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PART I. METHOD OF DETERMINING THE AXIAL ELEMENTS
INTRODUCTORY

The object of this section is to show the method used to choose
the set of axial elements which is in best possible agreement with
the law of Bravais.

The ideal set of axial elements should not only lead to simple
indices for the known forms, for a number of different sets will ful-
fill this condition, but, as has been emphasized by Friedel' it should
also give as much information as possible on the existing forms:

* Paper presented at the 13th annual meeting of the ineralogical Society of
America, Cambridge, Massachusetts, December 28, 1932.

1 Tecons de Cristallographie professées 3 Ia Faculté des Sciences de Strasbourg,
Georges Friedel, Paris, Berger-Levrault Ed., 1926, p. 127.
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it should enable the reader to infer the list of forms present on the
crystals and the order of importance of these forms, from a mere in-
spection of the given axial elements.

That such an ideal set of axial elements does not exist, strictly
speaking, is well known. The importance of a face is defined by its
Jrequency of occurrence and its more or less perfect development. In
terms of rate of growth, slow faces are the most important as they
occur most frequently and usually are dominant faces. The forms
of a crystalline species do not only depend on the space-lattice, but
also on certain disturbing factors, such as on the length of time and
other conditions of crystallization, presence of foreign ions in the
solution, symmetry of the motif, etc. There is, nevertheless, a cer-
tain lattice, called the Bravais lattice’ by G. Friedel, which ap-
proaches the ideal and will account for the observed facts better
than any other. Only in this Bravais lattice is the importance of a
face an increasing function of its reticular density. Moreover, the
importance of a face does nof usually increase with the reticular
density in any other arbitrary lattice, however simple the symbols
of the existing forms may be in that lattice.

It is chiefly because this fact has been overlooked that the param-
eters of crystalline species listed to date in standard reference
books form such an incoherent chaos. The best remedy available
to-day for all these inconsistencies is to adopt axial elements which
express the Law of Bravais.

The determination of the axial elements will be explained here
in detail for the sake of the method itself. The results will be sum-
marized in Part IT,

MEASUREMENTS

The crystals belong to the pinacoidal class of the triclinic sys-
tem. A total of fourteen forms were ohserved. Of these, ten were
very good and four imperfect. The four imperfect forms being very
rare, the existence of the center of symmetry cannot be questioned.

We observed the frequency of occurrence and the development
of the forms on a number of crystals (over 20). We listed the forms.
in their order of decreasing importance, numbering them from 1 to

* We propose to call it Hasiv-Bravais luttice instead, as it will be remembered
that the term Bravais [uttices has been used in English with a different meaning: the
fourteen space-lattices that may be obtained by adding translations to the usual
symmetry-operations (provided all these translations are greater than one-half the
distance between the points of one of the seven primary lattices).
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14. In the substance here studied, certain forms look equally im-
portant; we group them together, in parentheses, in the following
manner:

a, 2), 3, 9, 6, 6), (7, 8), 9, 10, 11, (12, 13, 14).

Besides the five fundamental angles necessary for our calculations,
we measured several additional angles (eleven) against which the
computed values were checked. The list of measured angles will be
found in Table 1 (4th column). The faces are designated by their
numbers in the 1st column; conventionally, 1’ will represent the
face parallel to 1, etc. An idea of the value of the series of measure-
ments may be had from the 2nd and 3rd columns, giving respec-
tively the number of measurements for each angle and the prob-
able error. The value given under the heading “Measured” is in
each case the most probable value, i.e. giving the least mean quad-
ratic error.

The measurements were made with the non-modified type of a
Wollaston reflection goniometer.

. \\ e

L)
2 100

Fic. 1. Projection (I).
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CALCULATION OF THE 15T SET OF AXIAL ELEMENTS

A projection of the crystal is made by using a Wulff stereo-
graphic net (Fig. 1). A preliminary set of axial elements is deter-
mined by assigning simple Miller symbols to the most common and
best developed faces: 1/(001), 2(100),4'(010),3'(110), and 6'(101).
In this calculation, we use as fundamental data five interfacial
angles chosen from those giving the best measurements.

