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In a recent paper M. J. Buergerr discovered an interesting rela-

tion between the electric polarizability of the ions of face centered

cubic crystals and their mode and ease of translation-gliding.
Buerger's results of his investigation of the translation-gliding on

12 difierent isometric crystals of the NaCl type can be summarized

as follows:
(a) If the sum of the polarizabilities of the two kinds of ions is

small, the crystal has a high gliding strength, and glides only along

the (110) plane. (Examples NaCl, NaF, MSO).
(b) The larger the sum of the polarizabilities, the smaller the

gliding strength (the greater tJre plasticity) and the smaller the

gliding strength for gliding in the (001) plane, relative to the

strength for gliding in the (011) plane. Crystals with ions of large

polarizability (PbTe, PbS, KI) have a small gliding strength and

glide only along the (001) plane, while crystals with ions of medi-

um polarizability (NaI, KBr, NaBr, KCI) have a medium gliding

strength and glide along both planes.
(c) The gliding in either plane takes place in the direction [110],

which is the direction of shortest distance between two ions of the

same kind. Fig. 1 illustrates the two possible modes of gliding in a

crystal of the type NaCl.

Frc. 1.

t M. J. Buerger, Am. Mineral'ogist,Yol.l5, Nos. 2' 5' 6 (1930).
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These results lead to the following relations between the gliding
strengths in the two respective planes and the sum of the polariza-
bilities:

(1) If the ions are not polarizable, the gliding strength for the
(001) plane is much larger than this for the (011) plane.

(2) Both gliding strengths decrease with increasing polariza-
bility, but the decrease must be faster for the (001) plane.

Fig. 2 illustrates the type of relationship which must exist be-
tween gliding strength and polarizability according to Buerger's
measurements.

Frc.2.

A rigorous theoretical treatment of the gliding of crystals en-
counters great difficulties. They arise from two sources. First, it is
extremely difficult to picture the molecular arrangement during
gliding. The most simple assumption would be to consider the glid-
ing as a relative translation of two ideal half crystals. If this picture
were correct, the distance of gliding would be a multiple of the
closest distance of two equal ions, and the crystal would after glid-
ing represent again an ideal lattice. The fact, however, that plastic
deformation increases the tensile strength of a crystal indicates,
and the X-ray diagrams show it directly, that after gliding the
lattice arrangement is disturbed. The second difficulty arises from
the limited knowledge of the forces acting between the ions of the
crystal. These forces are generally considered to be the electro-
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static forces between the ionic charges and certain repulsive forces

which are due to the finite size of the ions. Unscjld has given an

explanation of the origin of these repulsive forces with the help of

wave mechanics. It is generally assumed that they are spherically

symmetric and decrease with the inverse 9th or 11th power of the

distance. Lennard-Jones2 and his collaborators have investigated

the values of n and A in apowerlaw, F: A fr" Iot a large number of

ions. It is however most probable that this approximation holds

only if the ions are in the normal lattice distance. The approxima-

tion is sufficient to calculate elastic and equilibrium constants of

the crystal, but is not sufficient to calculate the gliding strength,

since during gliding the ions separate considerably. The value of

the gliding strength depends very much on the choice of the repul-

sive forces, and since we have no definite information about them,

it is entirely hopeless to calculate accurate values for the gliding

strength.s It is in particular impossible to explain the experimental

fact, that the gliding strength along the (001) plane is larger than

the one along the (011) plane, if the ions are not polarizable.

Frenkela attempted to calculate the gliding strength of NaCl,

but his results are of no value (negative gliding strength for the 011

plane) since his assumptions about the repulsive forces are obvi-

ously too simple. Here we will only estimate the order of magnitude

of the gliding strength, assuming the ions are not polarizable. For

this purpose we consider the gliding as a relative translation of two

halfcrystals, and calculate the component of the force between

these two halfcrystals which acts in the direction of gliding. The

maximum value of this force per unit area of the gliding-surface is

the gliding strength. The total force between the two halfcrystals

is the sum of all the forces between the ions of one halfcrystal and

all the ions of the other halfcrystal. Since however all forces de-

crease quickly with increasing distance we only take into account

the forces between the two layers on both sides of the gliding plane.s

The order of magnitude of the distance between these two layers

2 Lennard-Jones, Proc. of the Royal Society, Vol. 109' (1925).
3 We have carried out calculations using Lennard Jones' data and also by replac-

ing the inverse powerlaw by an exponential decrease of the repulsive forces. The

results vary much with the assumption and do not agree with the observations. The

