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ABSTRACT

Graphical methods are known for the determination of reticular densities from
a gnomonic or stereographic projection made on a plane normal to [001 ]. They are
explained in terms of the simple shear and the polar lattice.

Our aim is to generalize these rules for the case of a projection plane normal to
an arbitrarily chosen zone [uvw]. A general theorem is stated, covering the previous
methods as particular cases. Rules for trigonal crystals referred to the Miller axes
also follow directly from it. The same method yields both reticular densities and
lattice parameters, A working knowledge of the method can be acquired by working
out three examples, given to illustrate the rules.

1. ProJECTION PLANE NoRMAL TO [001]

According to Mallard’s gnomonic theorem! the length of the
projection-line for any face of the type (k1) is proportional to the
reticular area of the crystal face projected. The plane of the gno-
monic projection is taken perpendicular to the zone axis [001]. In
Fig. 1, for instance, the length of the projection-line P-(ill) is a
measure of the area of the two-dimensional unit-cell of the lattice-
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plane (111). If the length of the “gnomon” (distance from the
projection-point P to the plane of gnomonic projection) is equal to
R, then the reticular area of the face (111) is represented by R/cos
p, in which p is the angle between the gnomon and the projection-
line P-(111), that is to say the polar distance of (111). The reticular

* Translated from the Dutch by J. D. H. Donnay, Johns Hopkins University.
* Mallard, E.: Traité de Cristallographie. tome. 1, pp. 26 and 63.
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density of the face (111), being inversely proportional to its retic-
ular area, is then proportional to cos p.

For a general face (kkl), the method is to be slightly modified.
It is well known that, in a gnomonic projection, a face (kkl) is
represented by (A/1-k/1-1). The value of cos p obtained for such a
pole, therefore, cannot be a measure of the reticular density of the
face (hkl). The true measure of that reticular density is given by
the quotient (cos p)/1.

Inspection of this expression immediately shows that another
method of reticular density determination will have to be devised
in the case of a face (4k0), since the quotient (cos p)/! then leads to
the indeterminate form 0/0. A consequence of Mallard’s theorem
is that the reticular area of the face (120), for instance, is repre-
sented by the line KL (see Fig. 1) connecting the gnomonic poles
of (001) and (121), in the same way as the reticular area of the face
(111) is represented by the line P-(111). In general the reticular
area of any face (4k0) is represented by the line obtained by join-
ing the pole (001) with the substituted pole (hkl).

When a crystal is given in stereographic projection, the gnomonic
projection of the pole (%#k1) and of the pole (001) are first deter-
mined in the usual manner, then the distance between the two
gnomonic poles is measured; for instance, KL in the case of the
face (120), as shown in Fig. 2.
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The reticular density of a face (4%0) can also be determined
directly from the stereographic projection. The reticular area of
(120) is represented by KL (Fig. 2). Let ¢ be the angle NM L and
¢3, the angle NM K. The lines KL and M N are parallel by construc-
tion. We have in the triangle M KL (Law of Sines):

sin (¢2— 1)
KL=ML —.
sin ¢

Let R be the length of the gnomon, then:
ML=R"tan pis.
Substituting
sin (¢2— 1)
KL=R-tan p1pg ———
BLECR
In the spherical triangle M.SQ, the cotangent formula gives:

tan MSQ
sin (¢z—¢1)= L
tan MQ

Likewise in the spherical triangle MST:

tan MST tan MSQ
sin o= —= ;
tan MT tan MT

Substituting again:

tan MT

KL=R-tan pin =R tan MT

tan MQ
as arc MQ=pia1.

The reticular density of the face (120) is thus proportional to
cot MT, where the arc M T is obtained as follows:

(1) Join the center M of the stereographic projection to K the
stereographic pole of (001), and produce to S, intersection with
the primitive circle.

(2) Draw the zone circle through S and Q, the stereographic
pole of (121).