TasBLE 1
COMPARISON BETWEEN MEASURED AND COMPUTED ANGLES

Angle: | Number . J Angle: (face symbols)
(face of Probable Measured | Computed

numbers) |readings | ©FTOT Lévy Miller
2N 4 23 8.9’ 62°56/ — gl-el 010011
1A 4 17 8.2/ 79°587 — ht-gt T00A01T
2N 3 12 8.2 | 6340 = gl'p 010,A00T
A 2 18 9.9’ 82°42' - ht-gl 100A010
1A 6 13 12.1/ 49°17/ — hl-m T00AT10
2A6 13 9.1’ 47°527 48° 17 gl-m 010AT10
1A 3 11 9.6’ 73° 17 73° 9’ h:p 100 A 00T
A S 10 13.37 58°197 58°107 ht. gl 100 A 10T
1A 8 10 16.57 43° 8/ 43° 5/ ht-qiz T00ATIT
2 A11 6 16.1/ 33°267 33°24’ gl-el/2 010 A02T
1A 9 5 — 41°47 41°50" ht-t TOOATIO
VA7 5 — 54°18’ 54°26' ht-pi2 100A 11T
2'A10 3 — 33022 33°40/ gl-it 0TOAOTT
1 A14 2 — 25°29’ 25°24/ h'-h3 100210
UAL2 ) =5 31°38" | 31°53’ | Bl 100211
1'A13 1 — 75°33/ 74°56" hi-bidtisglz | 100122

N.B.——The value. of the measured angle is the most probable value given to the
closest minute. The probable error is based on a value computed to the tenth of a
minute; mention of the probable error has been omitted when the number of
readings in the series is too small,

The Lévy form-symbols and the Miller face-symbols in the last two columns
are In reference to the set of axial elements (VI).

A peculiar property of the crystals studied is the large number of
well defined zones present: thirteen zones are found in each of
which at least three forms occur., This fact simplifies the determi-
nation of the face symbols, all of which can be obtained from the
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given five by applying only the “Addition and Subtraction Rule.””?
This can easily be seen from Fig. 1; the nine unknown symbols
are found in the following order: 8/, 5,7, 9’, 10", 12, 14/, 11, 13.
Simple trigonometric calculations lead to the axial elements:*
¢:0:¢=1.1082:1:1.0219,
a=105°14’, B8=103°37’, v= 60°45’, (1)
A= 79°58, B= 82°42', cC=117° 4"
The eleven angles which have been measured in addition to the
five fundamental ones, are now computed from the latter. Their
measured and computed values maf be compared in Table 1.

IMPROVEMENT IN THE PRELIMINARY SET OF AXIAL ELEMENTS

When very many measurements are available, it is possible to
find as many different unit-cells (or sets of axial elements) as there
are ways of choosing five angles out of the number that are avail-
able. Provided all the measurements are about equally good, it is
possible to combine them all in such a way as to obtain a mean
unit-cell which is probably closer to the truth than any of the
above. The method has been discussed by Mallard.® It leads to as
many differential equations between the parameters of the polar
lattice as there are superabundant measurements; the method of
the least squares reduces them to five linear equations containing
the corrections (to be applied to the parameters) as variables; these
corrections being determined, it is easy to find the corrections to
be made to the unit-cell. Friedel gives a somewhat modified method
in his text-book.

We have attempted unsuccessfully to apply the method in the
present case. The reason for its failure is that the preliminary unit-

3 Dr. Austin F. Rogers called attention to the value of this simple rule at the
1924 meeting of the Mineralogical Society of America, at Ithaca, N.Y., Am. Min.,
10, 68, 1925; 11, 303, 1926.

1t may be interesting to know, in this connection, how the French crystal-
lographer expresses this rule: ““The plane fangent to the edge of two given faces (kD)
and (pgr) has the following indices:

rt+p, kg, I+7.
The plane tangent to the supplementary edge has the indices:
h—p, k—gq I—r.

(See Friedel, op. cit., p. 229).
4 We use the abbreviated notation:
A=(010A001), B=(001A100), C= (100 A010),
for the sides of the spherical triangle 100.010.001.
5 Traité de Cristallographie, Ernest Mallard, Tome I, p. 295, 1879,
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cell (I) had been determined from five measurements which were
decidedly better than the others.

Law oF HaUy

Our unit-cell (I) satisfies the Law of Haily, in its vaguest form,
that is to say, that the face indices referred to this lattice are small
integers.

Many other unit-cells can be found which fulfill the same con-
dition. For instance, if we start from the same fundamental angles
and the following symbols: 1 (001), 2(100), 4/(110), 3’(110), and
6'(101), we arrive at these results: d:5:¢: =0.9691:1:1.0196, '

a=105°14", B=97°26", v =88°29’, (IT)
A= 74°50", B=_82°42", C=90°28’,

This second unit-cell leads to simple indices; the indices are even
simpler with cell (IIT), in which ¢=0.5098, all the other axial ele-
ments remaining as in (II). Cell (III) is found by starting from the
same five fundamental angles and the symbols: 1’(001), 2(100),
4/(110), 3/(110), and 6’ (201).

