CRYSTAL CLASSIFICATION AND SYMBOLISM

D. JEROME FISHER, University of Chicago.

Abstract

In Figure 1 crystals are classified according to increasing symmetry into two phyla (axial and axihedral), three divisions (trimetric, dimetric, monometric), six systems, seven systems and subsystems, seven families (monaxial, polyaxial, anastrephaxial, orthaxihedral, monaxihedral, mesaxihedral, and polyaxihedral), fourteen orders (rows), and thirty-two point groups or classes. This would seem to offer a wide range of choice which might reasonably satisfy all or at least most wants outside of those concerned with crystal structure itself. In addition attention is called to three diagonal rows, which however embrace only 20 of the crystal classes. The Mauguin system of symbolism for both space and point groups is briefly recapitulated, as is the Schoenflies method. The former is recommended.

INTRODUCTION

This paper has as its main object the presentation of a classification of crystals in which these solids are so arranged that existing symbolism and nomenclature are more readily comprehended, especially by the beginning student. Apparently nearly every crystallographer (mineralogist, physicist, chemist, metallographer, etc.) who has given much thought to the matter, has had some unique ideas as to the arrangement and designation of crystal classes. The former is of relatively minor significance; the latter is unfortunate, as it tends to cause real confusion.

PRESENT CLASSIFICATION

The chart (Fig. 1) is divided into seven columns on the basis of total symmetry, and into fourteen rows based on the type of symmetry of the (unique) crystal axis. The columns are in two major groupings (phyla), depending on whether axes only (axial) or both axes and planes (axihedral) are present.¹ The rows are in three major groupings (divisions), giving the most useful classification of crystals from the optical point of view.

Each column includes three to six crystal classes; this grouping of classes is of morphological value, and so names are given to these **families**, as shown at the top of each column in Fig. 1. The columns are in accord with Schoenflies' symbolism (11, 148–149)² as is indi-

¹ The monoclinic clinohedral class (Cs=m) is in the former, since its symmetry can be regarded either as a two-fold inversion axis or as a plane (but it can hardly be considered to be axihedral).

² Numbers in parenthesis refer to titles (and page numbers where appropriate) listed at the conclusion of this article.

cated. The names are similar to those applied by Swartz (12); the significance of each is given in the chart.

Each crystal **system** (or **subsystem**) embraces two rows (orders),³ except there is but one for the orthorhombic and there are three in the isometric. Four rows have but one class each, and six have but two; two rows have three classes each, and two have five. The characteristic symmetry marking each row is shown on the left; it is the same for rows 4 and 5, which are separated because of systematic differences. Omitting the first three rows, each of which has but one class, the number of classes in each pair of rows for 2-, 4-, 3-, and 6-fold axes is 5, 7, 5, 7, 5; the last figure is for the three isometric rows.

This results in 89⁴ "boxes" (rectangles), 32 of which represent crystal **classes** or **point groups**. The data given in each of the rectangles are explained at the base of the chart on the left. Excepting the isometric system, five classes may be considered to belong in each family (one for each of a 1-, 2-, 3-, 4-, and 6-fold simple or inversion axis), but duplication and non-crystallographic symmetry reduce this number of 35 to 27, as is explained below.

Schoenflies (11) has three non-isometric families: cyclic (C), dihedral (D), and sphenoidal (S). The first with a single (simple) symmetry axis has three subdivisions which include those classes without planes (C_n), those with a single (horizontal) plane (C_n^h), and those with several (vertical) planes (C_n^v). The dihedral family with symmetry one principal *n*-fold axis and *n* 2-fold axes normal to it also has three subdivisions: those classes without planes (D_n), those with diagonal planes (D_n^d), and those with both vertical and horizontal planes (D_n^h). Moreover D gives way to T (tetrahedral) or O (octahedral) in the isometric, the only system with more than one axis of greater than 2-fold symmetry⁵ [and D may be shown as

³ To save space, and since combining rows 1 and 2 makes no difference in the sequence of numbering the crystal classes, these are shown as a single row numbered 1-2 in Fig. 1. Class 1 is in row 1 and class 2 is in row 2. Names instead of numbers may be used for the rows as is done for the columns (families); thus row 10 becomes the hexagonal inversion order, row 8 the rhombohedral order, etc.

⁴ Boxes III-10 and IV-10 are combined into a single one for reasons pointed out later. Since boxes IV-1 and V-1 are similarly combined, what is referred to as rows 1 and 2 in Fig. 1 contains but 6 boxes.

⁵ Since only families with multiple symmetry elements (at least three each of at least two types of symmetry) can be represented in the isometric, it is clear why Cn, Sn, and C_n^h are not so represented. Similarly C_n^v is not represented because while it

V (vierer) or Q (quadratic) in the orthorhombic and in the scalenohedral class of the tetragonal system]. The sphenoidal family (S refers to an alternating axis) has two analogous subdivisions (see footnote 14). The writer's families thus agree with Schoenflies' sub-divisions, but his two major groupings (axial and axihedral) contrast with those of Schoenflies.

Monaxial family (column I of Fig. 1) includes those classes with but a single (simple) rotation axis of symmetry and with no other symmetry. Of necessity such axes are polar, and the crystals may be regarded as hemimorphic.⁶ Rotatory polarization as well as pyro-and piezo-electric phenomena are possible in the crystals of this family. Since the only simple axes occurring in crystals are 2-, 3-, 4-, and 6-fold, these four classes and the one with no symmetry at all (which may be regarded as having a simple 1-fold rotation axis) complete this simplest family. The Hermann-Mauguin symbol⁷ (7) for each of these classes is the same as the expression of the total symmetry by this system of notation, the principles of which are explained in the lower right portion of Fig. 1.⁸

Polyaxial family including those classes with several symmetry axes, but lacking planes or center, contains all enantiomorphous⁹

may be considered as polysymmetric, its symmetry is "one-dimensional" (all elements parallel one direction), not "three-dimensional" as required by the isometric. Thus only three families can have isometric representatives, and since there are only three types of "principal axis" (Fig. 1) present in this system, and one of these is an inversion axis, it is clear that at most two isometric classes can occur in any one family, and but one can occur in that polysymmetric family (mesaxihedral) characterized by the presence of an inversion axis.