calculations give in many cases a negative gliding strength. The few valuable conclu-

sions resulting from these calculations are mentioned in this paper.
a Frenkel, Zeit.Jiir Physih, Vol.37, 572 (1926).
6 A more accurate calculation shows that this approximation involves an error

of less than 1016.
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is the lattice distance o, hence the order of magnitude of the electric
force between two ions is e2 f a2, where e is the charge of the ions, and
since the number of ions per unit area is of the order of magnitude
of. lfa2 the total electrostatic force has the order of magnitude of
e2f aa. The repulsive forces are of the same order of magnitude, since
in equilibrium they balance the Coulomb forces, and the same holds
for the maximum of the component in the gliding direction. Ifence
the gliding strength G should be:

c:  r !
aa

where 7 depends on the gliding plane and the gliding directibn, and
it depends very much on the law for the repulsive forces. Using the
results of Lennard-Jones we find that ,y mey vary between 0.01 and
1. Since o is for most crystals about 6.10-8 cm. we should expect
the gliding strength to be of the order of magnitude 2y.le+to
dyne/cm.z:2.t0+3- 106 gr/mm2. The only quantitative determi-
nation has been performed by Jofie, Kirpitchewa and Levitzky.6
They find for the gliding of NaCl along the (011) plane at OoC a
gliding strength of 103 gr/mm2. Our estimate is made for absolute
zero, neglecting the zero point energy. The experiments of Jofi6 and
his collaborators show that the gliding strength increases rapidly
with low temperatures. While there are no measurements at tem-
peratu.res below OoC we can estimate by extrapolation of Joff6's
curves, that for 0o, K the gliding-strength, is of the order of l}a gr/
mm.2, which agrees with our theoretical estimate: Contrary to
other statementsT we find that Born-Madelung's lattice theory of
crystals can account for the observed order of magnitude of the
gliding strength.

The influence of the polarizability of the ions on the gliding
strength as observed by Buerger is particularly interesting because
it presents the only example where the polarizability influences a
mechanical property of a regular crystal.

The ions of the crystals investigated by Buerger have the spheri-
cal symmetric structure of the atoms of inert gases. fn the equilib-
rium state and during elastic deformation every ion of a crystal of
the NaCl type is a center of symmetry. Consequently the polariza-
bility of the ions {oes not play a r6le either for the equilibrium

6 Jofi6, M, W., Kirpitchewa, and M. A. Levitzky. Zeit.J. physik,yol.22, (1924).
z F, Zwicky, Hehetdcal physico octa,Yol.3, 269 (1930).
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energy or for the elastic constants. During gliding however the ions
on both sides of the gliding plane are no longer symmetrically sur.
rounded by the other ions. The sum of the electro-static forces
exerted by the surrounding ions is no longer zero as in the sym-
metrical case, but the electric field strength has a finite value of the
order of magnitude e f a2. N ow an ion is an atomic system consisting
of a positive nucleus surrounded by negative electrons. If there is
no outer field acting on this system the electron distribution is
spherically symmetric. An electric field disturbes this symmetry in
such a way that the negative electrons are displaced in the direc-
tion opposite to the field. In this state the center of gravity of the
electrons no longer coincides with the position of the nucleus. The
ion is polarized and represents an electric dipole. Such a system can
be characterized by its dipole moment p, which is the product of
the total displaced charge and the average displacement. Since this
displacement is proportional to and in the direction of the field, the
dipole moment induced by a field of the strength K will be propor-
tional to K and. we can write:

P :  a K

a depends on the structure of the ion and is called the electric
polarizability of the ion. This constant plays an important role for
the dielectric constant of the crystal and can and has been deter-
mined for a large number of ions from measurements of refractive
indices. The order of magnitude of o is 10-% cm8.

The dipole moment trr is a vector, pointing from the center of
gravity of the negative charges towards the nucleus (opposite to
the direction of the displacement of the electrons) and has there-
fore the direction of the feld vector K. We have, therefore, for the
components:

1 1 " :  d K "

Fu  :  dKa  (1 )

It, : dK".

Due to this electrical polarization of the ions an additional force
acts between the two halfcrystals in the state of gliding. This force
is the sum of the forces between the electric charges of one half-
crystal and the dipoles of the other halfcrystal. (The forces between
the dipoles are of smaller order of rnagnitude.) To esti'mate the
order of magnitude of this force we have only to consider the ions
again in the two planes along which the gliding takes place.