If (A'k'V) is the symbol of a face referred to lattice (I), let
(R'R"'V'") -and (B""'E’"'1""") represent the same face referred to
latices (IT) and (III), respectively. The transformation formulae
are:

h”=2h’—k’, k”=k’, lll=2ll’
and
h/ll 2hl_k/ kl/l=kl, ll’l l’
How are we to choose from all the possibilities?

Law or Bravais

The answer to this question is: By applying the Law of Bravais.

We compute the reticular densities of the forms in the different
cases, i.e. referred to the various lattices, and see in which one the
list of forms arranged according to decreasing reticular densities
is in best agreement with the observed order of importance.

The formula giving the area S(kkl) of the elementary parallelo-
gram (mesh or plane unit-cell) in the reticular plane (kkI) is known
and may be written as follows for the triclinic system:

S*(hkl) = I2S*(100) +£2S?(010) - 252(001)
+2 [}:kS(IOU)S(Olﬂ)co% C+kIS(010)S(001)cos A+1AS(001).S5(100)
cos B, in which S 100} = b sin &,

S(010) =ca sin /3,
S5(001) =abd sm .
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Following Friedel, we compute the value S? instead of the re-
ticular density, the latter being of course inversely proportional
to S. The list of the first two hundred reticular planes is given in
Table 2 in the order of decreasing densities for the first lattice
(unit-cell I). Known forms, i.e. forms which occur on the crystals,
are italicized.

TaBLE 2
Pranes oF Latrice (I) LisTep IN ORDER OF DECREASING RETICULAR DENSITIES
OR INCREASING S%

No. (D S } ) s (M gt (1) st
1 001  0.94 201 5.3 230  8.87 231 11.40
2 100 097 123 5.62 130 8.91 113 11.45
3 110 1.20 012  5.69 301 8.96 323 11.68
4 o0 1.21 121 5.76 213 8.97 2T 11.72
5 111 1.52 112 6.16 311 9.03 113 11.97
6 101 1.66 021 6.52 1 9.23 313 12.12
7 011 1.78 112 6.66 123 9.31 431 12.25
9 w01 2.15 31T 6.84 232 9.41 47 12.41
8 011 2.52 221 6.95 223 9.52 032 12.42
111 2.74 310 7.00 122 9.55 233 12.49
10 210  3.12 210 7.08 337 9.86 122 12.53
11 110 3.17 321 7.14 132 9.94 410  12.82
21T 3.20 112 7.47 321 10.07 310 12.92
112 3.7 320 7.67 103 10.11 312 12.93
12T 3.79 113 7.77 301 10.41 031 12.95
120 3.84 20  7.79 122 10.54 133 13.26
111 3.98 211 7.90 912 10.59 291 13.36
12 012 4.21 2711 8.12 031 10.73 311 13.50
102 4.23 231 8.20 013 10.74 331 13.54
111 4.24 121 8.23 332 10.83 112 13.70
20T  4.34 122 8.47 903 10.85 203  13.76
221 4.49 337 8.49 302 11.04 412 13.88
211 4.91 013 8.51 023 11.04 221 13.88
13 021  5.04 312 8.54 212 11.04 302 13.94
213 5.15 212 8.58 113 11.20 213 14.11
14 102 5.20 103 8.66 131 11.20 433 14.18
371 14.22 14T 16.60 114 18.61 230 20.72
247 14.34 131 16.64 114 18.65 124 20.76
322 14.35 142 16.69 313 18.71 304 20.80
430 14.61 324 16.76 041 18.84 231 21.03
214 14.66 433 16.78 53T 19.00 11 21.05
0T4  14.69 132 16.84 141 19.07 403 21.06
123 14.71 032 16.87 522 19.11 437 21.24
130 14.84 223 16.88 412 19.24 133 21.39
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TABLE 2 (Continued)

No. (1) s m s (1 st (D s

122 14.87 104  16.90 520 19.27 034 21.41
131 14.90 413 17.21 341 19.43 214 21.51
104  14.96 312 17.38 532 19.49 214 21.58
341  15.01 234 17.44 320 19.52 041 21.80
411 15.09 401 17.46 143 19.64 523 21.83
421 15.14 314 17.57 51T 19.93 533 21.84
213 15.15 114 17.62 342 20.07 223 21.87
123 15.21 41 17.62 443 20.19 225 22.03
132 15.36 431  17.62 313 20.27 233 22.07
023 15.49 014  17.66 132 20.32 512 22.14
40T 15.52 123 17.711 223 20.33 521 22.16
423 15.78 343 18.07 530 20.39 541 22.18
232 15.80 332 18.18 321 20,44 215 22.22
213 15.83 521 18.26 321 20.47 411 22.25
312 15.95 241 18.27 323 20.49 231 22.28
340  16.28 334 18.37 510 20.58
140  16.41 134 18.45 410 20.72

N.B.—Symbols of known forms are italicized.