(3) “Slide” Q, the stereographic pole of (121), along that zone
circle until it reaches, at point 7', the radius M N joining the center
M to the stereographic pole NV of (120).

II. SIMPLE SHEAR AND PoLAR LATTICE

The significance of such a “sliding” in the stereographic projec-
tion can best be explained in terms of the properties of the polar
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lattice® (or reciprocal lattice). Let the dimensions of the latter be
chosen in such a way that the parameter of a reticular row [kkl]
of the polar lattice be equal to the reticular area of the plane (hkl)
of the crystal lattice. For convenience the reticular planes and rows
of the polar lattice will be distinguished from those of the crystal
lattice by means of the subscript p. Lattice point symbols will be
enclosed in double brackets; [[#£/]],, for instance, represents the
point of the polar lattice with “trimetric coordinates” , , I.

Consider now the face (4%0). The corresponding row [££0], lies
in the axial plane (001),. On this lattice-row, we find the following
succession of points: [[000]],, [[#£0]],, [[2%- 2k -0]],, etc. The param-
eter of the row [4£0], is equal to the distance between the points
[[000]], and [[%£0]],, or (parallel lattice-planes being identical) to
the distance between the points [[001]], and [[%£1]],, which lie in
1(001),, the first (001), plane® away from the origin (Fig. 3).

If paralle lattice-planes are numbered from the origin: ;(001),,
2(001),, 3(001),, etc., the above can be summarized as follows: the
reticular area of a face (%£0) is equal to the distance between the
two points [[001]], and [[4%1]], of the plane ;(001),.

Rh}i?
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In general the foot .S of the perpendicular s dropped from the
origin [[000]], on the face 1(001), does not coincide with the point
[[001]],. Tmagine that all the parallel planes 1(001),, 2(001),, etc.
(carrying with them their two-dimensional lattices), be “shoved”
over each other so that the points [[001]],, [[002]],, etc., all come to

? Compare, for instance, George Tunell, 4m. Min., vol. 18, p. 183, 1933.
 Mallard calls this plane “plan limitrophe de Porigine” (Traité de Cristallo-
graphic, tome 1, p. 17).
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lie on the perpendicular s. This movement brings the point [[%#k1]],
in 7. It is easy to see that the reticular area of the face (£%0) is
equal to ST=R- tan p’ (Fig. 3), where p’ designates the polar dis-
tance of 7.

In order to get a simple prescript, we can perform this “sliding”’
in such a manner, that it obeys the following two conditions:

(1) During the movement the lattice-row [001], must remain in
the plane defined by [001], and the normal s to (001),.

(2) The deformation of the polar lattice will be a komogenecous
deformation, that is to say that points lying on a straight line at
equal spacings will retain these properties during the deformation.

Under these conditions, the “sliding” considered constitutes a
simple shear* of the polar lattice. All the points describe rectilinear
paths and their displacements are proportional to their distance
from a zero plane (in which the displacement is of course zero). A
simple shear is known when its zero plane, its direction, and its
angular magnitude are given. The latter, in the present case, is the
angle between the lattice-row [001], and the normal s to the plane
(001),.

Consider now (in the stereographic projection of Fig. 2) the
normals to the faces (001), (120), (121), etc. Apply to this radiating
bundle of face-normals a simple shear with the plane of the primi-
tive circle (equatorial plane) for its zero plane and with such a direc-
tion and such a magnitude that the normal to the face (001) be
brought into coincidence with the normal to the primitive circle.®
What is the new position of the normal to the face (121)?

Notice that:

(1) During the simple shear this normal to (121) remains in the
plane a defined by its original position and M S, since each point of
the normal to (121) describes a path parallel to M S.

(2) The plane 8 defined by MN and the normal to (001) is
brought by the shear to be perpendicular to the primitive circle
along M N, since the normal to (001) becomes perpendicular to the
primitive circle, while M N, lying in the zero plane, is not affected
by the shear.

