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Ansrnact

Graphical methods are known for the determination of reticular densities from

a gnomonic or stereographic projection made on a plane normal to [OOt ]. They are

explained in terms of the simple shear and the polar lattice.

Our aim is to generalize these rules for the case of a projection plane normal to

an arbitrarily chosen zone fuowl A generui theorem is stated, covering the previous

methods as particular cases. Rules for trigonal crystals referred to the Miller axes

also follow directly from it. The same method yields both reticular densities and

lattice parameters. A working knowledge of the method can be acquired by working

out three examples, given to illustrate the rules.

f. PnolncrroN PrANE Nonuar- ro [001]

According to Mallard's gnomonic theoreml the length of the

projection-line for any face of the type (hhl) is proportional to the

reticular area of the crystal face projected. The plane of the gno-

monic projection is taken perpendicular to the zone axis [001]. In

Fig. 1, for instance, the length of the projection-line P-(111) is a

measure of the area of the two-dimensional unit-cell of the lattice-

Frc. 1.

plane (111). If the length of the "gnomon" (distance from the

projection-point P to the plane of gnomonic projection) is equal to

R, then the reticular area of the face (1T1) is represented by R/cos

p, in which p is the angle between the gnomon and the projection-

line P-(11 1), that is to say the polar distance of (11 1) . The reticular

* Translated from the Dutch by J. D. H. Donnay, Johns Hopkins University.
1 Mallard, E.: Trait| de Cri'stal,l'ogra[hie, tome. l, pp. 26 and 63'
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density of the face (111), being inversely proportional to its retic-
ular area, is then proportional to cos p.

For a generallace (hkl), the method is to be slightly modified.
It is well known that, in a gnomonic projection, a face (hkl) is
represented bV (h/l kl l I). The value of cos p obtained for such a
pole, therefore, cannot be a measure of the reticular density of the
Iace (hkl). The true measure of that reticular density is given by
the quotient (cos p)f l.

Inspection of this expression immediately shows that another
method of reticular density determination will have to be devised
in the case of a face (2fr0), since the quotient (cos p)/l then leads to
the indeterminate form 0/0. A consequence of Mallard's theorem
is that the reticular area of the face (120), for instance, is repre-
sented by the line KL (see Fig. 1) connecting the gnomonic poles
of (001) and (121), in the same way as the reticular area of the face
(111) is represented by the l ine P-(111). In general the reticular
area of any face (hk}) is represented by the line obtained by join-

ing the pole (001) with the swbstitwted pole (hkl).
When a crystal is given in stereographic projection, the gnomonic

projection of the pole (hkl) and of the pole (001) are first deter-
mined in the usual manner, then the distance between the two
gnomonic poles is measured; for instance, KL in the case of the
face (120) ,  as shown in F ig.  2.

F r c . 2 .
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The reticular density of a face (hk\) can also be determined

directly from the stereographic projection. The reticular area of

(120) is represented by KL (Fig. 2). Let $v be the angle NML ar,d

62, the angle N M K. The lines KL and M l{ are parallel by construc-

tion. We have in the triangle M KL (Law of Sines) :

srn (dz-dr)
KL:ML 

sin d:

Let R be the length of the gnomon, then

ML :R ' t an  pn t

Substituting

sin (6r-6,1
KL :R '  t an  p r : r  - -

In the spherical triangle MSQ, the cotangent formula gtves:

tan MSQ
s in  ( 4 r -4 r ) : - .

Likewise in the spherical triangle M'SI:

,;,r 6r:9Ysr 
tanMSQ

tan MT tan MI

Substituting agarn:

I{ L : R' tun r,,,ti!!1 : R nn M T
tan MQ

as  a r c  MQ:  pm.

The reticular density of the face (120) is thus proportional to

cot MT, where the arc LIT is obtained as follows:
(1) Join the center M ol the stereographic projection to K the

stereographic pole of (001), and produce to S' intersection with

the primitive circle.
(2) Draw the zone circle through S and Q, the stereographic

po le  o f  ( 121 ) .
(3) "Slide" Q, the stereographic pole of (121), along that zone

circle until it reaches, at point ?, the radius M// joining the center

M to the stereographic pole lf of (120).

