CRYSTAL CLASSIFICATION AND SYMBOLISM
D. JeroME FisHER, University of Chicago.

ABSTRACT

In Figure 1 crystals are classified according to increasing symmetry into two
phyla (axial and axihedral), three divisions (trimetric, dimetric, monometric), six
systems, seven systems and subsystems, seven families (monaxial, polyaxial,
anastrephaxial, orthaxihedral, monaxihedral, mesaxihedral, and polyaxihedral),
fourteen orders (rows), and thirty-two point groups or classes. This would seem to
offer a wide range of choice which might reasonably satisfy all or at least most wants
outside of those concerned with crystal structure itself. In addition attention is
called to three diagonal rows, which however embrace only 20 of the crystal classes.
The Mauguin system of symbolism for both space and point groups is briefly re-
capitulated, as is the Schoenflies method. The former is recommended.

INTRODUCTION

This paper has as its main object the presentation of a classifica-
tion of crystals in which these solids are so arranged that existing
symbolism and nomenclature are more readily comprehended,
especially by the beginning student. Apparently nearly every
crystallographer {mineralogist, physicist, chemist, metallographer,
etc.) who has given much thought to the matter, has had some
unique ideas as to the arrangement and designation of crystal
classes. The former is of relatively minor significance; the latter
is unfortunate, as it tends to cause real confusion.

PRESENT CLASSIFICATION

The chart (Fig. 1) is divided into seven columns on the basis of
total symmetry, and into fourteen rows based on the type of sym-
metry of the (unique) crystal axis. The columns are in two major
groupings (phyla), depending on whether axes only (axial) or
both axes and planes (axihedral) are present.! The rows are in
three major groupings (divisions), giving the most useful classifi-
cation of crystals from the optical point of view.

Each column includes three to six crystal classes; this grouping
of classes is of morphological value, and so names are given to these
families, as shown at the top of each column in Fig. 1. The columns
are in accord with Schoenflies’ symbolism (11, 148-149)? as is indi-

1 The monoclinic clinohedral class (Cs=m) is in the former, since its symmetry
can be regarded either as a two-fold inversion axis or as a plane (butit can hardly
be considered to be axihedral).

2 Numbers in parenthesis refer to titles (and page numbers where appropriate)
listed at the conclusion of this article.
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cated. The names are similar to those applied by Swartz (12); the
significance of each is given in the chart.

Each crystal system (or subsystem) embraces two rows (orders),?
except there is but one for the orthorhombic and there are three in
the isometric. Four rows have but one class each, and six have but
two; two rows have three classes each, and two have five. The char-
acteristic symmetry marking each row is shown on the left; it is
the same for rows 4 and 5, which are separated because of system-
atic differences. Omitting the first three rows, each of which has
but one class, the number of classes in each pair of rows for 2-, 4-,
3-, and 6-fold axesis 5, 7, 5, 7, 5; the last figure is for the three iso-
metric rows.

This results in 89* “boxes” (rectangles), 32 of which represent
crystal classes or point groups. The data given in each of the rec-
tangles are explained at the base of the chart on the left. Excepting
the isometric system, five classes may be considered to belong in
each family (one for each of a 1-, 2-; 3-, 4-, and 6-fold simple or
inversion axis), but duplication and non-crystallographic symmetry
reduce this number of 35 to 27, as is explained below.

Schoenflies (11) has three non-isometric families: cyclic (C), di-
hedral (D), and sphenoidal (S). The first with a single (simple)
symmetry axis has three subdivisions which include those classes
without planes (C.), those with a single (horizontal) plane (C,"),
and those with several (vertical) planes (C,¥). The dihedral family
with symmetry one principal #-fold axis and » 2-fold axes normal
to it also has three subdivisions: those classes without planes (D),
those with diagonal planes (D,4), and those with both vertical and
horizontal planes (D,"). Moreover D gives way to T (tetrahedral)
or O (octahedral) in the isometric, the only system with more than
one axis of greater than 2-fold symmetry® [and D may be shown as

# To save space, and since combining rows 1 and 2 makes no difference in the
sequence of numbering the crystal classes, these are shown as a single row numbered
1-2in Fig. 1. Class 1 is in row 1 and class 2 is in row 2. Names instead of numbers
may be used for the rows as is done for the columns (families); thus row 10 becomes
the hexagonal inversion order, row 8 the rhombohedral order, etc.

* Boxes ITT-10 and TV-10 are combined into a single one for reasons pointed
out later. Since boxes IV-1 and V-1 are similarly combined, what is referred to
as rows 1 and 2 in Fig. 1 contains but 6 boxes.