* Dutch: enkelvoudige verschuiving. German: einfache Schiebung. A good example
of simple shear is gliding in calcite (see Liebisch: Grundriss der physikalischen
Krystallographie, 1896, p. 449,

®In Fig. 2, the face symbol 001 has unfortunately been omitted next to the
black circlet representing its stereographic projection (between 011 and 010).
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The new position of the normal to (121), therefore, lies at the in-
tersection of the two planes o and 8 referred to above. Its pole is
stereographically projected in T (Fig. 2). The procedure to find the
reticular density of the face (120) can then be stated as follows:

To the radiating bundle of face-normals, apply a simple shear
that will bring the pole (001) to the center of the primitive circle.
Find the polar distance p’ of the substituted face (121) after the shear.
The reticular density of (120) is cot p’.

III. EXAMPLE

Consider two stereographic projections of phthalylphenyl hy-
drazide® (Figs. 4 and 5). The observed forms are O, C, a, q. The
fact that this substance is monoclinic will be ignored so that the

choice of the axial planes will not depend on symmetry considera-
tions. In the first projection (Fig. 4), C and a are chosen as axial
planes; O, as unit-face. In the second projection (Fig. 5), the
axial planes are ¢i, ¢2, and ¢; the unit-face is determined by as-
signing the symbols (101) and (011) to O» and O; respectively. The
second projection can be obtained from the first by a rotation in
the plane of the drawing. In both projections, the reticular densities

6 Groth: Chemische Krystallographie, vol. 5, p. 168,
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F1c. 5.

of the faces projected inside the primitive circle are determined by
the formula (cos p)/Z, in which pis the polar distance of such a face.
These reticular densities are therefore the same in both projections
provided the third index / does not change.

This is no longer true for the faces projected on the primitive
circle. Consider the face C. In Fig. 4, the substituted face of C(100)
is (101); after application of the simple shear which brings a’ to
the center M of the primitive circle,” the pole of this substituted
face comes in Q.* Hence the reticular density of C(100) is expressed
by cot arc MQ=cot 493°. In Fig. 5, on the other hand, the substi-
tuted face of C(110) is (111), which is brought over to T by the
simple shear,® hence the reticular density of C(110) is given by
cot arc MT =cot 67°.

Table 1 gives the reticular densities of the various faces as ob-
tained from the two stereographic projections (Figs. 4 and 5).

7 The letter M is unfortunately missing on the figure.

8 In order to find this point Q we proceed in the following way: applying the
rule given above, one sees that the point Oy slides to P; therefore the circle (010)-0,
comes in (010)-P, hence (101) comes in Q.

¥ O slides to P; hence the circle g-—0; comes in ¢—P; hence the new place of
(111) is in the interesecting point T of the circles ¢—P and gi-R.
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TaBLE 1
RETICULAR DENSITIES FOR PATHALYLPHENYL HYDRAZIDE

Fig. 4 Fig. 5

Face {Symbol rho  Reticular density [Symbol rho  Reticular density

100 493° cot493° =.854 110 67° cot 67° = .424
110 59° cot 59° .601 010 59° cot 59° =.601
110 59° cot 59° = .601 100 59° cot 59° =.601
111 533°  cos 533° =.595 011 531°  cos 533° =.595
111 533° cos 53%° =.595 101 531°  cos 533° =.595
001 253°  cos 254° =.903 001 25%°  cos 253° =.903
010 49° cot 49° = 869 110 663°  cot 663° =.435
101 363°  cos 363° =.804 112 363° %cos 363° = .402
011 52° cos 52° = .616 112 52°  Lcos52° =.308

I

Q8 oo™ N

It should be kept in mind that the significance of the “reticular
density” determined by the method described here is quite dif-
ferent from that of the ‘“reticular density’” determined by rént-
genographic investigation. It is beyond the reach of geometrical
crystallography to deduce the actual reficular densities from mere
goniometric data. The only results which can be obtained are the
relative densities, after indices have been assigned to the faces.