⁶ Hilton (5, 92) includes only those crystals in class no. 4 (C₂=2) of Fig. 1 of the monaxial family as hemimorphic, although the symmetry axis in each of the monaxial classes is polar. If hemimorphic forms are limited to those which may be regarded as but half (one end) of the corresponding holohedral forms, then monaxial classes of the dimetric division are not hemimorphic; Dana's *Textbook of Mineralogy* (1932 ed. by W. E. Ford, pp. 103, 118, 131) states that they are hemimorphic.

⁷ This type of symbol, first proposed by C. Hermann, was greatly simplified and owes its present form to the efforts of Ch. Mauguin.

⁸ W. Soller (*Am. Mineral.*, vol. **19**, p. 412, 1934) unfortunately suggests that the Mauguin symbol for the even-numbered inversion axes be used for alternating axes instead; the rule of priority, if no other, prohibits the acceptance of this suggestion.

⁹ Hilton (5, 92) does not list class no. 28 (T=23) of Fig. 1 as containing enantiomorphous forms. Tutton (14, 131) lists the eleven classes of the monaxial and polyaxial families as enantiomorphous, as does Jaeger (6, 79), who links this property with optical rotatory power, at least in most cases (pp. 256, 261–262, 268). If screw axes are essential for optical rotatory power, representatives of class 1 and of certain space groups (see Table 3) of all other monaxial and polyaxial classes

forms. Rotatory polarization is also possible in the crystals of this family, as it is among those of the monaxial family, though difficult to observe in crystals of those classes of these families belonging in the trimetric division. Representatives of classes Nos. 17 and 28 may show pyro-and piezo-electric effects. The non-isometric crystals of the polyaxial family are characterized by one *n*-fold axis with *n* 2-fold axes normal to it. If n=1, the symmetry is that of the monoclinic sphenoidal class (C2=2); thus only four non-isometric classes appear in this family.

The Hermann-Mauguin symbol for each of the polyaxial classes (except $D_2 = 222$) is a simplification of the expression for the total symmetry, as is indicated in Fig. 1. Mauguin (7, 545) does not use superscripts as shown in parentheses in certain rectangles of Fig. 1 to indicate the total number or amount of any given kind of symmetry element present. In the dimetric division his symmetry elements are listed in this order: vertical axis, horizontal axis and/or (horizontal or vertical) planes, if any; where there are 2-folds normal to the planes (and therefore centers of symmetry) this is not specifically indicated by Mauguin's slightly abbreviated symbolism which drops the 2; this is also true in the orthorhombic and isometric systems. In the isometric Mauguin lists the symmetry elements in this order: axes parallel cube edge, cube diagonal, and cube-face diagonal; 4-folds normal to planes (class No. 32 = Oh =m 3 m) or 2-folds in the third place (class no. 31 = 0 = 43) are not indicated in the abbreviated point-group symbolism. Each isometric point-group has the numeral 3 as the second unit of the point-group symbol, whereas 3 is the first unit in the symbol of each of the five rhombohedral classes, none of which has a horizontal plane of symmetry.

Anastrephaxial¹⁰ family (sphenoidal of Schoenflies) includes those classes with but a single inversion axis of symmetry (rotary inversion); these classes can also be derived in terms of single alternating axes of symmetry (rotary reflections). In fact an inversion 4-fold gives the same results as an alternating 4-fold; otherwise the correspondence is less obvious, as shown by Table 1.¹¹ The

¹⁰ Term derived from the Greek *anastrepho* (turn upside down, invert) and *axon* (axis), with the kind assistance of Professor G. E. Smith.

¹¹ Classes developed from only the even-numbered inversion axes form the

must lack this property. Screw axes also occur in various space groups of D2d=42m and of all orthaxihedral classes except C3h=6. See F. Bernauer: Gedrillte Kristalle, 1929.

Alternating Axes (Sn) (rotary reflections)	Inversion Axes (C _n ⁱ) or (nc) or (n̄) (rotary inversions)
S2	$Ci = C_1^i = \overline{I} = i$ (inversion or center)
S = S1	$2c = \overline{2} = m$ (plane)
S6	$C_{3}^{i} = \overline{3}$
$C'_{4} = S4$	4c = 4
S3	$6c = \overline{6} = 3/m(3-fold with normal plane)$

TABLE 1. CORRESPONDENCE BETWEEN ALTERNATING AXES AND INVERSION AXES

writer prefers the inversion axes because $\overline{3}$ (3-fold inversion axis) is found in the rhombohedral subsystem, $\overline{6}$ in the hexagonal subsystem, whereas the reverse is true if alternating axes are used, the tendency then being to hide the true symmetry relationships as is shown by the fact that some writers include hexagonal classes in the rhombohedral and vice versa. Moreover, if alternating axes are used, putting what corresponds to the anastrephaxial family in the axial phylum might seem inconsistent.¹² The Herman-Mauguin symbol for each of the anastrephaxial classes is the same as the expression of the total symmetry by this system of notation, as is true for the monaxial family. Pyro- and piezo-electric phenomena are possible in the crystals of class no. 3 (Cs=m) of this family. As those other classes in this family in which *n* is odd have a center of symmetry, their representatives cannot be expected to exhibit such phenomena (6, 101).