5 Since only families with multiple symmetry elements (at least three each of at
least two types of symmetry) can be represented in the isometric, it is clear why Cn,
Sn, and C,? are not so represented. Similarly C," is not represented because while it
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V (vierer) or Q (quadratic) in the orthorhombic and in the scaleno-
hedral class of the tetragonal system|. The sphenoidal family (S
refers to an alternating axis) has two analogous subdivisions (see
footnote 14). The writer’s families thus agree with Schoenflies’
sub-divisions, but his two major groupings (axial and axihedral)
contrast with those of Schoenflies.

Monaxial family (column T of Fig. 1) includes those classes with
but a single (simple) rotation axis of symmetry and with no other
symmetry. Of necessity such axes are polar, and the crystals may
be regarded as hemimorphic.® Rotatory polarization as well as
pyro-and piezo-electric phenomena are possible in the crystals of
this family. Since the only simple axes occurring in crystals are 2-,
3-, 4-, and 6-fold, these four classes and the one with no symmetry
at all (which may be regarded as having a simple 1-fold rotation
axis) complete this simplest family. The Hermann-Mauguin sym-
bol” (7) for each of these classes is the same as the expression of the
total symmetry by this system of notation, the principles of which
are explained in the lower right portion of Fig. 1.8

Polyaxial family including those classes with several symmetry
axes, but lacking planes or center, contains all enantiomorphous®

may be considered as polysymmetric, its symmetry is “one-dimensional”’ (all ele-
ments parallel one direction), not ““three-dimensional’’ as required by the isometric.
Thus only three families can have isometric representatives, and since there are
only three types of ““principal axis’’ (Fig. 1) present in this system, and one of these
is an inversion axis, it is clear that at most two isometric classes can occur in any
one family, and but one can occur in that polysymmetric family (mesaxihedral)
characterized by the presence of an inversion axis.

¢ Hilton (3, 92) includes only those crystals in class no. 4 (C2=2) of Fig. 1 of
the monaxial family as hemimorphic, although the symmetry axis in each of the
monaxial classes is polar. If hemimorphic forms are limited to those which may be
regarded as but half (one end) of the corresponding holohedral forms, then monaxial
classes of the dimetric division are not hemimorphic; Dana’s Textbook of Mineralogy
(1932 ed. by W. E. Ford, pp. 103, 118, 131) states that they are hemimorphic.

7 This type of symbol, first proposed by C. Hermann, was greatly simplified and
owes its present form to the efforts of Ch. Mauguin.

8 W. Soller (4. Mineral., vol. 19, p. 412, 1934) unfortunately suggests that the
Mauguin symbol for the even-numbered inversion axes be used for alternating axes
instead; the rule of priority, if no other, prohibits the acceptance of this suggestion.

® Hilton (5, 92) does not list class no. 28 (T=23) of Fig. 1 as containing enantio-
morphous forms. Tutton (14, 131) lists the eleven classes of the monaxial and
polyaxial families as enantiomorphous, as does Jaeger (6, 79), who links this prop-
erty with optical rotatory power, at least in most cases (pp. 256, 261-262, 268). If
screw axes are essential for optical rotatory power, representatives of class 1 and
of certain space groups (see Table 3) of all other monaxial and polyaxial classes
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forms. Rotatory polarization is also possible in the crystals of this
family, as it is among those of the monaxial family, though difficult
to observe in crystals of those classes of these families belonging in
the trimetric division. Representatives of classes Nos. 17and 28 may
show pyro-and piezo-electric effects. The non-isometric crystals of
the polyaxial family are characterized by one #-fold axis with #
2-fold axes normal to it. If =1, the symmetry is that of the mono-
clinic sphenoidal class (C2=2); thus only four non-isometric
classes appear in this family.

The Hermann-Mauguin symbol for each of the polyaxial classes
(except D2=222) is a simplification of the expression for the total
symmetry, as is indicated in Fig. 1. Mauguin (7, 545) does not use
superscripts as shown in parentheses in certain rectangles of Fig. 1
to indicate the total number or amount of any given kind of sym-
metry element present. In the dimetric division his symmetry ele-
ments are listed in this order: vertical axis, horizontal axis and/or
(horizontal or vertical) planes, if any; where there are 2-folds
normal to the planes (and therefore centers of symmetry) this is
not specifically indicated by Mauguin’s slightly abbreviated sym-
bolism which drops the 2; this is also true in the orthorhombic and
isometric systems. In the isometric Mauguin lists the symmetry
elements in this order: axes parallel cube edge, cube diagonal, and
cube-face diagonal; 4-folds normal to planes (class No. 32=0h=
m 3 m) or 2-folds in the third place (class no. 31=0=43) are not
indicated in the abbreviated point-group symbolism. Each iso-
metric point-group has the numeral 3 as the second unit of the
point-group symbol, whereas 3 is the firs¢ unit in the symbol of
each of the five rhombohedral classes, none of which has a hori-
zontal plane of symmetry.