If. Sruprn SuBnn aNo Por-an L,q'rrrcn'

The significance of such a "sliding" in the stereographic projec-

tion can best be explained in terms of the properties of the polar
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latticez (or reciprocal lattice). Let the dimensions of the latter be
chosen in such a way that the parameter of a reticular row fhkl]
of the polar lattice be equal to the reticular area of the plane (hkt)
of the crystal lattice. For convenience the reticular planes and rows
of the polar lattice will be distinguished from those of the crystal
Iattice by means of the subscript p. Lattice point symbols will be
enclosed in double brackets; [[hhl])e, for instance, represents the
point of the polar lattice with "trimetric coordinates,, It, k,l.

Consider now the face (hk\). The corresponding row [Zi0]o lies
in the axial plane (001)o. On this lattice-row, we find the following
succession of points: [[000]1,,, [[hk\]le,l[2h.2k 0]lo, erc. The param-
eter of the row [hk)]n is equal to the distance between the points
[[000]lp and ffhh}llo, or (parallel lattice-planes being identicat) to
the distance between the points [[001]le and l[hkt]lo, which l ie in
r(001)o, the first (001)e plane3 away from the origin (Fig. 3).

If paralle lattice-planes are numbered from the origin: r(001)r,
z(001)o,3(001)o, etc., the above can be summarized as follows: the
reticular area of a face (hko) is equal to the distance between the
two points [[001]le and [[hkt]1, of the ptane 1(001)e.

Frc. 3.

In general the foot S of the perpendicular s dropped from the
origin [[000]]o on the face 1(001)o does not coincide with the point
[[001]le. Imagine that all the parallel planes 1(001)e, z(001)r, etc.
(carrying with them their two-dimensional lattices), be ,,shoved,,

over each other so that the points [[001]]e, [[002]]p, etc., all come to
2 Compare, forinstance, George Tunell, Am. M,in., vol. lg, p. 183, 1933.
3 Mallard calls this plane "plon limi.trophe ile L,origine,, (Traitt d.e Cristollo-

graphic, tome I, p. 17).



IOURNAL MINERALOGICAL SOCIETY OF AMERICA

lie on the perpendicular s. 'Ihis movement brings the point UhkI]1,
in 7. It is easy to see that the reticular area of the face (hh}) is
equal to SZ:R'tan p' (Fig. 3), where p'designates the polar dis-
tance of Z.

In order to get a simple prescript, we can perform this "sliding"
in such a manner, that it obeys the following two conditions:

(1) During the movement the lattice-row [001]o must remain in
the plane defined by [001], and the normal s to (001)r.

(2) The deformation of the polar lattice will be a homogeneous
deformotion, that is to say that points lying on a straight line at
equal spacings will retain these properties during the deformation.

Under these conditions, the "sliding" considered constitutes a
simple sheara of the polar lattice. All the points describe rectilinear
paths and their displacements are proportional to their distance
from a zero plone (in which the displacement is of course zero). A
simple shear is known when its zero plane, its direction, and its
angular magnitude are given. The latter, in the present case, is the
angle between the lattice-row [001]o and the normal s to the plane
(001)e.

Consider now (in the stereographic projection of Fig. 2) the
normals to the faces (001), (120), (121), etc. Apply to this radiating
bundle of face-normals a simple shear with the plane of the primi-
tive circle (equatorial plane) for its zero plane and with such a direc-
tion and such a magnitude that the normal to the face (001) be
brought into coincidence with the normal to the primitive circle.s
What is the new position of the normal to the f ace ( 12 1 ) ?

Notice that:
(1) During the simple shear this normal to (l2l) remains in the

plane a defined by its original position and MS, since each point of
the normal to (121) describes a path parallel to MS.

(2) The plane B defined by MN and the normal to (001) is
brought by the shear to be perpendicular to the primitive circle
aTong MI{, since the normal to (001) becomes perpendicular to the
primitive circle, while MN,lying in the zero plane, is not afiected
by the shear.

a Dutch: enketrtou.d.i.ge verschuizting. German: einfoche Schiebung. A good example
of simple shear is gliding in calcite (see Liebisch: Grundriss d.er physikalischen
Kry stallo gr ap hie, 1896, p. M9.