This means that, for each crystal, a great many space-lattices
can be imagined for which the angles between reticular planes will
correspond to the interfacial angles measured on the crystal.!® All

]

"
2

F1G. 6.

10 For indications as to how to make a choice between such ‘“isogonal’ lattices,
see, for instance, Donnay and Mélon: Haiiy-Bravais lattice ..., Am. Min.,
vol. 18, p. 225, 1933.
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these lattices can be derived from each other in the sense that their
unit-cells are multiples of each other. Consider (Fig. 6) the space-
lattice corresponding to the projection of Fig. 4. By taking the
parallelopiped PQRSTUVW as a new unit-cell, ignoring all other
points, a new lattice can be constructed, which will be in agreement
with the second projection of the crystal (Fig. 5). The second lattice
is a multiple lattice of the first, its unit-cell being a multiple cell in
the first lattice. Observe that all the points indicated in Fig. 6
belong to the first lattice, but that the second lattice is formed by
the black dots only. So the face C (Figs. 4 and 5) or SQUW in Fig.
6 has in the first lattice a reticular area SQUW/4, while in the
second lattice the reticular area is SQUW. In the same manner we
find for the face ¢; or PQUT in Fig. 6 the reticular areas in the first
and second lattices respectively PQUT/2 and PQUT; so 0; or SRY .
Therefore the reticular densities of the faces C, g, O, etc., referred
to the second lattice, can be obtained by dividing their densities in
the first lattice by 4, 2, 2, etc. Again, the numbers thus found can
only be taken to indicate the ratios between the reticular densities
of the faces in question. The unit chosen to express these reticular
densities may be changed at will. If, for instance, we wish the reticu-
lar density of the face ¢ to be the same in both lattices,* we divide
the edges of the unit parallelopiped PQRSTUVW by +/2. This was
done to arrive at the numbers listed in Table 1.

IV. ProJECTION PLANE NORMAL T0 [uvw]. GENERAL THEOREM

The preceding sections are limited to the case where the plane of
projection is normal to the zone [001]. Rules for the determination
of reticular densities in the case of a projection plane perpendicular
to any zone [#vw] will now be derived. The trend of the reasoning
will be similar to that of Section IT.

A general theorem can be stated as follows:

WHEN A CRYSTAL IS PROJECTED ON A PLANE NORMAL TO AN ARBI-
TRARILY CHOSEN ZONE [u1w],

(1) THE RETICULAR DENSITY OF A FACE (hkl) WHICH DOES NOT
LIE IN THE ZONE [#vw] IS GIVEN BY THE FORMULA

" The absolute values of the parameters of the “lattices” considered in this
paper are not known since they are derived from angular magnitudes only; this is
why it has been suggested to call such lattices “relative’” or “elastic’ in contra-
distinction with the “absolute’ lattice as determined by x ray investigation.
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cos p

. hu~+kv+lw

IN WHICH p IS THE POLAR DISTANCE OF THE FACE (hkl);
(2) THE RETICULAR DENSITY OF A FACE (pgr) WHICH DOES LIE
IN THE ZONE [#vw] IS GIVEN BY THE FORMULA:

cot p’
u+0?
WHERE p’ 1S THE POLAR DISTANCE OF AN AUXILIARY FACE (p+u-q
+7v-7r+w), AFTER APPLICATION OF A SIMPLE SHEAR IF THE POLE OF
THE ZONE AXIS [#9w] DOES NOT COINCIDE WITH THE POLE OF THE
FACE (uvw).

The demonstration of the first half of this theorem is based on
the following property of the polar lattice. The reticular area of the
face (hkl) is equal to the distance between the points [[000]], and
[[%#E]],. Let d be that spacing. Consider the series of parallel planes
((uvw),, o(uvw),, etc., of the polar lattice. One of these planes,
.(uvw),, passes through the point [[/4£]]],. It is well known that its
serial number 12 is equal to:

n=hu-+kv+lw.