Anastrephaxial'® family (sphenoidal of Schoenflies) includes
those classes with but a single inversion axis of symmetry (rotary
inversion); these classes can also be derived in terms of single alter-
nating axes of symmetry (rotary reflections). In fact an inversion
4-fold gives the same results as an alternating 4-fold; otherwise
the correspondence is less obvious, as shown by Table 1.1 The

must lack this property. Screw axes also occur in various space groups of D2d =42m
and of all orthaxihedral classes except C3h=8. See F. Bernauer: Gedrillte Kris-
talle, 1929.

¢ Term derived from the Greek anastrepho (turn upside down, invert) and axon
(axis), with the kind assistance of Professor G. E. Smith.

1 Classes developed from only the even-numbered inversion axes form the
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TABLE 1. CORRESPONDENCE BETWEEN ALTERNATING AXES AND INVERSION AXES

Alternating Axes (Sn) |

Inversion Axes (Cy!) or (nc) or (0)

(rotary reflections) (rotary inversions)
S2 | Ci=C,*=1=1 (inversion or center)
S§=81 2c=2=m (plane)
S6 Cy=3
Cly=54 4c=14
S3 6c=6=23/m(3-fold with normal plane)

writer prefers the inversion axes because 3 (3-fold inversion axis) is
found in the rhombohedral subsystem, 6 in the hexagonal sub-
system, whereas the reverse is true if alternating axes are used,
the tendency then being to hide the true symmetry relationships
as is shown by the fact that some writers include hexagonal classes
in the rhombohedral and vice versa. Moreover, if alternating axes
are used, putting what corresponds to the anastrephaxial family in
the axial phylum might seem inconsistent.!? The Herman-Mauguin
symbol for each of the anastrephaxial classes is the same as the ex-
pression of the total symmetry by this system of notation, as is
true for the monaxial family. Pyro- and piezo-electric phenomena
are possible in the crystals of class no. 3 (Cs=m) of this family.
As those other classes in this family in which # is odd have a
center of symmetry, their representatives cannot be expected to
exhibit such phenomena (6, 101).

Orthaxihedral family, each class of which has but one axis
normal to one plane, has but four classes, as where #=1 the sym-
metry is the same as that of the monoclinic clinohedral class
(Cs=m), placed by preference in the anastrephaxial family. In
the classes of this family in the dimetric division, as in those of
other families that have both axes and planes of symmetry, are
the di-forms, except disphenoids. Orthaxihedral classes except

groups nc (17, 15) and lack a center of symmetry. Classes derived from only the
odd-numbered inversion axes have a center of symmetry, and Rogers (10, 172)
prefers to refer to these only as alternating axes (““rotoflections’). Only the latter
(anastrephaxial) classes are given the symbol C,i, which may also be used for
orthaxihedral classes nos. 5, 13, and 25 of Fig. 1 (17, 15). All these symbols have
been conveniently summarized by Davey (3, 218-221).

2 Of course the “alternating planes’’ are present, whether the symmetry is re-
garded as alternating axes or inversion axes. Classification is primarily for purposes
of convenience in bringing out certain relationships which one wishes to emphasize.
Therefore it is considered permissible to put this family where it is in Fig. 1.
Swartz (12) chose to stress alternating axes; therefore used the term amebaxial.
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class no. 5 (C,»=2/m), the holohedral of the monoclinic system,
are paramorphic, as is also class no. 29 (Th=m3) of the isometric
(5, 92). Orthaxihedral classes in which # is an even number have
a center of symmetry.!3

Monaxihedral family which contains classes with several planes
of symmetry meeting in one axis of symmetry, has but four classes,
as where n=1 there could be but one plane, which leads to the
monoclinic clinohedral class (Cs=m) of the anastrephaxial family.
The axis is polar and the representatives, which may show pyro-
and piezo-electric effects, are hemimorphic (cf. monaxial family), as
are those of class no. 30 (Td=43m) of the mesaxihedral family,
according to Hilton (5, 92). Ordinary polar axes are not confined to
the monaxialand monaxihedral families, but are alsofound in classes
nos. 17 (quartz), 22 (benitoite), 28 (cobaltite), and 30 (sphalerite) of
Fig. 1. Representatives of all these (as well as those of class no.
3=Cs=m) may exhibit pyro- and piezo-electric phenomena. The
Mauguin symbol (mm) for class no. 7 (C;¥) of the monaxihedral
family does not directly show the 2-fold axis present, since if a
crystal has but two perpendicular planes of symmetry, their line
of intersection must be a 2-fold axis.