5 In Fig. 2, the face symbol 001 has unfortunately been omitted next to the
black circlet representing its stereographic projection (between 011 and 010).



536 THE AMERICAN MINERALOGIST

The new position of the normal to (121), therefore, l ies at the in-
tersection of the two planes a and B referred to above. Its pole is
stereographically projected in Z (Fig. 2). The procedure to find the
reticular density of the face (120) can then be stated as follows:

To the radiating bundle of face-normals, apply a simple shear
that will bring the pole (001) to the center of the primitive circle.
Find the polar distance p' of the substituted foce (121) after the shear.
The reticular density of (120) is cot p'.

III. Ex.c.Irpr,B

Consider two stereographic projections of phthalylphenyl hy-
drazide6 (Figs.4 and 5). The observed forms are O, C, a, q. The
fact that this substance is mcnoclinic will be ienored so that the

",i. nl
choice of the axial planes will not depend on symmetry considera-
tions. In the first projection (Fig. 4), C and a are chosen as axial
planes; 01, o,S unit-face. In the second projection (Fig. 5), the
axial planes are qb Qz, and a; the unit-face is determined by as-
signing the symbols (101) and (011) to Oz and Ol respectively. The
second projection can be obtained from the first by a rotation in
the plane of the drawing. In both projections, the reticular densities

6 Groth: Chemi,sche Krystall'ographie, vol. 5, p. 168.
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Frc 5

of the faces projected inside the primitive circle are determined by
the f ormula (cos p) f l, in which p is the polar distance of such a f ace.
These reticular densities are therefore the same in both projections
provided the third index I does not change.

This is no longer true for the faces projected on the primitive
circle. Consider the lace C.In l ' ig. 4, the substituted face of C(100)
is  (101) ;af ter  appl icat ion of  the s imple shear which br ings a ' to
the center ,41 of the primitive circle,T the pole of this substituted
face comes in Q.8 Hence the reticular density of C(100) is expressed
by cot arc MQ:cot 49|".In Fig. 5, on the other hand, the substi-
tu ted face of  C(110) is  (111) ,  which is  brought  over  to ? by the
simple shear,0 hence the reticular density of C(110) is given by
cot arc MT:cot 67".

Table 1 gives the reticular densities of the various faces as ob-
tained from the two stereographic projections (Figs. 4 and 5).

7 The letter M is unfortunately missing on the figure.
8 In order to find this point Q we proceed in the following way: applying the

rule given above, one sees that the point Or slides to ?; therefore the circle (010)--Or
comes in (010)-P, hence (101) comes in Q.

e O1 siides to P; hence the circle q2-Ol comes in q2-P; hence the new place of
(111) is in the interesecting point ? of the circles qz-P and qr-R.
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TasrE 1
Rn:rrcur,e'n DnNsrrrrs ron Pntter-vr-pHENYL Hvona.zron

mbol rho Reticular densitv

100 49+" cot49; '  : .854
110 59" cot 59' :  .601
110 59o cot 59' : .601
111 53+' cos 53+" :  .595
111 53+' cos 53|" : .595
001 25+" cos 25]' : .993
010 49o cot 49' : .869
101 36+" cos 36*' : .804
011 52" cos 52' :  .616

C
q
q

o
o
a

110
010
100
011
101
001
T10
t t2
1r2

Fig. 5

rho Reticular density

67 "  co t67 "  : . 424

59o cot .59o : .601

59o cot  59o :  .601

53+' cos 53j" : .595
53+' cos 53+' : .595
25+" cos 25|" : .993
66+" cot 66;" : .435
36+" icos36l" :.492
52" I cos 52' : .308

It should be kept in mind that the significance of the "reticular
density" determined by the method described here is quite dif-
ferent from that of the "reticular density" determined by rcint-
genographic investigation. It is beyond the reach of geometrical
crystallography to deduce the actual reticwlar densi'ties from mere
goniometric data. The only results which can be obtained are the
relatil)e densities, after ind.ices haae been assigned to the faces.

