goldschmidt’s statis-
tical table used to demonstrate the law of complication, the term 1 ap-
pears in each of the 21 examples, as do also the terms 0 and o ; the term
2 and 3 find their reciprocals missing nine times, the terms ¢ and 2 find
their reciprocals missing twelve times; but the more complicated terms
do not give the law of complication much backing.

Mobrrving CONDITIONS

Cause of Non-permutable axes. It is evident that, for a particular crys-
tal having axes rigorously non-permutable in the zone in question, the
law of complication is, at best; an approximation. It is now desirable to
inquire into the nature of certain factors rendering the axes non-per-
mutable in an effort to ascertain to what extent the law of complication
may be used.

The entire law of complication as usually recognized, rests on the
appropriate appearance of external crystal faces. The appearance of a
crystal face is conditioned by two factors:

(a) A crystal face can only appear parallel to a lattice plane. The lat-
tice is the framework of crystal faces, and it provides the most fundamen-
tal control on their appearance by restricting slopes to certain permitted
values. If it were the only factor in the appearance of faces, i.e., if every
lattice plane appeared as a face on the crystal, then every crystal would
rigorously conform to the law of complications in its major aspect of
providing reciprocal terms symmetrically arranged about the dominant
node, 1. Furthermore, it would conform to the law regardless of the choice
of direction of crystallographic axes. This follows from the fact that
permuting any two crystallographic axes only has the effect of permuting
the index numbers corresponding to them. The more formal proof follows
the lines indicated in the section entitled Possible Indices.

If, instead of studying a crystal by means of the reflection of visible
light from external planes, it is studied by means of light of x-ray wave-
length reflected from internal planes, then the additional variables regu-
lating the appearance of external faces are of no importance, and the
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collection of planes so determined conforms rigorously to the law of
complication in its reciprocating aspect. This statement must be quali-
fied by noting that the complication series so determined contains missing
terms due to systematic extinctions caused by space group and atom
parameter requirements.

(b) The second factor which limits the appearance of external faces
is the accident of environment in which the crystal made its appearance
and continued growth. This set of variables is very complex, but the
general nature of its control is known. Generally speaking, the faces
which appear on the surface of a crystal are those whose growths are too
slow to permit them to be eliminated at the expense of other faces during
the growth process. This may mean either that the face in question
would not have been eliminated, or it may mean that it was on its way
toward elimination, but that the process was arrested by interruption
of the growth of the crystal. The last point is important, for it implies
that the forms observed on crystals are not necessarily equilibrium ones;
the elimination of a face of this sort depends on the size of the crystal
under observation, small crystals having a richer variety of faces which
are less representative of conditions of growth.

The relative growth velocities of crystal faces depend on a number of
conceivable factors, among which position in coordination energy series,’
temperature, supersaturation and especially impurity content of solu-
tion are important.5 The last general factor has been the theme of the
researches of Buckley,” who has been able to show that an impurity is
able to impede the growth of a crystal face provided the impurity ion
(etc.) has a configuration and nature comparable with units exposed on
the crystal face. This means that in all but the simplest and purest possi-
ble artificial solutions, the habit of the crystal is controlled by variables
of a very complex nature.

¢ The following papers give an introduction to this subject:

Stranski, I. N., Wachstum und Auflssen der Kristalle vom NaCl-Typ: Zeit. physik.
Chemie, vol. 17B, pp. 127-154, 1932,

Anderson, Paul A., The molecular process of crystal growth in hexagonal metals. Depo-
sition upon monocrystalline hemispheres of zinc: Physical Review, vol. 40, pp. 596-606,
1932.

¢ Many authors emphasize “‘recticular density” as a factor. The very term itself, how-
ever, has lost its significance since it has become apparent that crystals generally are not
built of molecular units, and that the units are not generally bonded by central forces.
In place of “recticular density,” a coordination energy series is important.