Mesaxihedral family, including those classes with both planes
and symmetry axes, but with no plane containing more than one
symmetry axis, and all planes lying midway between (Greek mesos)
symmetry axes, embraces but two non-isometric classes, as is indi-
cated in Fig. 1. Where n=1, this family produces class no. §
(Ch=2/m), already placed with the orthaxihedral family. Where
n=2 and 3, this results in classes nos. 10 and 20 of the mesaxi-
hedral family, whose principal axes have symmetries of 4 and 3
respectively, higher than those of the starting symmetry because
of the demands of the planes and the other axes. Similarly where
n=4 and 6, this leads to principal axes of alternating 8- and 12-fold
symmetry respectively, axes non-existent in crystals.

The mesaxihedral family thus bears a close relation to the ana-
strephaxial family; in each class in either family the principal axis
is an inversion axis, or may also be regarded as an alternating axis.!

%5 Tt should be pointed out that class no. 21 (Cs"=86) may be placed equally
well with either the anastrephaxial or orthaxihedral families as is indicated in Fig. 1.
Schoenflies preferred it in the latter as shown by his choice of symbol (Cs" instead
0[ §3). Mauguin’s choice of symbol (8 in place of 3/m) indicates the reverse, probably
because he wished to emphasize its hexagonal symmetry. It is the only non-Tri-

clinic class represented by but a single space group.
14 Thus Schoenflies gave S¢" as alternative for Dad and S¢* as alternative for Dy,
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In no other classes are inversion axes present as crystal axes, ex-
cept in class no. 22 (benitoite)® of the polyaxihedral family [and
also excepting class no. 21 (Cs»=6), included in both orthaxihedral
and anastrephaxial families of Fig. 1]. The classes of the anastreph-
axial and mesaxihedral families having » an odd number contain a
center of symmetry. Representatives of those lacking a center of
symmetry (excepting the tetragonal classes) may exhibit pyro-
and piezo-electric phenomena.

Polyaxihedral family with several planes of symmetry each of
which includes at least two axes of symmetry (four in class no.
32=0h=m3m) embraces but four non-isometric classes, as
where n=1, this leads to class no. 7 (C;Y=m m) in the monaxi-
hedral family. The family includes four holohedral classes. As is
true of the classes of the orthaxihedral family, all polyaxihedral
classes with # an even number have a center of symmetry, as do
the two isometric classes of this group. The latter are therefore the
only isometric classes having inversion 3-folds. Representatives of
class no. 22 (Dgt=6m) are the only ones which may exhibit pyro-
and piezo-electric phenomena.!’®

GENERAL DiSCUSSION
It will be noted that twenty of the classes lie on three diagonal
rows trending northwest-southeast (map parlance) in Fig. 1. These
diagonal rows consist of classes numbered 1,' blank, 3, 5, 7, 10,

Sn signifying a rotary reflection and the u (Umklappung) referring to rotation about
the 2-fold axes.

% Class no. 22 (Ds*=86m) is here put in the polyaxihedral family because each
of its planes confains two symmetry axes; i.e., it is nof mesaxihedral (see foot-
note 18). Mauguin (7, 545) chose 6 2 m as its symbol, which is analogous to the sym-
bols of the mesaxihedral classes. Bernal et al (1, 529) have since abbreviated this
to 6 m. Had the symhbol 3/m 2 m (or 3/m m) been chosen, this would have tended
to hide the hexagonal nature of the class, but the present symbol serves to mask its
true family relations. Bragg (2, 86) puts  m with 22 m (no. 10 of Fig. 1) forming
the groups n d (17, 15) and with 4 3 m (no. 30 of Fig. 1), and places 3 m (no. 20 of
Fig. 1) in his last column, which thus consists of five holohedral classes (all except
monoclinic and triclinic, assuming a holohedral rhombohedral class) forming the
groups D, (17, 15) plus Oi=0h.