( t )
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The force acting on a dipole of the moment p in an electric field
is proportional td the rate of change of the field strength, which is

of the order of magnitude oI ef a3, and to the dipole moment which

is of the order of magnitude of aef a2. Hence the additional force
per ion is of the magnitude ae2f a6, and since a is about 10-24 cm.3
and a about 10-8 cm. we see that this force is of the same magnitude

as the Coulomb force ezf a2, and can therefore have an appreciable
influence on the gliding-strength.

In order to decide whether the influence of these dipole forces is

an increase or a decrease of the gliding strength, we have to calcu-
Iate the component of the force in the gliding direction. For this
purpose let us consider a dipole, represented by a negative charge
- e at the point (*y) and a positive charge * e at the point (rf Ar,
y*Ay) (Fig. 3). The dipole moment has the components:

Fc : eL'rt"

Pu  :  eA ! .

Frc. 3.

This dipole is placed in an electric field with the components, E",

-8, which are functions. of r and 1. The r direction shall be the glid-

ing direction and we will calculate the force on the dipole in the

gliding direction. The force on the negative charge (- e) is evi-

dently - 1E*(r,y) while the force on the positive charge is

I eE,(rlAr, y*Ay). Since Ar and Ay are small we can develop:

E"(s -f ar, y i Ay) : E"(r, y) * + * + I tt

(2 )
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The sum eE,(x!Ax, y-fAi- eE,(r, y) gives the total force on
dipole, and we have therefore:

the

(3)F "

AE- AE
F " : - e A r l T r L y

0x  0y

aE-
t t x  |  ^  t 4 a

o y

6E,/6* and 6E"/gy can be considered as the r and y components
of a vector which is called grad E, and a simple calculation shows
that (3) can also be written (the scalar product of two vectors)

F , : l g rad .En l  . l p l . o ra  ( 3 ' )

where where 6 is the angle between the two vectors grad E, and 7u,
and lgrad E, I and lp | "r" 

the absolute values of these vectors.
This force is positive or negative according to whether the angle 6
is smaller or larger than 90o. A positive force acts in the gliding
direction and therefore decreases the gliding strength, a negative
force however means an increase of the gliding strength.

In the crystal the field E is the Coulomb field of the ions of the
other halfcrystal. The dipole moment i,r is induced by the field K
which is the Coulomb field of the ions of both halfcrystals. Since p
and K have the same direction, D is also the angle between the
vectors E and K. Since a negative ion is always, even during glid-
ing, surrounded in the same way by positive ions just as the nega-
tive ions surround a positive one, the direction o.f E, E,, grad E,
and K for a negative ion are all opposite in direction to E, E",
grad E, and K for a positive ion, and consequently the angle D is
the same for each ion. To find the influence of the polarizability
on the gliding strength we have therefore to consider any one ion
in the gliding plane of one halfcrystal. The polarizability produces
an increase or a decrease of the gliding strength according to
whether the angle between K and grad E" is larger or smaller than
90". K is the electric field strength on the ion due to all the ions of
both halfcrystals, while .8, is the component in the gliding direc-
tion of the field strength due to the ions of the other halfcrystal
only.

We shall consider the two ways of gliding separately. (1) The
gliding along the (001) plane.
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We will consider thelower halfcrystal as fi.xed and the upper half-
crystal gliding. Since [011] is the gliding direction the ions move in
the (011) plane. Fig. 4 shows the molecular arrangement in this
plane during gliding. Due to the symmetry of the crystal it is evi-
dent that in this plane the vectors E, K and grad E, have no com-
ponents normal to this plane. We introduce a system of coordinates
with the r direction in the direction of gliding and the y direction
pointing away from the fixed halfcrystal. We consider a negative
ion which is originally at the point ,4 and reaches its next equilib-
rium position at B. The path between A and, B could be calculated
if we knew the exact forces. Considering the ions as rigid spheres

Frc. 4.