Orthaxihedral family, each class of which has but one axis normal to one plane, has but four classes, as where n=1 the symmetry is the same as that of the monoclinic clinohedral class (Cs=m), placed by preference in the anastrephaxial family. In the classes of this family in the dimetric division, as in those of other families that have both axes and planes of symmetry, are the di-forms, except disphenoids. Orthaxihedral classes except

groups nc (17, 15) and lack a center of symmetry. Classes derived from only the odd-numbered inversion axes have a center of symmetry, and Rogers (10, 172) prefers to refer to these only as alternating axes ("rotoflections"). Only the latter (anastrephaxial) classes are given the symbol C_n^i , which may also be used for orthaxihedral classes nos. 5, 13, and 25 of Fig. 1 (17, 15). All these symbols have been conveniently summarized by Davey (3, 218–221).

¹² Of course the "alternating planes" are present, whether the symmetry is regarded as alternating axes or inversion axes. Classification is primarily for purposes of convenience in bringing out certain relationships which one wishes to emphasize. Therefore it is considered permissible to put this family where it is in Fig. 1. Swartz (12) chose to stress alternating axes; therefore used the term *amebaxial*. class no. 5 ($C_{z^h} = 2/m$), the holohedral of the monoclinic system, are paramorphic, as is also class no. 29 (Th = m3) of the isometric (5, 92). Orthaxihedral classes in which *n* is an even number have a center of symmetry.¹³

Monaxihedral family which contains classes with several planes of symmetry meeting in one axis of symmetry, has but four classes, as where n=1 there could be but one plane, which leads to the monoclinic clinohedral class (Cs = m) of the anastrephaxial family. The axis is polar and the representatives, which may show pyroand piezo-electric effects, are hemimorphic (cf. monaxial family), as are those of class no. 30 (Td = $\overline{4}3m$) of the mesaxihedral family, according to Hilton (5, 92). Ordinary polar axes are not confined to the monaxial and monaxihedral families, but are also found in classes nos. 17 (quartz), 22 (benitoite), 28 (cobaltite), and 30 (sphalerite) of Fig. 1. Representatives of all these (as well as those of class no. 3 = Cs = m) may exhibit pyro- and piezo-electric phenomena. The Mauguin symbol (mm) for class no. 7 (C_2^v) of the monaxihedral family does not directly show the 2-fold axis present, since if a crystal has but two perpendicular planes of symmetry, their line of intersection must be a 2-fold axis.

Mesaxihedral family, including those classes with both planes and symmetry axes, but with no plane containing more than one symmetry axis, and all planes lying midway between (Greek *mesos*) symmetry axes, embraces but two non-isometric classes, as is indicated in Fig. 1. Where n=1, this family produces class no. 5 $(C_2^h=2/m)$, already placed with the orthaxihedral family. Where n=2 and 3, this results in classes nos. 10 and 20 of the mesaxihedral family, whose principal axes have symmetries of $\overline{4}$ and $\overline{3}$ respectively, higher than those of the starting symmetry because of the demands of the planes and the other axes. Similarly where n=4 and 6, this leads to principal axes of alternating 8- and 12-fold symmetry respectively, axes non-existent in crystals.

The mesaxihedral family thus bears a close relation to the anastrephaxial family; in each class in either family the principal axis is an inversion axis, or may also be regarded as an alternating axis.¹⁴

¹³ It should be pointed out that class no. 21 ($C_3^h = \vec{6}$) may be placed equally well with either the anastrephaxial or orthaxihedral families as is indicated in Fig. 1. Schoenflies preferred it in the latter as shown by his choice of symbol (C_3^h instead of S3). Mauguin's choice of symbol ($\vec{6}$ in place of 3/m) indicates the reverse, probably because he wished to emphasize its hexagonal symmetry. It is the only non-Triclinic class represented by but a single space group.

¹⁴ Thus Schoenflies gave S_4^{u} as alternative for D_2^{d} and S_6^{u} as alternative for D_3^{d} ,

In no other classes are inversion axes present as crystal axes, except in class no. 22 (benitoite)¹⁵ of the polyaxihedral family [and also excepting class no. 21 ($C_3^h = \overline{6}$), included in both orthaxihedral and anastrephaxial families of Fig. 1]. The classes of the anastrephaxial and mesaxihedral families having n an odd number contain a center of symmetry. Representatives of those lacking a center of symmetry (excepting the tetragonal classes) may exhibit pyroand piezo-electric phenomena.

Polyaxihedral family with several planes of symmetry each of which includes at least two axes of symmetry (four in class no. 32 = Oh = m3m) embraces but four non-isometric classes, as where n = 1, this leads to class no. 7 ($C_2^v = m$ m) in the monaxihedral family. The family includes four holohedral classes. As is true of the classes of the orthaxihedral family, all polyaxihedral classes with n an even number have a center of symmetry, as do the two isometric classes having inversion 3-folds. Representatives of class no. 22 ($D_3^h = \overline{6}m$) are the only ones which may exhibit pyroand piezo-electric phenomena.^{15a}

GENERAL DISCUSSION

It will be noted that twenty of the classes lie on three **diagonal** rows trending northwest-southeast (map parlance) in Fig. 1. These diagonal rows consist of classes numbered 1,¹⁶ blank, 3, 5, 7, 10,

 S_n signifying a rotary reflection and the u (Umklappung) referring to rotation about the 2-fold axes.

¹⁵ Class no. 22 ($D_3^h = 6m$) is here put in the polyaxihedral family because each of its planes *contains* two symmetry axes; i.e., it is *not* mesaxihedral (see footnote 18). Mauguin (7, 545) chose 6.2 m as its symbol, which is analogous to the symbols of the mesaxihedral classes. Bernal et al (1, 529) have since abbreviated this to 6 m. Had the symbol 3/m 2 m (or 3/m m) been chosen, this would have tended to hide the hexagonal nature of the class, but the present symbol serves to mask its true family relations. Bragg (2, 86) puts 6 m with 4 2 m (no. 10 of Fig. 1) forming the groups n d (17, 15) and with 4 3 m (no. 30 of Fig. 1), and places 3 m (no. 20 of Fig. 1) in his last column, which thus consists of five holohedral classes (all except monoclinic and triclinic, assuming a holohedral rhombohedral class) forming the groups D_n^i (17, 15) plus Oi=Oh.