52 Willi Kleber has recently (Centr. Min., Geol. u. Pal. A(9), pp. 241-250, 1934}
derived the 32 classes by using the stereographic projection. He puts them in six
families: cyclic (5 classes), dihedral (4-none isometric), gyroidal (3 plus Cs"=¥8),
spiegel (14 plus C;"=8), tetrahedral (3), and octahedral (2). Cyclic is monaxial;
dihedral is polyaxial lacking isometric representatives; gyroidal is anastrephaxial
less Cs=m; tetrahedral and octahedral embrace the isometric classes; and spiegel
includes all the rest.
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15-4, 6, 9, 13, 18, 20, 22-11, 17, 19, 21, 25, blank, 30, 32. Each
diagonal row is separated from its neighbor by two boxes (going
vertically), except the right hand part of the lowest diagonal row
is shifted one box lower because of the intermediate nature of class
no. 21 (Cs"=6). These three diagonal rows sweep across the whole
chart from class no. 1 to class no. 32. The major significance of
these diagonal rows seems to be that they indicate a proper se-
quence of class arrangment; that is, as one proceeds downward
across the rows (orders), thus in general increasing the symmetry of
the “Principal Axis” (Fig. 1), one also goes with equal regularity to
the right from one family (column) to the next, thus more or less au-
tomaticallyadding on other(consequential) elements of symmetry.

While rows 3, 4, and 5 can be collapsed into one, as can rows 6
and 7, 8 and 9, and 13 with 12 or 14, the diagonal rows are then de-
stroyed. Suppose the tetragonal classes (rows 6 and 7) are put
intermediate between the rhombohedral and hexagonal classes, as
has been done by some;'? then the diagonal row symmetry is al-
most completely removed. The polyaxial family can be bodily
interchanged with the anastrephaxial family without even alter-
ing the class numbers; in fact the writer’s first charts did this. But
then the diagonal symmetry is broken.'® Although several simple
axes (polyaxial family) may seem to some to be more complex

16 What is shown as the top row in Fig. 1 in reality consists of two rows, as is
indicated by the numbering on the right.

17 The basis for this is presumably the fact that the 3-fold type of axis is regarded
as having a lower grade of symmetry than does the 4-fold. This is incorrect, as can
be seen by comparing an alternating 4-fold with the simple and inversion 3-folds.
By analogy then the inversion 6-fold (row 10) should be separated from the 6-fold
(row 11) by the 4-fold (row 7), thus splitting the hexagonal subsystem itself. If
rows are arranged in the order of 3,4, 3, 6, 4, 6, there is one partial diagonal row,
which however does not join with either trimetric or monometric classes. If put in
the order 3, 4, 6, 3, 4, 6 there are three diagonal rows (two of them partial), two of
which are “hanging,” but the third and major one (which however is partial,
having two blanks) joins class no. 29 (Th=m 3) of the isometric. Neither of these
arrangements compares favorably with that of Fig. 1 from the point of view of di-
agonal rows. Moreover the very close relationship between hexagonal and rhombo-
hedral subsystems is sufficient to preclude the desirability of separating them by
the tetragonal system.

18 A further note regarding the position in Fig. 1 of class 22 (= Ds*=6m) is here
justified, as it will be noted that were this class put as straddling the mesaxihedral
and polyaxihedral families, it would add one more class (no. 27) to the intermediate
diagonal row; moreover both (all) the classes of the hexagonal inversion order
would then be of this duplex nature. If the definition of the mesaxihedral family be
changed to read “with all planes lying midway between crystal axes (which are not
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than a single inversion axis (anastrephaxial family), this is not
true, since the latter involves two kinds of symmetry, the former
but one. In reality the anastrephaxial family is intermediate be-
tween families I and IT and the families of the axihedral phylum;
this is indicated by the intermediate position of class no. 21
(Csh=6); by the fact that most morphologists think of class no.
3 (Cs=m) as having symmetry of but one plane, no axis;'® and by
consideration of the two kinds of symmetry present in the sym-
metry unit of each class of the anastrephaxial family. It may also
be added that the eleven classes of the monaxial and polyaxial
families which are in juxtaposition in Fig. 1 are the ones contain-
ing only symmetry elements of the first sort (involving nothing but
simple rotations), and so correspond to those derived first by
Schoenflies (11, 74).