7 Buckley, H. E., The crystallization of potash-alum and the effect of certain added
impurities on its habit: Zeif. Krist., vol. 73, pp. 443-464, 1930. This is the first of a series
of papers by this author. Further contributions have appeared in the same place from time
to time up to the present year.
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APPROXIMATION FOR A SINGLE SPECIES

As mentioned previously, the first requirement, (a), puts very little
restriction on the development of crystal faces. The second, (b), however,
is the one which supplies the mechanism for actually making the axes of
a zone non-permutable, for the structural configurations of faces related
by the permuted indices are not the same. For any given impurity in the
solution, a particular crystal will, therefore, develop a certain set of
faces, which will not, in general, be in accord with the law of complica-
tion. There are two alleviating circumstances, however: Small crystals
may not have grown sufficiently to eliminate fast-growing faces, and a
small crystal, may, therefore, be more nearly in accord with the law of
complication. Secondly, if the study of a crystal species is based, not on
a single individual, or on a single crop, or on the representatives of a
single mineral locality, but rather if the study is based on numerous crys-
tals grown under a wide range of varying conditions, or on minerals
from a large number of localities, then the study takes on a statistical
aspect. In this case, there is a chance that differing solutions and other
conditions bring out different sets of faces, and that, therefore, the
sum total of all the faces represents a large number of the possible simple
lattice planes. This tends to eliminate the low symmetry effect of an
individual growth environment.

It is possible therefore, to utilize the law of complication if one does
not expect perfect agreement with it, provided the comparison with the
ideal law is made with the accumulation of all known crystal faces of
the species in question, and provided that a rather large number of ob-
servations has been made on crystals from many environments. As a
matter of fact, it is a statistical mass of data of this sort to which Gold-
schmidt has applied his law of complication.

It should be pointed out that this means of fixing the lattice of a crys-
tal actually consumes months of time for the accumulation of the neces-
sary data, not to mention the fact that one is never sure whether the
mass of data is really sufficient for the purpose. Against this one should
weigh the unigue method of fixing the lattice within a few days’ time
which is possible by x-ray means, utilizing the Weissenberg® method.

It should also be pointed out that x-ray methods are unique simply
because they do not depend on the development of surface planes but
rather upon internal planes. X-ray methods fix the lattice uniquely be-
cause they study the lattice directly; ordinary optical reflection methods

® Turnell, George, Determination of the space-lattice of a triclinic mineral by means of
the Weissenberg x-ray goniometer: Am. Mineral., vol. 18, pp- 181-186, 1933.
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are non-unique because they study this fundamental structure as modi-
fied by other complex variables,—because they thus study a secondary
property.

S pecial Cases. There is one group of special cases in which individual
actual crystals with non-permutable axes may nearly conform to the
law of complication, namely: the appropriate zone of a crystal which is
based upon a high symmetry isometric frame, or more generally, the ap-
propriate zone of a crystal whose axes are semi-permu table because they
correspond to really permutable axes in a framework of proper symmetry.
The simplest example of this is a crystal whose essential structural plan
is simple, but which has a superstructure which lowers the symmetry.
The compound AuCu is a representative of this relation. Both Au and
Cu alone have cubic close-packed structures; the compound AuCu also
has a cubic close-packed structure if one does not distinguish between
Au and Cu atoms. The mutual arrangement of these two sorts of atoms,
however, gives the space pattern of the compound tetragonal symmetry.
PtCu, similarly, has a thombohedral superstructure modification of cubie
close-packing. 8-brass, CuZn, must also belong to this class of crystals.
Its essential arrangement is body-centered cubic (usually spoken of by
metallographers, however, as cesium chloride type); it is thought to have
a cubic superstructure, but actually the crystals are anisotropic by re-
flected, polarized light, so the symmetry is no greater than tetragonal. A
slightly different aspect of this relation is given by martensite, which is
a-iron with up to 6% carbon. This has an essentially body-centered
cubic structure with a few carbon atoms placed interstitially in such a
way as to degrade the symmetry of the structure to tetragonal. Unfor-
tunately, crystals of these compounds are not known with well-enough
developed faces to test their approximate conformation to the law of
complication.

THE ADDITION RULE

Finally, it should be noted that the appearance of crystal faces in the
law of complication is an aspect of the addition rule.? This is easy to see
in a simple series, say Ns. Combinations of all possible index numbers up
to 3 give:

indices=01 13 1
N3= 0 %

23 11 32 21 31 10 (6)
z 1 3 2 3 = (7)

LS o

It will be observed that the addition of any two indices separated by an

¢ Rogers, Austin F., The addition and subtraction rule in geometrical crystallography:
Am. Mineral., vol. 11, pp. 303-315, 1926.
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odd number of indices, gives the index half way between the two. This
property can be easily demonstrated in simpler cases down to the limit-
ing series, Ni. This suggests that it can also be generalized to higher
series. If so, the next higher series, Ny, can be produced by adding ad-
jacent indices to obtain the new ones appearing between them. Applying
this to (6) gives,