Now if the plane ;(u2w), is chosen as plane of projection,'® the
length of the projection line of the face (%l) is equal to d/(hu-+ko
+1lw). This length, however, is also equal to R/cos p, where R is
the length of the gnomon and p is the polar distance of (kk/). We
may therefore write

?

- R(hu+ kv+lw)

cos p

In other words, the reticular density of (kkl) is proportional to
(cos p)/ (hu+kv+lw).

For a face (pgr) which lies in the zone [uvw], this formula cannot
be applied, since it leads to the indeterminate form 0/0. The reason
for this is that the line connecting the points [[000]], and [[p¢7]]»
lies in the (#vw), plane passed through the origin. Instead of using
these two points, it is more convenient to consider the points

2 Dutch: volg nummer.
13 According to the usual practice. See E. Mallard: Traité de Cristallographie,
vol. 1, pp. 26 and_63.
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[[#vw]], and [[u+p-v+q-w++]],. Their spacing 4’ is equal to that
of the former two points, and they are lying in the plane ,,(uvw),,
with a serial number equal to

m=u2to2w?
Taking the plane 1(uvw), as zero plane, apply a simple shear which
will bring the point [[#vw]], on the normal to the face (uvw),. Call
p’ the polar distance of [#+p-v-4¢-w+7], after the shear. The

distance d’ gives the reticular area of (pgr). It is m times larger
than R fan p’, that is to say

d' = (u+v2+w?) R tan p’.

In other words, the reticular density of (pgr) is proportional to

(cot p)' [ (u?+v2+w?).
V. PARTICULAR CASES OF THE GENERAL THEOREM

The formulae of Section I can be derived from the general theo-
rem as particular cases by letting , v, w, equal 0, 0, 1, respectively.
The formulae obtained in that manner hold good for the ordinary
projections of isometric, hexagonal, tetragonal, orthorhombric,
monoclinic, and triclinic crystals. No simple shear is needed in the
case of isometric, hexagonal, tetragonal, or orthorhombic crystals.
The same advantage can be obtained for monoclinic crystals if
they are projected on (010); in that case, the reticular density of
a face (kkl) is found by dividing cos p by %, not by L

>33 / \... 167

/
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The determination of reticular densities is somewhat more in-
tricate for trigonal crystals referred to the Miller system of codrdi-
nate axes. It follows from the general theorem for u=v=w=1.
For any face (kkl) which does not lie in the vertical zone, the reticu-
lar density is then (cos p)/(h+k=1), in which p is the polar distance
of (kEl). For a vertical face (pqr), the reticular density is equal to
1 cot p’, where p’ is the polar distance of the substituted face
(p+1-g+1-7+1).

For pseudo trigonal crystals described with reference to Miller
axes, the above formulae are also applicable provided the necessary
simple shear be applied before reading p’ for the faces of the vertical
zone.

Tarbuttite provides a good example of the last case. Guided by
the complex symbol found by Fedorov for that mineral, we have
departed from Spencer in adopting the pseudotrigonal orienta-
tion projected in Fig. 7. The letters used to designate the crystal
forms are those of Spencer’s original description. The Fedorov orien-
tation can be obtained from that of Spencer by the transformation
010/100/101. The reticular densities are listed in Table 2.

TABLE 2
RETICULAR DENSITIES OF TARBUTTITE

Face Symbol Substituted face Reticular density
¢ 001 I — cos 44° =.719
b 100 —- cos 49° = .656
i 010 — cos 50° =.643
a 011 102 1 cot 303° =.566
2 101 012 1 cot 31° =.554
k 110 021 1 cot 34° = .494
s 011 - | 1 cos 30° = .433
m 111 ~ ‘ cos 063° =.399
g 121 - L cos 46° =.348
— 111 —- 1cos 4° =.333
i 211 122 1 cot 48° =.300
t 012 - 1 cos 30° =.289
! 201 — 1 cos 333° =.278
0 212 — ' cos 75° =.259
d 221 — cos 703° =.233
e 221 | - cos 77° =.225

4 Spencer, L. J., Min. Mag., vol. 15, p. 22, 1908.
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Remember that, for instance, the angle p’=303° for the substi-
tuted face (102) is read on the stereographic projection after the
pole (111) has been brought to the center of the primitive circle
by the proper simple shear (here 33°).