This means that, for each crystal , a great many space-lattices
can be imagined for which the angles between reticular planes will
correspond to the interfacial angles measured on the crystal.lo AII

Frc.  6.

r0 For indications as to how to make a choice between
see, for instance, Donnay and M6lon: Haiiy-Bravais

vo l .  18 ,  p .225 ,1933 .

such "isogonal" lattices,

l a t t i c e . . . , A m . M i n . ,

R

K -'7-7-
>,/ )-/ d/ l

_2 Y
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these lattices can be derived from each other in the sense that their
unit-cells are multiples of each other. Consider (Fig. 6) the space-
lattice corresponding to the projection of Fig. 4. By taking the
parallelopiped PQRSTUVW as a new unit-cell, ignoring all other
points, a new lattice can be constructed, which will be in agreement
with the second projection of the crystal (Fig. 5). The second lattice
is a mwltiple lattice of the first, its unit-cell being a multiple cell in
the first lattice. Observe that all the points indicated in Fig. 6
belong to the first lattice, but that the second lattice is formed by
the black dots only. So the face C (Figs. 4 and 5) or Se(lW in Fig.
6 has in the first lattice a reticular area Se()WfL, while in the
second lattice the reticular area is SQUW.In the same manner we
find for the face fi or PQUT in Fig. 6 the reticular areas in the first
and second lattices respectively PQUf I 2 and pQLtT ; so 0r or SRI.
Therefore the reticular densities of the faces C, Q, O, etc., referred
to the second lattice, can be obtained by dividing their densities in
the first latt ice by 4,2,2, etc. Again, the numbers thus found can
only be taken to indicate the rotios between the reticular densities
of the faces in question. The unit chosen to express these reticular
densities may be changed at will. If , for instance, we wish the reticu-
lar density of the face q to be the same in both lattices,ll we divide
the edges of the unit parallelopipe d peRSTUVW by {2. This was
done to arrive at the numbers listed in Table 1.

IV. PnopcrroN Pr.,rwe Nonuer ro fuawl. GrNpnlr Tueonplr

The preceding sections are limited to the case where the plane of
projection is normal to the zone [001]. Rules for the determination
of reticular densities in the case of a projection plane perpendicular
to any zone luaul will now be derived. The trend of the reasonins
will be similar to that of Section IL

A general theorem can be stated as follows:
WTTaw A CRYSTAL IS PROJECTED oN A PLANE NORMAL To AN ARBI-

TRARTLY cHosEN zown [u lw] ,

(1) rnn RErrcuLAR DENSrry oF A I.ACE (hkl) wwrcn DoES Nor
LrE rN TrrE zoNE luvwl ts GrvEN By rHE IoRMULA:

11 The absolute values of the parameters of the ,,lattices', considered in this
paper are not known since they are derived from angular magnitudes only; this is
why it has been suggested to cali such lattices ,,relative', or ,,elastic,' in contra-
distinction with the "absolute" lattice as determined by r ray investigation
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cos p

hu*hal lw

IN WHICH p IS THE POLAR DISTANCE OE THE IICX, (hhl);

(2) rnn RErrcuLAR DENSrry ol A FACE (pqr) wmcw DoES LrE

rN TrrE zova luawl rs GrvEN By rrrE IoRMULAI

cot p'

u2!a2lw2

wHERE p' rs rHE poLAR DTsTANCE oF AN AUxTLTARY FAcE (P+u'q

*v'rlw), AFTER Appr-rcArroN ol A sTMPLE srrEAR rl rrrE PorE oF

TrrE zoNE rxts luvu] DoES NOT COTNCTDE WrTH THE POLE OI THE

r.a.cr, (wvw).
The demonstration of the first half of this theorem is based on

the following property of the polar lattice. The reticular area of the

face (hkl) is equal to the distance between the points [[000]lo and

[[hkl]le. Let d, be that spacing. Consider the series of parallel planes

t(w;w)r, 2(uaw)n, etc., of the polar lattice. One of these planes,

n(uaw)o, passes through the point llhkl]le. It is well known that its

serial number 12 is equal to:

q: fuy lkv{ l ,w.