SPACE LATTICES AND SPACE GROUPS

The advantages of the Hermann-Mauguin over the Schoenflies
symbolism are not apparent {rom Fig. 1 or from any study limited
to the point-groups (crystal classes). For that reason there is here
added Tables 2 and 3 which show the extension of this symbolism
to the 230 space groups. Table 2 summarizes the data regarding
"the fourteen Bravais space lattices and their five variants. In
space group terminology no subscripts indicating the system as
shown in the table are necessary, since the system of the lattice in
question. is apparent from the other symmetry indicated by the
Mauguin symbolism.2® There are taken to be but six primitive
lattices, as is shown in Table 2, since the hexagonal lattice Ck

symmetry axes in class 22)’ and if the qualification of “no plane containing more
than one symmetry axis’ be omitted, then class 22 would properly be regarded as
belonging to both families. The position shown in Fig. 1 is however preferred, since
the whole table is based on symmetry and not on crystal axes (where the two do not
coincide), and it hardly seems wise to make an exception for a single class. Moreover
some have made the a-axes coincide with the 2-folds in this class (e.g., see 18, 37;
12, 31; and 16, II), although this is unfortunate, since it makes the first order forms
hexagonal and the second order forms trigonal, contrary to the order in all other
hexagonal classes. For examples of proper orientation see 10, 190; 16, I1I, VII; and
Ford: Dana’s Textbook of Mineralogy, 1932, p. 119. Tn addition with class 22 left as
it is in Fig. 1 there is the normal number of five non-isometric classes in the poly-
axihedral family (allowing for duplication), as is also true for the mesaxihedral
family (remembering that two classes are missing from this family because of the
non-occurrence in crystals of 8- and 12-fold alternating axes).

19 Thus it has been called the anaxial class (4m. Mineral., vol. 12, p. 219, 1927).

20 Pg (anorthic) is preferred for brevity to Pt (triclinic). While R is the standard
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(which is also primitive in the ordinary sense of the word) may be
regarded as a special case of the (001)-centered orthorhombic
(three pinacoids) lattice (Co) where the edges a:b=1:1/3. The
rotation of the a-axis of this lattice 30° produces the larger variant
designated H.2

C TaBLE 2. THE FOURTEEN Bravars Space LaTTICES
M Six primitive lattices (P)

[ [Call OA=a, OB=b, OC=c]

: edges angles

I Pa[Ptr]. . astbsc. . .as=p=y5£90° ]

| Pm - “ L a=y=90°8 f three pinacoids
Il Po o L a=B=y=90°

[ 2° tetragonal
I\a_ _____ Pt Lo.a=bsc. .. “ ... 4 prism and
b il —— : .
¥ “/é pinacoid
Ps c..a=b=c... “ ... hexahedron

Primitive Lattice R[Pr] ... ¢ . .a=B=vy%90°... rhombohedron

Three body-centered lattices (7)

Io corresponding to Po; It corresponding to Pt; and I: corresponding to Pi.

Three lattices with a single centered (001) face (C) [plus four
variants marked*]

Cm (cf. Pm); Co (cf. Po. . .variants are *40 and *Bo which are the same except for
orientation); *Ct (cf. Pt of which it is a variant); and C% (special case of Co where
atb=1:4/3. . variant *H is similar except rotated 30°, so that a:b=+/3: 1; lattice
Ch is same as that consisting of a 60°orthorhombic prism with basal pinacoid, three
of which units form a hexagonal prism with centered basal pinacoid).

Two lattices with all faces centered (F); [plus one variant marked*]
Fo (cf. Po); *Ft (cf. Pt...variant of I1); and Fi (cf. Pi).

Notes: Cm and Co may be regarded as rhombic prisms with basal pinacoid. Fo
is same as body-centered orthorhombic prismwith basal pinacoid;it is also the same
as an orthorhombic dipyramid. 7o is same as orthorhombic brachy- and macro-
domes. Ct is same as four units of Pz It is same as a second order tegragonal di-
pyramid; rotating it 45° to the first order form (and translating it parallel ¢ one-
half the unit distance) leads to the variant Fz. Fi corresponds to the octahedron,
or the rhombohedron with 60-120° face angles, four of which rhombohedra consti-
tute a dodecahedron. 77 corresponds to the rhombohedron with face angle of 109° 28,

symbol for the rhombohedral lattice, Pr might be preferred by some morphologists
since it better indicates the analogy with the other primitive lattices.