¹⁵⁴ Willi Kleber has recently (*Centr. Min., Geol. u. Pal.* A(9), pp. 241–250, 1934) derived the 32 classes by using the stereographic projection. He puts them in six families: cyclic (5 classes), dihedral (4-none isometric), gyroidal (3 plus $C_{3}^{h} = \vec{6}$), spiegel (14 plus $C_{3}^{h} = \vec{6}$), tetrahedral (3), and octahedral (2). Cyclic is monaxial; dihedral is polyaxial lacking isometric representatives; gyroidal is anastrephaxial less $C_{s} = m$; tetrahedral and octahedral embrace the isometric classes; and spiegel includes all the rest.

15-4, 6, 9, 13, 18, 20, 22-11, 17, 19, 21, 25, blank, 30, 32. Each diagonal row is separated from its neighbor by two boxes (going vertically), except the right hand part of the lowest diagonal row is shifted one box lower because of the intermediate nature of class no. 21 ($C_3^h = \overline{6}$). These three diagonal rows sweep across the whole chart from class no. 1 to class no. 32. The major significance of these diagonal rows seems to be that they indicate a proper sequence of class arrangment; that is, as one proceeds downward across the rows (orders), thus in general increasing the symmetry of the "Principal Axis" (Fig. 1), one also goes with equal regularity to the right from one family (column) to the next, thus more or less automatically adding on other (consequential) elements of symmetry.

While rows 3, 4, and 5 can be collapsed into one, as can rows 6 and 7, 8 and 9, and 13 with 12 or 14, the diagonal rows are then destroyed. Suppose the tetragonal classes (rows 6 and 7) are put intermediate between the rhombohedral and hexagonal classes, as has been done by some;¹⁷ then the diagonal row symmetry is almost completely removed. The polyaxial family can be bodily interchanged with the anastrephaxial family without even altering the class numbers; in fact the writer's first charts did this. But then the diagonal symmetry is broken.¹⁸ Although several simple axes (polyaxial family) may seem to some to be more complex

¹⁶ What is shown as the top row in Fig. 1 in reality consists of two rows, as is indicated by the numbering on the right.

¹⁷ The basis for this is presumably the fact that the 3-fold type of axis is regarded as having a lower grade of symmetry than does the 4-fold. This is incorrect, as can be seen by comparing an alternating 4-fold with the simple and inversion 3-folds. By analogy then the inversion 6-fold (row 10) should be separated from the 6-fold (row 11) by the 4-fold (row 7), thus splitting the hexagonal subsystem itself. If rows are arranged in the order of $3, 4, \overline{3}, \overline{6}, 4, 6$, there is one partial diagonal row, which however does not join with either trimetric or monometric classes. If put in the order $3, \overline{4}, \overline{6}, \overline{3}, 4, 6$ there are three diagonal rows (two of them partial), two of which are "hanging," but the third and major one (which however is partial, having two blanks) joins class no. 29 (Th=m 3) of the isometric. Neither of these arrangements compares favorably with that of Fig. 1 from the point of view of diagonal rows. Moreover the very close relationship between hexagonal and rhombohedral subsystems is sufficient to preclude the desirability of separating them by the tetragonal system.

¹⁸ A further note regarding the position in Fig. 1 of class $22 \ (=D_3^h = \vec{6}m)$ is here justified, as it will be noted that were this class put as straddling the mesaxihedral and polyaxihedral families, it would add one more class (no. 27) to the intermediate diagonal row; moreover both (all) the classes of the hexagonal inversion order would then be of this duplex nature. If the definition of the mesaxihedral family be changed to read "with all planes lying midway between crystal axes (which are not

than a single inversion axis (anastrephaxial family), this is not true, since the latter involves two kinds of symmetry, the former but one. In reality the anastrephaxial family is intermediate between families I and II and the families of the axihedral phylum; this is indicated by the intermediate position of class no. 21 $(C_3^h = \overline{6})$; by the fact that most morphologists think of class no. $3 (C_5 = m)$ as having symmetry of but one plane, no axis;¹⁹ and by consideration of the two kinds of symmetry present in the symmetry unit of each class of the anastrephaxial family. It may also be added that the eleven classes of the monaxial and polyaxial families which are in juxtaposition in Fig. 1 are the ones containing only symmetry elements of the first sort (involving nothing but simple rotations), and so correspond to those derived first by Schoenflies (11, 74).

SPACE LATTICES AND SPACE GROUPS

The advantages of the Hermann-Mauguin over the Schoenflies symbolism are not apparent from Fig. 1 or from any study limited to the point-groups (crystal classes). For that reason there is here added Tables 2 and 3 which show the extension of this symbolism to the 230 space groups. Table 2 summarizes the data regarding the fourteen Bravais space lattices and their five variants. In space group terminology no subscripts indicating the system as shown in the table are necessary, since the system of the lattice in question is apparent from the other symmetry indicated by the Mauguin symbolism.²⁰ There are taken to be but six primitive lattices, as is shown in Table 2, since the hexagonal lattice Ch

symmetry axes in class 22)" and if the qualification of "no plane containing more than one symmetry axis" be omitted, then class 22 would properly be regarded as belonging to both families. The position shown in Fig. 1 is however preferred, since the whole table is based on symmetry and not on crystal axes (where the two do not coincide), and it hardly seems wise to make an exception for a single class. Moreover some have made the *a*-axes coincide with the 2-folds in this class (e.g., see 18, 37; 12, 31; and 16, II), although this is unfortunate, since it makes the first order forms hexagonal and the second order forms trigonal, contrary to the order in all other hexagonal classes. For examples of proper orientation see 10, 190; 16, III, VII; and Ford: Dana's *Textbook of Mineralogy*, 1932, p. 119. In addition with class 22 left as it is in Fig. 1 there is the normal number of five non-isometric classes in the polyaxihedral family (allowing for duplication), as is also true for the mesaxihedral family (remembering that two classes are missing from this family because of the non-occurrence in crystals of 8- and 12-fold alternating axes).