It is easy to see how well this list agrees with the observed facts
(relative importance of the faces); there is only one exception: the
order of faces 8 and 9 is reversed. The first nine forms in the list of
decreasing reticular densities are all present. The tenth is unknown
but the next two are present again. The other gaps are larger. The
influence of disturbing factors, although very little known, prob-
ably becomes more important as we go down the list and may ac-
count for the vacant spaces. The importance of the last three forms,
it must be admitted, is very small; they represent minor trunca-
tions, each of them has only been found once on the crystals ex-
amined.

The values of S? also show why faces 3 and 4, 1 and 2, and (less
plainly, it is true) 5 and 6 are about equally important.

We have computed the values of S? for many more forms than
Were necessary to check the agreement with the Law of Bravais.
We have done this in order to show what small importance must
be attached to the expression “simiplicity of indices.” It is instruc-
tive to read the list in that respect. Symbols containing 1, 2, and 3
as indices, for instance, range from §?=17.14 (for 321, 38th form)
to §?=22.28 (for 231, 202nd form). Faces with “simple” indices
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follow faces with higher indices, in a great many cases. No appar-
ent law is to be inferred from the “simplicity” of the indices.
That the “‘simplicity” of the indices is not a sufficient reason to
account for the presence or absence of a face, is shown even better
by Table 3 where a series of forms with equally simple indices are

TABLE 3

List oF ForMs wiTH EQUALLY SIMPLE INDICES REFERRED TO Lartice (I)

Forms: 001 100 010
S 094 097 1.21

110 701 071 101 011 110
120 166 178 215 252 3.17

777 11t 111 Tt
152 274 398 424

210 120 07z 102 201 Zr 102 201 012 021 210 120
312 384 421 423 434 504 520 531 5.09 6.52 7.08 1.79

N.B.—Known forms are italicized.

listed in the order of decreasing reticular densities. All the forms
of the same series (same horizontal line), having similar indices,
ought to have an equal opportunity to be present if the “simplicity
of indices” were a sufficient criterion. We see, on the contrary, that
all important known forms generally appear at the beginning of
ecach series. The exception of the last three underlined forms has
little weight in this discussion, for the reasons stated above. It is
however significant that, although disturbing influences were un-
questionably present, they cannot entirely counteract the domi-
nant influence of the lattice, since the three forms that are excep-
tions still occur among the first seven of the twelve in the series.
Similar lists can be made for the second and third lattices (unit
cells IT and IIT). It immediately becomes obvious that these lat-
tices do not express the facts observed with respect to the relative
importance of existing forms. To give complete lists, such as that
of Table 2, would increase the size of this paper beyond reasonable
bounds. The important point is to know where the existing forms
fall in the lists. We arranged the fourteen known forms in the order
of decreasing reticular densities and for each one indicated the rank
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occupied in the complete list. Table 4 will permit comparison be-
tween the various lattices considered.

We observe that (except in lattice I) the order departs widely
from the observed order of importance (1 to 14). Moreover, the
known forms are among the first 26 in the first lattice, compared
with the first 103, 61, and 50 in the other lattices. This shows how
ill-adapted to the facts would be such unit-cells as (II) and (III).

PSEUDO-SYMMETRY

Tt is often said to be advantageous to choose a particular set of
axial elements in order to stress a certain pseudo-symmetry pos-
sessed by the crystal. This practice, however, is to be condemned
when the unit-cell adopted to emphasize the pseudo-symmetry
ignores the Law of Bravais.

Of this, the present study affords a striking example. It so hap-
pens that our crystals sometimes exhibit a pseudo-tetragonal sym-
metry, due to nearly equal development of the forms 1 and 2. Let
us project the crystal on a plane perpendicular to the zone axis

6‘1
AL

Fi16. 2. Projection IV.
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(1,2). We see (Fig. 2) that the projection has a somewhat distorted
tetragonal appearance, if we take the main faces only into account.
It also shows the presence of a plane of pseudo-symmetry: the great
circle 4, 5. Tt must of course be observed that face 13 has no sym-
metrical equivalent on the left side of the projection (Fig. 2) and
that neither 14 (130) nor 14’ (130) is reflected in the plane of
pseudo-symmetry. Nevertheless, the pseudo-symmetry is a fairly
well marked feature. The question arises: Is it advisable to express
this property by choosing a unit-cell ad hoc?