Now if the plane t(uaw)o is chosen as plane of projection,l3 the

length of the projection line of the face (hkt) is equal to d/(hufka

{lro). This length, however, is also equal to Rf cos p, where R is

the length of the gnomon and p is the polar distance ol (hkl).We

mav therefore write

R(hulkr* lw)

cos p

fn other words, the reticular density of (hkl) is proportional to

(cos p) / (hwlkal lw) .
For a face (pqr) which lies in the zone luawl, this formula cannot

be applied, since it leads to the indeterminate form 0/0. The reason

for this is that the line connecting the points [[000]1, and llpqrll,
lies in the (waw)nplane passed through the origin. Instead of using

these two points, it is more convenient to consider the points

12 Dutch: tsolg nummer.
13 According to_ the usual practice. see E. Mallard1. Trait| d.e ctislatrlographie,

vol. 1, pp. 26 and._63,
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ftuaw]lo and llulp.ulq.wlrllo. Their spacing d, is equal to that
of the former two points, and they are lying in the plane ̂ (uvw)o,
with a serial number equal to

m:u2 Iv2 lw2 .

Taking the plane {uaw)o as zero plane, apply a simple shear which
will bring the point [uaw]]o on the normal to the face (uou)o. Call
p' the polar distance of lulp.afq.wlrlo after the shear. The
distance d'gives the reticular atea of (pqr).It is rz times larger
than R tan p', that is to say

d.t : (u2!112{w2)R tan p,.

In other words, the reticular density of. (pqr) is proportional to
(cot  p) '  /  (uz lvz*wr) .

V. PanrrculAR CASES or, rrrE GBNBnar Tnronru

The formulae of Section I can be derived from the general theo-
rem as particular cases by letting ot,z), w, equal 0, 0, 1, respectively.
The formulae obtained in that manner hold good for the ordinary
projections of isometric, hexagonal, tetragonal, orthorhombric,
monoclinic, and triclinic crystals. No simple shear is needed in the
case of isometric, hexagonal, tetragonal, or orthorhombic crystals.
The same advantage can be obtained for monoclinic crystals if
they are projected on (010); in that case, the reticular density of
a face (hkl) is found by dividing cos p by k, notby l.

\

-t  ro. 7.
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The determination of reticular densities is somewhat more in-

tricate for trigonal crystals referred to the Miller system of codrdi-

nate axes. It follows from the general theorem fsv ct:I):u:t.
For any lace (hkl) which does not lie in the vertical zone, the reticu-

lar density is then (cos p)/(h-th*l), in which p is the polar distance

ol (hkl). For a vertical face (pqr), the reticular density is equal to

! cot p', where p' is the polar distance of the substituted face
(p+r qfr . r l r ) .

For pseudo trigonal crystals described with reference to Miller

axes, the above formulae are also applicable provided the necessary

simple shear be applied before reading p'for the faces of the vertical

zone.

Tarbuttite provides a good example of the last case. Guided by

the compler symbol found by Fedorov for that mineral, we have

departed from Spencerla in adopting the pseudotrigonal orienta-

tion projected in Fig. 7. The letters used to designate the crystal

forms are those of Spencer's original description. The Fedorov orien-

tation can be obtained from that of Spencer by the transformation

010/100/101. The reticular densities are l isted in Table 2.

Trlll 2

RBrrcur,nn DnNstrrns ol' Tannutttrn

Face Symbol Substituted face Reticular density

c
b
f

o.
u
h
s
NL

c

L

t
I
o
d
e

001
100
010
0T1
101
110
0 1 1
1I1
t21
1 1 1
2rr
oL2
20r
212
221
22r

t02
012
021

cos 414"

cos 49'

cos 50'

cot 30i"
co t  31o

cot 34o
cos 30o

cos 66|"

I cos 46"
] cos 4o

] cot 48'

] cos 30o

] cos 33]"
cos  / 5 -

cos 7 6lo
cos 77o

: . 7 1 9
:  .656
: . 6 4 3
:  .566

: . 4 9 4
: .433
: .399
: .348

: .300
: . 2 8 9
:  .278
: .259
: .233
- n,r<

ta Spencer, L. J., Min. Mag., vol. 15, p. 22, 1908-
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Remember that, for instance, the angle p':30io for the substi-
tuted face (102) is read on the stereographic projection after the
pole (111) has been brought to the center of the primitive circle
by the proper simple shear (herc 3|").