¹⁹ Thus it has been called the anaxial class (*Am. Mineral.*, vol. 12, p. 219, 1927).
²⁰ Pa (anorthic) is preferred for brevity to Ptr (triclinic). While R is the standard

(which is also primitive in the ordinary sense of the word) may be regarded as a special case of the (001)-centered orthorhombic (three pinacoids) lattice (Co) where the edges $a:b=1:\sqrt{3}$. The rotation of the *a*-axis of this lattice 30° produces the larger variant designated $H.^{21}$

Three body-centered lattices (I)

Io corresponding to Po; It corresponding to Pt; and Ii corresponding to Pi.

Three lattices with a single centered (001) face (C) [plus four variants marked*]

Cm (cf. Pm); Co (cf. Po... variants are *Ao and *Bo which are the same except for orientation); *Ct (cf. Pt of which it is a variant); and Ch (special case of Co where $a:b=1:\sqrt{3}$... variant *H is similar except rotated 30°, so that $a:b=\sqrt{3}:1$; lattice Ch is same as that consisting of a 60° orthorhombic prism with basal pinacoid, three of which units form a hexagonal prism with centered basal pinacoid).

Two lattices with all faces centered (F); [plus one variant marked*]

Fo (cf. Po); *Ft (cf. Pt. ... variant of It); and Fi (cf. Pi).

Notes: Cm and Co may be regarded as rhombic prisms with basal pinacoid. Fo is same as body-centered orthorhombic prism with basal pinacoid; it is also the same as an orthorhombic dipyramid. Io is same as orthorhombic brachy- and macrodomes. Ct is same as four units of Pt. It is same as a second order tegragonal dipyramid; rotating it 45° to the first order form (and translating it parallel c onehalf the unit distance) leads to the variant Ft. Fi corresponds to the octahedron, or the rhombohedron with 60–120° face angles, four of which rhombohedra constitute a dodecahedron. Ii corresponds to the rhombohedron with face angle of 109° 28'.

symbol for the rhombohedral lattice, Pr might be preferred by some morphologists since it better indicates the analogy with the other primitive lattices.

²¹ Schiebold (9, 32) uses Ch for this, and Ph for the lattice designated Ch by Mauguin. From the point of view of space group notation it is better to omit P from the designation of either hexagonal or rhombohedral lattices.

	guin Ibol	Other	orien-	tation				51	(.4m2	C4c2	C4m21	$C4c2_1$	P4m2	P4c2	P4b2	F4n2	1402	F4m2	F4d2	53	55	E + C	53	÷.	C422	C4.23	C41221	C422	C4221	C4322	C43221	F42	C4/m	C42/m	C4/a	C41/a	F4/m	F42/d	
	Mau	Normal orien- tation						P4	P.47m	p47c	P421m	P42,c	C 4 2m	C42c	C42b	C42n	F42m	142m	1424	P4	P41	142	143		P42	1744	P4121	P42	P421	P432	P4321	147	p4/m	P4~/m	P4/n	P42/n	I4/m	I41/a	
ľ	-	Jadmuv	sə	iftn	1901	45S			-	• (100	4	5	9	-	x x	¢ 5	1	12	-	21	0 -	+ v	0		4	о н	no.	9	-	x 0	20	-	~	2	9 4	ŝ	9	
Class Number Schoenlies Symbol								9-S4	10 104	D70101										11-C4					12-D4								121121	11-7-61					
	1	odmuN o	Ino	cı.	ອວາ	eds	5	121	10	10	62	80	81	82	83	84 54	22	82	88	68	83	16	76	76	65	80	80	66	100	101	102	103	5	100	201	108	109	110	
	Mauguin symbol	Other orientations	l	-		1bm	1.	1 1 1 1	Pbmb, Pmaa	Pcna, Fncb	Pmmo, Fmam, Fmcm, Founn	Dawh Pasa Paca Phon	Penn	Pamb. Pman. Pacm. Phmn	Penn	Pccb, Pbab, Pbcb, Pbaa	Pcaa	Plank Phase	Physic, Pram. Pemb. Pmab	Pmca	Pnmn, Pmnn	Pmnm, Pmm	Pbna, Pcan, Pcnb, Pnab	Pacel.	Pnam, Phum, Pcnm, Pmnb	Pmcn	Ccmm, Amma, Amam, Bmmb	Come Ahma Abam Bmab	Bbarn	Ammm, Bmmm	Amaa, Bbmb	Abmm, Bmam	Abaa, Bbaa	t	1	Thurs Trees	TOHIA, HHAA	Tonson Thurn	ITIAIII, IVIAIIA
		Normal orien- tation	Fmm	Fdd	Imm	Ima	Pmmm	Pnnn	Pccm	Pban	rmma	Dung	11110	Pmna		Pcca	3	Pren	Phem		Pnnm	Pmmn	Pbcn	Dhoo	Pnma		Cmcm	Cmca	CIIICE	Cmmm	Cccm	Cmma	Ccca	Fmmm	Fdad	Immm	Thea	Imma	THIM
	355858 Number Schoenflies					-	2	m -	4	n	9	>	~		00	4	ۍ د	2 =		12	13	<u>+</u>	14	10		17	ç	2	19	20	21	22	22	47	57	200	100	07	
	Class No. Schoenflies Symbol						8-1)2h																																
	I	Numbe Group Space	42	43	44	46	47	48	49	20	10	5	40	53	3	54	1	55	812	5	58	59	09	11	62		63	41	5	65	66	67	68	69	21	22	12	21	14
	Mauguin symbol	Other orientations	Al. Bl. Cl. Fl. II.	AI, BI, CI, FI, II,	Bur D. D. D. DJ	Am Im Fm	Aa Ta Fd	B2	B21	A2, 12, 1:2	B2/m	12/12 m/12/01	D3/2, D3/2, D3/2, D3/2, D3/4	P3./a P3./a R3./a	B2./d	A2/a. 12/a. F2/d		P2,22, P22,2	r42121, r21241	47.77 B27.7	A222, B222	I		1	Pcm		Pbm	Pbc	Pom		Phu			Ccm		Bmm	Bma	Bbm	Rha
		Normal orien- tation	PI	Id	Pm	C ^m	Cell	P2	P2,	0	m/7.1	L'21/m	D2/6	p)./c	~/1	C2/c	P222	P2221	71717 J	('))).	C222	F222	1222	12,2,2	Pmc	Pcc	Pma	Pca	Phe	pha nu	Pna	Pnn	Cmm	Cmc	Ccc	Amm	Abm	Ama	1 100
	Sain	Numbe	-	-		4 00) - 1	-	2	~		10	04	r v	>	9	-	21	° ₹	r v	0	-	s	c		1.00	4	ŝ	0 1	-0		10	11	12	13	14	15	16	
	Schoenflies							4-C2			5-C2h						6-D2								7-C2V														-
	L	Space Space	1	2		ŧv	9	-	00	6	01	12	77	14	r.	12	16	11	2 0	20	21	22	23	24	25	22	28	29	8:	15	25	34	100	36	37	38	39	40	A1 1