The following set of axial elements (see projection IV, Fig. 2)
would answer that question:

d:b:¢=1.2708:1:0.7580,
a=101°57", B=118°55', y=85°13’, (Iv)
A=17859" B=61°26/, (=88°53’

This set of elements is derived from the same five fundamental
angles as the other sets, by using the symbols 4(001), 6(100),
2(110), 1’(110), and 3(111).

The transformation formulae from the first system to this one are:

WY =h'—U, BV =p'41", V= — ',

The face symbols emphasize the pseudo-tetragonal symmetry
as the forms 1 and 2, on the one hand, and 6 and 9, on the other,
have the same indices. The presence of the plane of pseudo-sym-
metry is also brought out by the fact that 10 and 12, 3 and 7, 8 and
11 have similar symbols.

But when we list the forms in their order of decreasing reticular
densities or increasing .S? (Table 4), we realize that this new set
(IV) of axial elements does not give a proper expression to the ob-
served facts concerning the importance of faces. In the lattice de-
fined by (IV) the Law of Bravais does not hold much better than
in (IT) or (III). Does this invalidate the law? No. It merely proves
that the choice of the lattice is not proper. The Law of Bravais is
independent of any theory, it is a law of observation which no new
theory can disregard.

ARE THERE OTHER SOLUTIONS?

If we turn the stereographic projection IV (Fig. 2) in its plane,
and keep the same five fundamental angles but adopt the symbols
3(001), 27(100), 1(010), 6(110), and 4(101), we obtain a new pro-
jection and the following set of axial elements:

d:b:¢=1.0473:1:0.9786,
a=105°14/, B=115°22", ~4=89°54’, (V)
A= 739/, B= 63°40', (=82°42".
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If we list the forms of this lattice according to decreasing reticu-
lar densities and italicize the known forms, we get exactly the same
results as in case (I) (see Table 4): all the known forms appear at
the same places in the list, although with other symbols. The
transformation formulae to pass from (I) to (V) are:

W=—h+k FW==0,1=—F"

The values of S? in lattice (V) are exactly proportional to those
of lattice (I). Denoting by S(I) and S(V) the reticular areas in
lattices (I) and (V) respectively, we may write

SHV)=K-S*(T),
with K=0.917.

Is this new solution (V) distinct from (I)? In other words does
unit-cell (V) define the same lattice as unit-cell (I)? Or again, is
the volume of unit-cell (I) equal to the volume of unit-cell (V)?

The formula giving the cell volume may be written as follows:
V =abc sing siny sin A = abc siny sina sin B=¢bc¢ sina sinf sin C
for any given lattice. The unit of volume is the cube of the param-
eter b.

Before any two cell volumes can be compared, it must be de-
termined that the unit in which the volumes are expressed is the
same for both cells.

TaE THREE PrOPORTIONAL UNIT-CELLS

It must be kept in mind that it is possible to express the volume
of a given unit-cell in three different units, viz, the cubes of the
three unit-lengths. The volume will be expressed by the smallest
number when the largest unit-length is taken as b, or in other
words when, the unit-length of b being conventionally taken as
unity, the unit-lengths of ¢ and 'are both less than unity.

As an example, let us consider (Fig. 3) the three axes of reference

F1c. 3. Cyclic permutations of the axial elements in the first octant. (N.B.—All
three cells are purposely oriented in parallel positions so as to show the proportion-
ality of the volumes.)
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Oq, Ob, and Oc¢ in our first lattice (I). The corresponding unit-
lengths are
81:b1:¢,=1.1082:1:1.0219.
But we may choose any one of the three lengths as unit b, if we
change the names of the axes according to the proper cyclic per-
mutation (leaving the system of reférence right-handed). The above
values, for instance, may be divided by 1.0219 and called ¢, &, b»
or divided by 1.1082 and designated bs, ¢, ds, which leads to the
two possibilities: :
8y:by:6,=0.9786:1:1.0845,
d3:bs163=0.9221:1:0.9023.
It is easy to see that the angles «, 8, ¥ between the axes follow
the same cyclic permutation, as do also the angles 4 (010 A 001,
B (001 A 100), and C (100 A 010).

Let
a;=105°14", B8:1=103°37', vi= 60°45',
A= 79°58’, B;= 82°42', C,=117° 4
be the values of these angles in the case of unit-cell (I), we have
=P Be="1, Ye=oau,
A2=Bl, Bz=C1, C2=A1;
and
A3 =1, ﬁ3=a1, ¥s=P51,
A3=C1 B3=A1 C3=B1.