VI. CBNrBnno Larrrcns

The preceding sections all have reference to crystals which can
be described by means of si,mple lattices. If one is dealing with a
centered lottice, the reticular densities are first determined as if the
lattice were simple, then corrected as follows:

(1) For a" body-centered lattice, the reticular densities of the faces
for which (h+k+l) is even are multiplied by two.

(2) For an all-Jace-centered lattice, the reticular densities of the
faces with all indices odd are multiplied by two.

(3) For a lattice centered. in one Jace xy only, the reticular den-
sit ies of the faces for which (h+k) is even are multiplied by two.

VII. DnrBnMrNATroN op PenelrorBns

The gist of the method lies in the following remarks:
(1) The reticular density of a plane is the reciprocal of its reticu-

lar area; the linear density of a row is the reciprocal of its parameter.
(2) (a) The determination of the reticular areas of a crystal K1

resolves itself into the determination of the parameters of its polar
crystal K2.

(b) The determination of the reticular densities of a crystal
.Kl resolves itself into the determination of the linear densities of its
polar crystal K2.

Inversely, since the crystal Kr is the polar crystal of Kz (just as
K2 is the polar of K1), the determination of the reticular densities
of Kz is equivalent to the determination of the reciprocals of the
parameters of Kr. Hence in order to find the parameters of K1
graphically, the first step is to derive the stereographic projection
of Kz from the given stereographic projection of Kr. The face poles
of K1 are the points where the edges of K2 intersect the sphere of
projection, or, in other words, tlte stereographic projection of K2 is
at the same t'ime the cyclographic projection of K1. Hence, the rules
of reticular density determination, applied to the cyclographic pro-
jection of a crystal, yield the reciprocals of the parameters of that
crystal.

The stereographic projection of a crystal Kr being given, the cor-
responding cyclographic projection is lound by plotting the pole of
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each zone circle (this is easily done by means of a Wulff net) and

then by rotating the projection until the polar crystal K2 is pro-
jected on a face of the given crystal K1.

Exaupr-n.-starting from the stereographic projection of sodium

molybdo-tellurate15, the corresponding cyclographic projection (Fig.

8) is derived in that manner. The values of some of the parameters,

graphically determined on the projection are listed in Table 3.

The order of accuracy of the graphical solution may be judged by

Frc. 8.

Tasr.t 3

Plranretnns-or Sonru{Mor.vsno-Ter-r,uRArn

Lattice row Parameter Parameter (b:1)

[1001
[010]
[001]
[110]
[111]

tan49l" :  L. l7l
tan 51" :  1.235
sec 30o : 1.156
tan 59]o : 1.698
sec 49o : 1.524

0.948
1.000
0.940
r.234
I . J / J

15 Donnay and M6lon: Am. Min., vol' 18, p.243,Fig.6' 1933'
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comparison of these results with the computed values on record:

d ;b :  e  : 0 .9548 :  1 :0 .9344 .

In this case, the error is less than one per cent.
The above method for the determination of parameters only ap-

plies to simple lattices. In the case of a body-centered, laltice, the
parameters found for rows with all three indices odd must be di-
vided by two. If the lattice is ol the face-centered, type, the param-
eters of the rows with two indices odd should be divided by two.
For a lattice centered in one face ry only, the parameters of the rows
for which (h+h) and I are even should be divided by two.

The graphical determination of reticular densities and parameters
described in this paper is sufficiently accurate for a number of pur-
poses when made on the usual Wulfi net (10 cm. radius). For greater
accuracy the Schiebold stereographic net (50 cm. radius), sold by
the firm R. Seifert in Hamburg, may be found serviceable.
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