TABLE 3-THE 230 SPACE GROUPS (first part)

	-	nber	1 D12	2 F23 3 I23	4 P2 ₁ 3 5 12,3	1 Pm3	3 Fm3	4 Fd3 5 Im3 6 Pa3	7 Ia3	1 P43m 2 F43m	3 I43m 4 P43n	5 F43c 6 T43d	1 P43	2 P423 3 F43	4 F43	6 P4.3	7 P433	I Pm3m	2 Pn3n 3 Pm3n	4 Pn3m	5 Fm3m	7 Fd3m	8 Fd3c 9 Im3m		
	Class Number Schoenflies Symbol						28-T				1.000	30-Td				31-0									
		ոտիշե	N quoið	bace	S 105	196	198	200 201	202	203 204 205	206	208	209 210	211	213	214	216	218	219	221	222	224	225	1207	229
	n symbol	Other orienta- tion	H31m C31m H31c	C31c	H3	C31m C31c	H31m H31c	11	Hå	H62m H62c C62m	C62c	H6 ₁	$H6_{s}$ $H6_{2}$	H64 H66	H62	H6 ₁ 2 H6 ₈ 2	H62 UK 2	H6:2	H6/m H6-/m	Homm	Honc	H6cm	H6/mmm	H6/mmc	H6/mcm
	Mauguin	Normal orienta- tion	C3m H3m C3c	H3c R3m P 2c	102	H3m H3c	C3m C3c	R3m R3c	CB	Côm Cổc Hồm	H6c	S.G	C62	C64 C64	C02	C6,2 C6,2	C622	C6a2	C6/m C6-/m	Comm	C6cm	Cómc	C6/mmm	C6/mcm	C6/mmc
	29il	Number Schoenfl	- 4 %	4 10 4	10	- 0	¢ 4	ND VO	-	- 19 19	4-	- 01	m 4	50		200	49 V		10		4 02	æ		e tris	4
	Schoenflies Class No.				19-C3I	20-D3d			21-C3h	22-D3h	22 116	20-00			24-D6				25-Coh	26-C6v			27-D6h		
		Number Group Space	154 155 156	150	160	162 163	165	166 167	168	169 170 171	172	174	176	177 178	179	181	182	184	185	187	189	190	161	193	194
	symbol	Other orienta- tion	C4mm C4mb C4mc	C4cn C4cn C4cc	C4cm C4cb	F4mm F4mc	F4dm F4dc	C4/mmm C4/mcc	C4/amb	C4/acn C4/mmb C4/mcn	C4/amm	C4/mcm	C4/acb	C4/mcb	C4/mmn	C4/aun C4/amc	F4/mmm F4/mmc	F4/ddm	F4/ddc H3	H3, H3,	+1-02	C312	H312 C3,12	H3,12	$C3_{2}12$ H $3_{2}12$
	Mauguin	Normal orienta- tion	P4mm P4bm P4cm	P4nc P4cc	P4mc P4bc	I4mm I4cm	14md 14cd	P4/mmm P4/mcc	P4/nbm	P4/nnc P4/mbm P4/mnc	P4/nmm P4/ncc	P4/mmc	P4/mcm	P4/nnm P4/mbc	P4/mnm	P4/nunc	I4/mmm I4/mcm	14/amd	14/acd C3	C31	R3	H32	C.52 H3.2	C312	H3 ₂ 2 C3 ₂ 2 R.32
	səif T	Schoenl	- ~ ~ ~	4 00 00	1~ 00	6 01	12	1	3	400	1- 0	00	21	13	14	29	12	19	20 I	C1 14	्र		200	4	500
	.ol esifi	Class N Schoent Class N	14-C4v					15-D4h											16-C3			17-D3			
-	4	Numbe Space Space	111 112 113	115	117	119	121	123 124	125	126 127 128	130	131	133	134	136	138	139	141	142 143	144	146	147	148	150	151 152 153

Table 3 showing the 230 space groups is taken from Bernal et al (1, 525-530), rearranged in sequence to conform to the development of the crystal classes as shown in Fig. 1. In the Mauguin space group symbolism the initial capital letter shows the space lattice according to the terminology of Table 2. The other symbols correspond to the Mauguin point-group symbols as shown in Fig. 1 (lower right) with the addition of screw axes (shown by a numerical subscript to the axis symbol, with different subscript numbers for different types of screw axes) and glide planes. For the latter the letters a, b, c are used if the translation is $\frac{a}{2}$, $\frac{b}{2}$, $\frac{c}{2}$; n is used if the translation is $\frac{a+b}{2}$, $\frac{b+c}{2}$ or $\frac{a+c}{2}$, or from the corner to the center of a face parallel the glide plane; and d where it is $\frac{a+b}{4}$, $\frac{b+c}{4}$, or $\frac{a+c}{4}$, or one-quarter of a face-diagonal. From the Mauguin symbol of any one of the 230 space groups, the corresponding point group (crystal class) can be obtained by dropping the space lattice designation and the subscript numeral indicating a screw axis and substituting m for any of the letters indicating a glide plane.