From the above, it is clear that the volumes of the three cells
will be in the ratio:
ViV V" = a1bicy: asbacs: asbycs,
or, in the present instance,

1 8 1 3
Vi.v'’.v'i=1: : : .
1.0219 1.1082

The three expressions of the cell volume in lattice (I) are:
V/(1)=0.945, V''(I)=0.886, V'’"(I)=0.694.
The same lattice is defined by any one of these three cells.

IpenTITY OF LATTICES (I) AND (V)

We find the following three expressions for the volume of cell (V):
V'(V)=0.886, V''(V)=0.945, V''(V)=0.771.
The volume of cell (I) and that of cell (V) are expressed by the
same number 0.886 when the unit of length is the same in both
cases, as can be easily ascertained.
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It follows that the two unit-cells (I) and (V) define the same lat-
tice (Fig. 4). It may happen that the Haiiy-Bravais lattice is not

definitely determined, that is to say one may, in certain cases,

gell (v,1)
: 1 : 0.9786

a:b:dé=l. 0473
« = 105°14', p = 115°227, y = 89°54'.
-
N
. \\\-

\
\
“"-\“_

cell {(1,2)

& :1b:o=0.9786 : 1 : 1.0845
%= 100°87", = 60°45¢, ¥ = 105°14.

FiG. 4. Relationship between cells (I,2) and (V,1) which define the same lattice.
(N.B.—The axial elements of cell (I, 2) are obtained from cell (I, 1) by the first
cyclic permutation as explained above.)

hesitate between two or more lattices which comply equally well
with the Law of Bravais. In this study we have not found any lat-
tice, other than (I), to be in agreement with the Law of Bravais.

Cuoick or THE Unit CELL DEFINING THE
Hatv-Bravars LATTICE

It may be interesting to observe that cell (V) brings out the
remarkable value y=89°54’,

From the point of view of simplicity of indices, we see that the
face symbols are simpler with cell (I) than with cell (V). In the
former, all the known faces are found in the first four series, that
is to say among 25 symbols containing either (0, 0, and 1), (0, 1,
and 1), (1, 1,and 1), or (0, 1, and 2). With cell (V), the known faces
occur among the 49 of six series, including the symbols formed
with (1, 1, and 2), or (2, 2, and 1). (See Table 5.)
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TaBLE 5
SERIES OF EQuarry SimpLE ForM SyMBOLS LISTED ACCORDING TO DECREASING
Densrities 18 SysteEMS (1), (V), axp (VI)

@ 001 100 010
110 101 011 101 011 110
711 111 171 111
210 120 01z 102 2001 0Z1 102 201 012 021 210 120

(V) 010 100 001
101 110 110 110 011 101
111 711 11T 111
201 021 T02 120 210 012 720 210 021 012 201 102
112 211 7271 211 121 T21 112 Ti2 271 121 211 112
212 122 212 231 21 132 221 122 212 221 122 212

(VI) 100 010 001
011 101 110 110 101 011
111 A1 111 11
021 201 012 210 120 T02 210 120 201 102 021 012
IT2 121 Zir 121 211 271 112 112 121 211 121 112
122 212 122 221 221 212 2210 212 122 221 212 122

N.B.—Known forms are italicized.

But there are innumerable unit-cells, with different shapes,
defining the same lattice, such as unit-cells (I) and (V) in the pres-
ent instance. Which one should be adopted? There is no definite
rule relative to this matter, except in certain cases of pseudo-
symmetry.

We adopt the unit-cell which has the smallest primitive transla-
tions (or parameters 4, b, ¢). One must be careful to measure the
translations to be compared in terms of the same unit of length
(Fig. 4). An easy rule to follow to see whether a given unit-cell
should not be replaced by some other having shorter primitive

§ In the case of epidote, for instance, G. Friedel shows that the usually adopted

axial elements:

&:b:¢=1.5787:1:1.8036, B=64°37",
although correctly defining the Haiy-Bravais lattice are poorly chosen because they
do not bring out the remarkable pseudo orthorhombic symmetry.

He suggests to refer epidote to the following system of axes: new a-axis=old
[100], new b-axis=old [010], new caxis=old [102] and to center face (010).
The new axial elements:

&:5:¢=1.5787:1:3.2590, B==89°26’,
stress the pseudo-symmetry (8=89°26') as the faces which have nearly equal
reticular densities are denoted by similar face symbols. (G. Friedel, 0p. cit., p. 140.)
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translations is to calculate the lengths of the face-diagonals and
body-diagonals of the first cell. If any diagonal is found that is
shorter than one selected for the primitive translations, then this
diagonal should be taken as a parameter and substituted for the
largest of the original translations.