2 Schiebold (9, 32) uses Ck for this, and Pk for the lattice designated Ck by
Mauguin. From the point of view of space group notation it is better to omit P
from the designation of either hexagonal or rhombohedral lattices.
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Table 3 showing the 230 space groups is taken from Bernal et al
(1,525-530), rearranged in sequence to conform to the development
of the crystal classes as shown in Fig. 1. In the Mauguin space
group symbolism the initial capital letter shows the space lattice
according to the terminology of Table 2. The other symbols cor-
respond to the Mauguin point-group symbols as shown in Fig. 1
(lower right) with the addition of screw axes (shown by a numerical
subscript to the axis symbol, with different subscript numbers for
different types of screw axes) and glide planes. For the latter the

: . . a b ¢ .
letters a, b, ¢ are used if the translation is Tl 7; n is used
; .. a b+c a+tc¢
if the translation is + ; _;_ or B or from the corner to

the center of a face parallel the glide plane; and & where it is
a+b b+t atc

1_ ) 1_ ; or 1_ » or one-quarter of a face-diagonal. From the
Mauguin symbol of any one of the 230 space groups, the cor-
responding point group (crystal class) can be obtained by dropping
the space lattice designation and the subscript numeral indicating
a screw axis and substituting m for any of the letters indicating a
glide plane.

CONCLUDING REMARKS

Scientists should make classifications their slaves, not the reverse.
One? would have the systems as more fundamental than the
classes, while others (10, 199 and 12, 383) hold out for the opposite.
Much depends on the purposes to which a classification is to be put.
The optical crystallographer is satisfied with the three divisions,
as is the crystallographer working in many other physical fields.
The working mineralogist rarely uses more than systematic split-
ting as an aid in non-instrumental mineral determination. The
pure morphologist may find use for the 32 classes, but this is not
universally true. The crystal structure worker needs the 230 space
groups. Numerous other types of groupings have been proposed,
as examination of the very limited bibliography here appended will
prove. Swartz (12, 385-397) has published a very satisfactory brief
history of the subject up to 1902, well worthy of perusal by the
present-day student.

2 Am. Mineral., vol. 16, pp, 26, 30, 1931.
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The 32 classes may be developed using as symmetry operations
only rotations, inversions, and the two combined (rotary inver-
sions); or rotations, reflections, and the two combined (rotary
reflections) will lead to their derivation.2 Normally different types
of classification will come from the two methods, as is demon-
strated by numerous papers. Fig. 1 presents a classification which
depends less upon the type of symmetry operation used to develop
the classes than it does on the order of increasing inherent sym-
metry as one proceeds from class to class. While the term “anas-
trephaxial” implies that inversion axes are stressed, this is hardly
true as comparison with Wyckoff (17, 15) will show. The term as
well as one set of symbols conforms to those of Mauguin; the
Schoenflies symbols including those of the alternating axes (Sn)
are also given; no matter which are used the same results are
reached in this type of classification.