CONCLUDING REMARKS

Scientists should make classifications their slaves, not the reverse. One²² would have the systems as more fundamental than the classes, while others (10, 199 and 12, 383) hold out for the opposite. Much depends on the purposes to which a classification is to be put. The optical crystallographer is satisfied with the three divisions, as is the crystallographer working in many other physical fields. The working mineralogist rarely uses more than systematic splitting as an aid in non-instrumental mineral determination. The pure morphologist may find use for the 32 classes, but this is not universally true. The crystal structure worker needs the 230 space groups. Numerous other types of groupings have been proposed, as examination of the very limited bibliography here appended will prove. Swartz (12, 385–397) has published a very satisfactory brief history of the subject up to 1902, well worthy of perusal by the present-day student.

²² Am. Mineral., vol. 16, pp. 26, 30, 1931.

JOURNAL MINERALOGICAL SOCIETY OF AMERICA

The 32 classes may be developed using as symmetry operations only rotations, inversions, and the two combined (rotary inversions); or rotations, reflections, and the two combined (rotary reflections) will lead to their derivation.²³ Normally different types of classification will come from the two methods, as is demonstrated by numerous papers. Fig. 1 presents a classification which depends less upon the type of symmetry operation used to develop the classes than it does on the order of increasing inherent symmetry as one proceeds from class to class. While the term "anastrephaxial" implies that inversion axes are stressed, this is hardly true as comparison with Wyckoff (17, 15) will show. The term as well as one set of symbols conforms to those of Mauguin; the Schoenflies symbols including those of the alternating axes (Sn) are also given; no matter which are used the same results are reached in this type of classification.

So far as known the class numbers of Fig. 1 do not agree in all details with those of any other author. History indicates that the numbers here given will not meet with universal approval. The numbering of the space groups up to 230 as is done in Table 3 can have no greater significance than do the class numbers themselves. Unless general agreement can be reached on class number—as has been done on the numbering of space groups in any one class—names or symbols are to be preferred. In any case practically the only advantage of numbers is in ease of printing. The tremendous advantages in all other ways of the Mauguin space group symbolism, which in place of a numeral of no inherent significance puts a simple set of symbols giving the essential symmetry elements of the space group in question, and the extreme ease with which the corresponding point group symbol can be derived from this, warrants the rapid adoption of this system.

PARTIAL BIBLIOGRAPHY

1. Bernal, Ewald, and Mauguin, Report of the Abstracts Committee: Zeit. Krist., vol. 79, pp. 495-530, 1931.

2. Bragg, W. L. The Crystalline State, I, 1934.

C

²⁸ Failure to recognize this accounts for such statements as "the center of symmetry . . . is manifestly secondary" (12, 384–385), "the center of symmetry is a true (i.e., essential?—D.J.F.) element of symmetry" (10, 166), "both rotatory-inversions and rotatory-reflections must be used as symmetry operations" (10, 201), and "only two-, four-, and six-fold rotary reflection axes are possible" (Soller, *op. il.*, p. 418).

3. Davey, W. P. A Study of Crystalline Structure and its Applications, 1934.

4. Evans, J. W. The Thirty-two Classes of Crystal Symmetry: *Nature*, vol. **113**, pp. 80-81, 1924.

5. Hilton, H. Mathematical Crystallography, 1903.

6. Jaeger, F. M. Lectures on the Principles of Symmetry, 1920.

7. Mauguin, Ch. Sur le symbolisme des groupes de répétition ou de symétrie des assemblages cristallins: *Zeit. Krist.*, vol. **76**, pp. 542–558, 1931. Also see note on ff. 3 pages by C. Hermann.

8. Niggli, P. Lehrbuch der Mineralogie, I, 1924.

9. Rinne, Schiebold, and Sommerfeldt. Bericht des von der D.M.G. eingesetzten Nomenklaturausschusses ueber die Kristallklassen und Raumgruppen: *Fortsch. Min., Krist. u. Petr.*, vol. **16**, pp. 29–45, 1931.

10. Rogers, A. F. Mathematical Study of Crystal Symmetry: Proc. Amer. Acad. Arts and Sci., vol. 61 (7), pp. 161-203, 1926.

11. Schoenflies, A. Krystallsysteme und Kristallstructur, 1891.

12. Swartz, C. K. Proposed Classification of Crystals: Bull. Geol. Soc. Amer., vol. 20, pp. 369–398, 1909.

13. Thompson, D'Arcy. Growth and Form, 1917.

14. Tutton, A. E. H. Crystallography and Practical Crystal Measurement, I, 1922.

15. Wherry, E. T. Arrangement of the Symmetry Classes: Am. Mineral., vol. 13, pp. 198-199, 1928.

16. Wülfing, E. A. Die 32 kristallographischen Symmetrieklassen und ihre einfachen Formen, 1914.

17. Wyckoff, R. W. G. The Analytical Expression of the Results of the Theory of Space Groups, 1930.

18. Ibid. The Structure of Crystals, 1931.

The American Mineralogist, April, 1935.