Let us compute the diagonals of cell (I, 2) in which the unit
length b is the same as in cell (V, 1). Graphically, by obliquely pro-
jecting all the lattice points of (I) onto a plane of the cell (I, 2),
the projecting lines being parallel to the zone axis defined by the
other two cell faces, it can be determined whether a face diagonal
is shorter than any of the original translations. In case of doubt,
or for accurate determination, the distance formula is used. The
latter can be written as follows:

@ =122+ 202+ wc* 2 uv-ab- cosy+2 vw-be-cosa+2 wu-ca-cosp,
where d is the parameter of a lattice row [urw], and the row
indices #, v, w are supposed to be cleared of common factors.

We reach the conclusion that one diagonal of cell (I, 2) is shorter
than one of the cell translations. The face diagonal of face 1, whose
symbol is (010), when referred to (I, 2), is found to be equal to
1.0473. The new cell should then be constructed on this diagonal
(1.0473) and the two smallest original translations, 0.9786 dnd 1.
It is found to be identical with cell (V).

Cell (V) is, therefore, chosen to define the Haiiy-Bravais lattice
in preference to (I).

THE E16HET OCTANTS IN A TRICLINIC SYSTEM OF REFERENCE AND
THE 24 PossiBLE ExPrRESSIONS OF THE SAME Unit CELL

The three triclinic axes of reference are the intersections of the
three co-ordinate planes in a Cartesian system of oblique co-ordi-
nates. Three such planes divide space into eight octants. The first
octant is defined as that formed by the positive directions of the
three axes. We may take any of the eight octants for our first octant
if we give proper signs to the axes.

The eight possibilities may be visualized by considering (Fig. 5)
the primitive parallelopiped (V). The origin of the co-ordinates
may be taken at any one of the eight corners, the three edges in-
tersecting at that corner being taken as axes. Moreover, at each
corner, there are three possible cyclic permutations (leaving the
system of reference right handed), hence a total of 24 possible ways
of expressing the axial elements of the same unit cell.
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A

F16. 5. The eight octants in a triclinic system of reference.

How 10 Limit THE CHOICE

The axis of the main zone will be placed vertically. This axis is
represented by the intersection of the two most important forms:
in the present case, 1 and 2. This condition reduces the number of
possible expressions to eight. The origin of the co-ordinates being
taken at any corner of the cell (4, B, C, D, E, F, G, or H), the
choice of one axis (here the ¢-axis) uniquely defines the system of
reference, which must be right handed.

If it is desired to have the d-axis sloping down toward the ob-
server, then the angle 8 must be greater than 90°. Among the four
different values which 8 may assume in the eight reference systems
now being considered, two are greater than 90° (105°14” and
115°22"), the other two are their supplements. This new condition
reduces the number of possible expressions to four (corners B, D,
G, or H).

Now if the unit lengths ¢ and b are so chosen that & is the
shorter (as in the orthorhombic system), we are left with only two

possible sets of axes (G and D) out of the four. Their interaxial
angles are:

a= 64°38’, £=105°14’, ¥=90° ¢,
and
a=115°22", B=105°14" v =89°54,
The latter set (corner D) is selected in order that the stereo-

graphic projection of the basal pinacoid may fall in the lower right
quadrant of the primitive circle.
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FiNAL SET OF AXIAL ELEMENTS

The parameters are proportional to those of cell (V) divided
by 1.0473.

4:5:¢=0.9548:1:0.9344,
a=115°22/, B=105°14", v =89°54", (VI)
A= 63°40, B= 73° 9, C=82°42".

The transformation formulae
Wi= =V, BV i=k'—}' V1= —F,

give the symbol (AV1Y1VT) of a face in system (VI) when its indices
(W'k'l') are known in system (I).

The new orientation is seen in the stereographic projection (VI),
(Fig. 6).

I 550

1l
|
I
} o 00

F1c. 6. Projection VI.
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PART II. CRYSTALLOGRAPHIC DATA FOR SODIUM
MOLYBDO-TELLURATE
GENERAL. This new compound has the following chemical
formula, according to Professor S. R. Wood who prepared it:

3 NayO-TeOs- 6 MoOs- 22 H,0.

Its specific gravity is 2.58 +£0.02. Due to the solubility of the sub-
stance in water, the specific gravity was determined in ether and
corrected for water.

The hardness is 23.

Sodium molybdo-tellurate crystallizes readily from a water
solution forming perfectly developed small crystals, ranging in
size from one millimeter or less to about five millimeters in cross
section. The faces of a crystal will whiten and lose their reflecting
power if left too long in dry, warm air.