VI. CENTERED LATTICES

The preceding sections all have reference to crystals which can
be described by means of simple lattices. If one is dealing with a
centered lattice, the reticular densities are first determined as if the
lattice were simple, then corrected as follows:

(1) For a body-centered lattice, the reticular densities of the faces
for which (h+k+1) is even are multiplied by two.

(2) For an all-face-centered lattice, the reticular densities of the
faces with all indices odd are multiplied by two.

(3) For a lattice centered in one face xy only, the reticular den-
sities of the faces for which (h+#%) is even are multiplied by two.

VII. DETERMINATION OF PARAMETERS

The gist of the method lies in the following remarks:

(1) The reticular density of a plane is the reciprocal of its reticu-
lar area; the linear density of a row is the reciprocal of its parameter.

(2) (a) The determination of the reticular areas of a crystal K,
resolves itself into the determination of the parameters of its polar
crystal K.

(b) The determination of the reticular densities of a crystal
K resolves itself into the determination of the linear densities of its
polar crystal K.

Inversely, since the crystal K; is the polar crystal of K, (just as
K, is the polar of K;), the determination of the reticular densities
of K, is equivalent to the determination of the reciprocals of the
parameters of Ki. Hence in order to find the parameters of K
graphically, the first step is to derive the stereographic projection
of K, from the given stereographic projection of K. The face poles
of K, are the points where the edges of K, intersect the sphere of
projection, or, in other words, the stereographic projection of K, is
at the same time the cyclographic projection of K. Hence, the rules
of reticular density determination, applied to the cyclographic pro-
jection of a crystal, yield the reciprocals of the parameters of that
crystal. ;

The stereographic projection of a crystal K; being given, the cor-
responding cyclographic projection is found by plotting the pole of
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each zone circle (this is easily done by means of a Wulff net) and
then by rotating the projection until the polar crystal K, is pro-
jected on a face of the given crystal K.

ExampLE.—Starting from the stereographic projection of sodium
molybdo-tellurate!s, the corresponding cyclographic projection (Fig.
8) is derived in that manner. The values of some of the parameters,
graphically determined on the projection are listed in Table 3.

The order of accuracy of the graphical solution may be judged by

TaABLE 3

PARAMETERS OF SODIUM:MOLYBDO-TELLURATE

Lattice row Parameter Parameter (b=1)
[100] tan 49%° = 1.171 0.948
f010] tan 51° = 1.235 1.000
{o01] sec 30° = 1.156 0.940
[110] tan 593° = 1.698 1.234
[111) sec 49° = 1.524 1.375

15 Donnay and Mélon: Am. Min., vol. 18, p. 243, Fig. 6, 1933.
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comparison of these results with the computed values on record:
¢:5:¢6=0.9548:1:0.9344.
In this case, the error is less than one per cent.

The above method for the determination of parameters only ap-
plies to simple lattices. In the case of a body-centered lattice, the
parameters found for rows with all three indices odd must be di-
vided by two. If the lattice is of the face-centered type, the param-
eters of the rows with two indices odd should be divided by two.
For alattice centered in one face xy only, the parameters of the rows
for which (44-%) and I are even should be divided by two.

The graphical determination of reticular densities and parameters
described in this paper is sufficiently accurate for a number of pur-
poses when made on the usual Wulff net (10 cm. radius). For greater
accuracy the Schiebold stereographic net (50 cm. radius), sold by
the firm R. Seifert in Hamburg, may be found serviceable.
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