SYM	METRY		AXIAL=	SYMMETRY AXES	S ONLY	A	XIHEDRAL=BOTH	I AXES AND PLAN	NES		SYMMETRY
		Principal Axis	MONAXIAL One (polar) axis only Hemimorphic	POLYAXIAL More than one axis—no planes Enantiomorphic	ANASTREPH- AXIAL One inversion axis only	ORTHAXI- HEDRAL One plane (hori- zontal) perpen- dicular to one axis.	MONAXI- HEDRAL One (polar) axis only, with parallel (vertical) planes. Hemimorphic	MESAXI- HEDRAL Planes (none hori- zontal) between (diagonal to) axes.	POLYAXI- HEDRAL Planes (one hori- zontal) coinciding with symmetry axes.	Row number	
SYSTI	EM		Cyclic=Cn	Dihedral=Dn	Sphenoidal=Sn	C _n ^h	C _n	D ^d _n	D_n^h		SYSTEM
			11		TRIMETRI	C DIVISION		1			
TRIC	CLINIC	1 1	1(XXXII) C1 Asymmetric 1	(Cf. 4)	$\frac{2(XXXI) Ci(=S2)}{Pinacoidal}$ $\frac{I(=i)}{I(=i)}$	(Cf.	3)	(Cf. 5)	(CI. 7)	2	TRICLINIC
MONO	OCLINIC	2			3(XXX) Cs(=S)** Clinohedral m(=2)					3	MONOCLINIC
		2	4(XXIX) C2 Sphenoidal 2			5(XXVIII) C2h* Prismatic 2/m (i)		· · · · · ·	,	4	
OR RH(THO- OMBIC	2	-	6(XXVII) D2(=V) Orthorhombic Disphenoidal 222			7(XXVI) C2v Orthorhombic Pyramidal m m (2 m m)		8(XXV) D2h(=Vh) Orthorhombic Dipyramidal mmm (2/m2/m2/m i)	5	ORTHO- RHOMBIC
					DIMETRIC	DIVISION					
TETRAG-		4			9(XXIV) S4(=C'4) Tetragonal Disphenoidal 4			10(XXIII) D2d(=Vd) Ditetragonal Scalenohedral 4 2 m(4 2 ² m ²)		6	TETRAG-
0	ONAL		11(XXII) C4 Tetragonal Pyramidal 4	12(XXI) D4 Tetragonal Trapezohedral 4 2(4 2 ² 2 ²)		13(XX) C4h Tetragonal Dipyramidal 4/m (i)	14(XIX) C4v Ditetragonal Pyramidal 4 m m(4 m ² m ²)		15(XVIII) D4h Ditetragonal Dipyramidal 4/mmm(4/m2/m²2/m²i)	7	ONAL
	oohedral ystem	3	16(XVII) C3 Trigonal Pyramidal 3	17(XVI) D3 Trigonal Trapezohedral 3 2(3 2 ³)			18(XV) C3v Ditrigonal Pyramidal 3 m(3 m ³)			8	system
SONAL	Rhomb Subs:	3			19(XIV) C3i(=S6) Trigonal Rhombohedral 3 (i)			20(XIII) D3d Ditrigonal Scalenohedral 3 m(3 2/m ³ i)		9	Rhomh Subs GONAL
HEXAO	onal stem	б			21(XII) Tri Dipy 6 (=	C3h(=S3) gonal ramidal = 3/m)			$\begin{array}{ccc} 22(XI) & D3h \\ Ditrigonal \\ Dipyramidal \\ \overline{6} m(3/m[=\overline{6}]2^3m^3) \end{array}$	10	gonal stem HEXA
j j	Hexag Subsy	6	23(X) C6 Hexagonal Pyramidal 6	24(IX) D6 Hexagonal Trapezohedral 6 2(6 2 ³ 2 ³)		25(VIII) C6h Hexagonal Dipyramidal 6/m (i)	26(VII) C6v Dihexagonal Pyramidal 6 m m(6 m ³ m ³)		27(VI) D6h Dihexagonal Dipyramidal 6/mmm(6/m2/m ³ 2/m ³ i)	11	Hexa
					MONOMET	RIC DIVISION					
		23		28(V) T Gyrotris- tetrahedral 2 3(2 ³ 3 ⁴)					29(IV) Th Diploidal m 3(2/m ³ 3 ⁴ i)	12	
ISON	METRIC	4 ³						30(III) Td Hextetrahedral 4 3 m(4 ³ 3 ⁴ m ⁶)		13	ISOMETRIC
		43		31(II) O Gyricosi- tetrahedral 4 3(4 ³ 3 ⁴ 2 ⁶)					32(I) Oh Hexoctahedral m 3 m(4/m ³ 3 ⁴ 2/m ⁶ i)	14	
Co	lumn Num	ber			III				VII	C	lumn number
EXP num sym	LANATIC ber syn class name pol (symme	DN: Sign nbol etry)	nificance of position is ber in the upper lef maximum symmetry flies symbol is used name is according t symmetry are sho are explained in the	indicated in the rect t is shown in Arabic r y, and in Roman num d in the upper right o Groth (but using C wn below with He e other column	angle to the left. The numerals going from erals for the reverse. . With few exceptio Greek prefixes). Symb rmann-Mauguin sym	e class num- minimum to The Schoen- ns the class pool and total mbols; these	$\begin{array}{c} 1 \\ \text{nann-} \\ \text{guin} \\ \text{sols} \\ \begin{array}{c} 1, 2, 3, 4, 6, -(i, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,$	prdinary) symmetry a 3, 4, 6(=3/m), -invec- of symmetry; i(=1)- $4/m, 6/m, -axes$ wit licate more than one	exes. ersion axes. -center of symmetry (in th normal plane of symm of a given element of sy	version netry. mmetry). 7.
REM 3, 17, in mor	IARKS: C 22, 28, and naxial and	rystals o 30, ma polyaxi	of classes in the monax y show pyro- and piez al crystals.	ial and monaxihedral o-electric phenomena	families, as well as the Rotatory polarizatio	ose of classes n may occur Class 3 In Cl	the monoclinic morp for Class 5 may not se asses 6, 8, and 10, Q (d	hologists generally n em appropriate;** nor juadratic) may replace	nake the symmetry axi r would the symbol C11 e V (vierer).	s=b; th n which	hus the Schoenflie has been used fo