01 14 13 25 12 35 23 34 11 43 32 53 21 52 31 41 10 (8)

02 % 3% 2 %83 21433243 40 ©)

The corresponding series of Goldschmidt indices (9) has the new terms
1 %, %, 4, and their reciprocals. These new terms are just the ones which
Goldschmidt’s statistical study indicates to actually occur next in order
of importance, and series (9) is indeed complication series N.. Further
tests of the addition rule in predicting actual complication series cannot
be completely carried out, for lack of sufficient data on the more com-
plicated faces. It can be said, however, that the terms which Gold-
schmidt’s statistical study indicates to occur next most abundantly are
among those to be obtained by an extension of the addition rule. Gold-
schmidt arrived at an identical ideal complication series by what he be-
lieved to be the rules of combination of crystal forces to give crystal
faces.1

The occurrence of faces according to the addition law was first recog-
nized in anorthite by Junghann.!! Subsequent writers have investigated
this property empirically for other crystals, as well as theoretically. A
summary of the development of this subject is given by its latest contrib-
utor, Baumhauer.2

Goldschmidt’s statement of the law of complication may be said to
be included in Junghann’s empirical addition law. Thus, given any two
pinacoids, the indices are taken as 01 and 10. Adding these gives 11,
which gives the first Goldschmidt series Ny, etc. Junghann’s law is more
restrictive than Goldschmidt’s, however, for it definitely predicts the
required new indices for any given complication. Actually, Goldschmidt’s
law does the same, but in his case, more emphasis has been laid on the
symmetrical arrangement of reciprocal terms on each side of the
dominant, which gives it a more general aspect. It should be pointed out

10 Reference 3.

I Junghann, Gustav, Ein einfaches Gesetz fiir die Entwickelung und die Gruppierung
der Krystallzonen: Pogg. Ann., vol. 152, pp. 63-95, 1874.

2 Baumhauer, H., Untersuchungen iber die Entwickelung der Krystallflichen im
Zonenverbande: Zeit. Krist., vol. 38, pp. 628-655, 1904.
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that up to the series Nj, there is no difference between Junghann’s rule
and Goldschmidt’s (essentially reciprocal) law, because N uses every
possible combination of =0, 1, 2, 3 with /=0, 1, 2, 3. In the next se-
quence, Ny, all combinations with 4, and some, but not all, combinations
with 5, enter (see sequences (6), (7), (8), and (9)). Higher series are still
less regular, according to the strict interpretation of the addition rule.
In spite of Goldschmidt’s statistical evidence, however, it is the recipro-
cating aspect which individual crystals most nearly obey, not neces-
sarily the addition principle. Thus, anorthite, which Junghann!! used to
demonstrate the addition rule, conforms to that rule without missing
terms only to Ny, beyond which it is abnormal. Goldschmidt’s law implies
permutable axes in all crystals, while the addition rule, strictly applied
not only implies this but much more with regard to the appearance of
particular faces. Needless to say, crystals are found to conform more
nearly to the less restrictive Goldschmidt reciprocal term approximation
than to the highly restrictive addition rule approximation.

SUMMARY

1. A rational derivation of the reciprocal term aspect of the law of com-
plication is given, and it is shown that the significance of the law is more
easily understood divorced from the gnomonic projection. It is then
evident that the law of complication might better be renamed the law
of permutable axes.

2. The law of complication is, at best, a poor approximation, both
theoretically and as shown by actual crystals. It implies permutable axes
in the zone in question, which are actually only realized in certain zones
of certain classes of the isometric, tetragonal and hexagonal systems. A
rigorous application of the law of complications can only be made for a
crystal having an appropriately located symmetry element through the
dominant node, 1.

3. The lattice proper does not restrict the application of the law of
complication, but the growth of external faces supplies the mechanism
for the non-permutable character of axes. However, if the crystal species
is studied statistically, i.e., if the comparison with the law is made on the
basis of crystals from many growth environments, then the effect of any
particular environment may be, in part, eliminated. Only in this way
can the law of complication be compared with the actual occurrence of
crystal faces.

4. Certain crystals based on cubic, tetragonal or hexagonal patterns,
but with a superstructure, may conform to the law of complication.
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5. The strict addition rule is a still worse approximation to the actual
occurrence of crystal faces than Goldschmidt’s law of complication in its
reciprocal term aspect, because the addition rule is still more restrictive,
with no better theoretical basis.