So far as known the class numbers of Fig. 1 do not agree in all
details with those of any other author. History indicates that the
numbers here given will not meet with universal approval. The
numbering of the space groups up to 230 as is done in Table 3 can
have no greater significance than do the class numbers themselves.
Unless general agreement can be reached on class number—as has
been done on the numbering of space groups in any one class—
names or symbols are to be preferred. In any case practically the
only advantage of numbers is in ease of printing. The tremendous
advantages in all other ways of the Mauguin space group symbol-
ism, which in place of a numeral of no inherent significance puts a
simple set of symbols giving the essential symmetry elements of
the space group in question, and the extreme ease with which the
corresponding point group symbol can be derived from this, war-
rants the rapid adoption of this system.
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SYMMETRY AXTAL=SYMMETRY AXES ONLY AXIHEDRAL=BOTH AXES AND PLANES SYMMETRY
12 ~
5 MONAXIAL POLYAXIAL ANASTREPH- ORTHAXI- MONAXI- MESAXI- POLYAXI- 2
— One (polar) axis More than one AXIAL HEDRAL HEDRAL HEDRAL HEDRAL g
2 only axis—no planes One inversion axis One plane (hori- One (polar) axis Planes (none hori- Planes (one hori- g
g only zontal) perpen- | only, with parallel | zontal) between zontal) coinciding B
= dicular to one axis. | (vertical) planes. | (diagonal to) axes. | with symmetry axes. ‘:2
& Hemimorphic Enantiomorphic Hemimorphic
SYSTEM N\ Cyclic=Cn Dihedral=Dn Sphenoidal=Sn (04 M D3 D SYSTEM
TRIMETRIC DIVISION
1 1(XXXII) C1 (Cf. 4) 2(XXXTI) Ci(=S2) (C£. 7) 1
TRICLINIC _ Asymmetric Pinacoidal (Cf. 3) TRICLINIC
! I(=i) (C1. 5) 2
B J(XXX) Cs(=S)**
p Clinohedral 3
m(=2)
MONOCLINIC MONOCLINIC
4(XXIX) C2 5(XXVIII) C2h*
2 Sphenoidal Prismatic 4
2 2/m (i)
6(XXVII) D2(=V) 7(XXVI) Cav 8(XXV) Dzh(=Vh)
ORTHO- 2 Orthorhombic Orthorhombic Orthorhombic 5 ORTHO-
RHOMBIC Disphenoidal Pyramidal Dipyramidal RHOMBIC
222 mm (2 mm) mmm (2/m2/m2/m i)
DIMETRIC DIVISION
I(XXIV) S4(=C"4) 10(XXIII) D2d(=Vd)
1 Tetragonal Ditetragonal 6
Disphenoidal Scalenohedral
TETRAG- 1 412 m(4 22 m?) TETRAG-
ONAL ONAL
11(XXII) Cs | 12(XXI) Da 13(XX) Cih | 4(XIX)  Cav 15(X VIII) Dih
4 Tetragonal Tetragonal Tetragonal Ditetragonal Ditetragonal 7
Pyramidal Trapezohedral Dipyramidal Pyramidal Dipyramidal
4 424 2 ) 4/m (i) 4 m m(4 m? m?) 4/mmm(4/m2/m?2/m?)
16(XVII) Cs | 17(XVI) D3 18(XV) Cav
= 3 Trigonal Trigonal Ditrigonal 8 =
< B Pyramidal Trapezohedral Pyramidal o E
=8 3 32(3 29 3 m(3 m?) =%
25 2%
g5 19(X1IV) C3i(=Ss) 20(X11T) Dad g5
é G0N Trigonal Ditrigonal g0 =
= # 3 Rhombohedral Scalenohedral 9 " =
a8 3 (i) 3m@B 2/mdi) o
(O] &
§ B 21(X1I) C3h(=S3) 22(X1) Dsh ;
& 6 Trigonal Ditrigonal 10 =
as < f Dipyramidal _ Dipyramidal = g o
£2 6 (=3/m) 6 m(3/m[=8]2°m?) g9
o £ a0 2
EE 23(X) Cs | 24(IX) Ds 25(VIIT) Ceh | 26(VII) Cev 27(VI) Desh EE
oA 6 Hexagonal Hexagonal Hexagonal Dihexagonal Dihexagonal 11 =l
Pyramidal Trapezohedral Dipyramidal Pyramidal Dipyramidal
6 6 2(6 28 2%) 6/m (i) 6 m m(6 m? md) 6/mmm(6/m2/m*2/m%)
MONOMETRIC DIVISION
22(V) T 29(1V) Th
2 Gyrotris- Diploidal 12
tetrahedral
23(2239 m 3(2/m? 3t 1)
30(1I1) Td
ISOMETRIC B Hextetrahedral 13 ISOMETRIC
4 3 m(4? 3¢ m)
31(1I1) 0 32(1) Ch
43 Gyricosi- Hexoctahedral 14
tetrahedral
4 3(433425) m 3 m(4/m?*342/mé i)
Column Number I I II1 v \' VI VII Column number
EXPLANATION: Significance of position is indicated in the rectangle to the left. The class num- H 1,2, 3,4, 6,—(ordinary) symmetry axes.
ber in the upper left is shown in Arabic numerals going from minimum to Mermapn— 1(=i), 2(=m), 3, 4, 6(=3/m),—inversion axes.
number symbol maximum symmetry, and in Roman numerals for the reverse. The Schoen- aubgLiln m(=2)—plane of symmetry; i(=1)—center of symmetry (inversion).
class flies symbol is used in the upper right. With few exceptions the class| SY™®%S (3/m 3/m(=8), 4/m, 6/m,—axes with normal plane of symmetry.
name name is according to Groth (but using Greek prefixes). Symbol and total Superscripts indicate more than one of a given element of symmetry.
symbol (symmetry) symmetry are shown below with Hermann-Mauguin symbols; these
- are explained in the other column FOOTNOTES:
* In the monoclinic morphologists generally make the symmetry axis=b; thus the Schoenflies
REMARKS: Crystals of classes in the monaxial and monaxihedral families, as well as those of classes | symbol for Class 5 may not seem appropriate;** nor would the symbol C1h which has been used for
3, 17, 22,28, and 30, may show pyro- and piezo-electric phenomena. Rotatory polarization may occur | Class 3.
in monaxial and polyaxial crystals. In Classes 6, &, and 10, Q (quadratic) may replace V (vierer).

Fig. .—CRYSTAL CLASSES (point groups) arranged by D. Jerome Fisher.