Forwm. The crystals belong to the pinacoidal or holohedral class
of the triclinic system (Fig. 7).
The axial elements are:

3:5:¢=0.9548:1:0.9344,
a=115°22", 8=105°14’, v =89°54’,
A= 63°40’, B= 73° 9, C=82°42',

Fourteen forms have been observed. They are in order of their
importance: #'{100} and g'{010}, {001} and {011}, o*{101}
and m{110}, 32{111} and &2{111}, ¢{110}, i*{011}, e2{021},
{211}, {122 }, {210}. The last three forms are very rare.

The faces are numbered in order of their importance on the
stereographic projection (Fig. 6). The list of faces according to
decreasing reticular densities can be found in Table 4 (last column).

Interfacial angles: the list of measured and computed angles is
given in Table 1.

Hasir. Usually tabular parallel to either 4{100} or g'{010}, the
crystals also, though more rarely, exhibit a short prismatic habit
together with a pseudo-tetragonal appearance due to equal de-
velopment of %'{100} and £{010}. The main zone, or zone of
elongation, is almost invariably [001] defined by the same two
forms. Probably all the faces of this zone are striated; the stria-
tions, however, are most distinctly visible on hl{ 100} and g 010} !
usually better on the former than on the latter, and also on p{ 001 } ;
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Fic. 7. A typical crystal of sodium molybdo-tellurate showing the ten principal
forms, the usual prismatic habit, and a tendency towards pseudo tetragonal sym-
metry. (Horizontal plan and clinographic projection in the standard position: 18°30’
rotation and 9°30’ tilt. Drawn from the stereographic projection VI, Fig. 6.)

The crystals usually show a number of modifications. Some faces
may be slightly hopper-shaped. This has often been observed for
the face on which the growing crystal lies at the bottom of the
crystallizing vessel.

CLEAVAGE, GLIDING, TwINNING. None of these discontinuous
vectorial properties could be detected.

OrticaL Data. The sodium molybdo-tellurate crystals are color-
less to whitish, transparent to translucent, with vitreous luster.
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The crystals are biaxial and negative. #,=1.577, n,=1.662,
ng=1.683; all three indices +0.003. 2V =502°42°,
The optical orientation is as follows: ’

Angle #1(100) £1(010) # (001) & A
np 1023° 58%° 291° 331%° 36%°
[ 42° 110° 63° 114%° 594°
"y 129° 140° 102%° 216° 721°
Ay 85%° 36° 30° 359° 54°

A, 1193° 82° 47° 285° 3225

The first meridian is passed through the pole (010). Longitudes
represented by & are measured clockwise. The A values designate
colatitudes.

The extinction angle, measured against the edge between
£(100) and g!(010), is

on 4'(100) =34°, on g'(010)=17°.

The optical orientation is plotted on projection VI (Fig. 6).

Dispersion: p >v. The dispersion is greater for one axis than for
the other.

OrricaL MEASUREMENTS. A fair biaxial figure can usually be
obtained in convergent light, simply by examining a few crushed
fragments.

The refractive indices were determined partly by the ordinary
immersion method, partly by calculation, as follows:

(1) By immersion. We found that #, had a value between 1.560
and 1.591. The relief is high in monobrombenzol (1.560) and very
low in trihydrobromine (1.591); #, is slightly above 1.650 (a-
monobromnaphthalene); #, is intermediate between 1.650 and 1.74
(methylene iodide), with a higher relief in the latter than in the
former.

(2) By measurement of double refraction. The difference between
ny— nm Was measured four times by means of a Berek compensator,
with an average value of 0.021.

(3) By measurement of 2V. The axial angle was measured on the
Fedorov universal stage.

(4) By calculation. The size of 2V was computed for several sets
of values assigned to the indices within permissible limits, in agree-
ment with the above listed observations. For a given #,, there is
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only one value of #,, which leads to 2V=>50%° (as n,=nn+ 0.021).
The curve of #, plotted against n, provides two values (B, 1p)
when 2V is kept constant and equal to 503°. We now make use of
the observation that 7, shows the same amount of relief in 1.591
as #n in 1.650. The point on the curve which is equally distant
from 7,=1.591 and #,=1.650 is easily located. Its coordinates
are the values adopted for #, and 7.

The formula, tan V=@4/ﬁ”zz_—nmz leads to 2V =50°40 for the
ny V. #n—mny
adopted set of indices.

The optical orientation was determined by measuring the angles
which the directions of the principal refractive indices and optic
axes make with the three unit faces. The measurements obtained
on the universal stage are listed in the first three columns of the
table. The longitudes and colatitudes were measured on a large
scale stereographic projection.

The two extinction angles given above (34° and 17°), measured
with the microscope, check the values read from the stereographic
projection (333° and 16° respectively).