Buerger comes to the conclusion that the path can be a stralght
line except if the ratio of the radii of the two kinds of ions is smaller
than 0.63. For ratios smaller than this value there must be a lift.
From the symmetry of the crystal we conclude that the force on
the ion wiII change periodically with the period AB:a/2rt,
hence the maximum force wil l be reached for x:AB/4:o/8J1.
Independent of the form of the path we will have in the region
r<-a/8*4

E"  > .0
E o ) 0

I

c-r
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E, and E, will decrease with increasing distance from the fixed

halfcrystal, and. E, will increase with increasing r while -E, will

decrease. All these conclusions follow from the fact that the Cou-

lomb forces decrease with the inverse square of the distance, hence

the direction and the change of the field is determined by the near-

est ion, which in this case is the positive ion in the point C. Hence

we have:

aE"
^  )0 ,
dxc

OE,_<u.
0y

Therefore the vector grad E, will be in the fourth quadrant of the

system of coordinates.
To find the direction of K, the field due to all ions of both half-

crystals, we can consider it as the sum of three field-strengths,

namely the field E due to the ions of the fixed crystal, the field due

to the ions in the same layer as the ion, and the field due to the

rest of the moving halfcrystal. The ions in the same layer surround

the considered ion symmetrically and therefore give no field. The

rest of the moving halfcrystal gives a field which is equal and op-

posite to the field E at the point ,4. Hence:

K , :  E ,

K,  :  Er(x,  Y)  -  Er(A) .

Since 6Er/Dr(0 and 6Er/6y<-0 we always have EnQc, y) <En(A)'

Hence:

K">  0

K o 1 0 .

Whence the vector K is also in the fourth quadrant of the system

of coordinates, and the angle 6 between the vectors K and' gtad E"

is necessarily smaller than 90o. Consequently, the polarizability oJ

the ions always d'ecreases the glid.ing strength along the (001) plane'

This holds independent whether there is a lift or not'

(2) The gliding along the (011) plane.

In this case the ions move in the (001) plane (Fig' 5) and again

the vectors E, K, grad. E*have no component normal to this plane'

The path of the ion from,4 to B is certainly not a straight line, since

the ion cannot penetrate the ion at the point C. It is more natural

to assume that the path is approximately a circle around the point

C. We choose the r direction in the direction of gliding and the 1
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direction normal to the fixed halfcrystal. The maximum force will
again be reached for ;u: a/80. We consider a negative ion. From
the crystallographic arrangement we conclude, that for x<a/8{i
we have:

aE-
E"<o  -  

<o
6 x

aE-
Eo )o  = to .o y

Frc

Hence the vector grad Er is in the second quadrant of the system
of coordinates. The vector K is again:

K ' : E ' 1 0

Ko :  En(x,  y)  -  Er(A) .

If the path would be a straight line we would necessarily have
Er(r, y)>Eo(A) and hence Ku)O.For this case the vector K is
also in the second quadrant and the angle d is smaller, than 90o.

'ffi:-

+
c l
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The polarizability would therefore produce a decrease of the gliding

strength. However, there must be a lift connected with the gliding

along the (011) plane. For a very large l ift EoG, )) becomes very

small, hence K o: - E o(A) ( 0, and the vector K is now in the third

quadrant. Therefore, there exists the possibility that with lift the

angle 6 is larger than 90", and that the polarizability of the ions

produces an increase of the gliding strength along the (011) plane.

There will be a path between A and B along which the angle D is

90o and along which the polarizability of the ions will not influence

the gliding strength. If the actual path lies below this critical path,

the polarizability results in a decrease of the gliding strength, but

if the actual path lies above it the polarizability increases it.

In order to determine this critical path we need to know the

value of E, and Eo. They can be calculated by a method given by

Madelung. Frenkel has given the electrostatic potential of a half-

crystal limited by a (011) plane, and from it we find as a first ap-

oroximation:

t  g-z"u lo ' ts  4tr
. q i n  -  r

v . l  1 _  e _ r { 3 t 2  a l  2

l6 t re g-2ra la

E , , : - - - . -
"  a 2 t 2  l ! B - " v t t z a 2 ! 2  |  - ,  r t 3 l 2  a v 2

where r and I are the coordinates with respect to the point D. The

dipole force vanishes according to (1') and (3) if

A E -  A E ,
K '  ^  * K r  -  : 0

df r  oy

where K':E' and

K, : E, - E"(A) : 
# *;r-le-z'ut" 

- e-*rfrl

_ ,t":__. t __f ,-r*urn'i r*+ * - ,-*ufrf .
a z t / 2  I - e - r \ / 3 1 2 1 _  a ! 2  J

Introducing these expressions in (4) we find, after a rather long but

elementary caleulation, that the dipole force vanishes for r:0

and if

D

32re e-2ta la43

(1)
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4 t  3 1 - e - n 1 / 3 1 2
e-ztclavl COS---7= -------------- .g-2nUla

a ! 2  2 I + e - i 1 / r t 2

3  1 _  e - t r | t z-  3e-t {312 _ _ . r - r^ /LI2
2 | + e-r"/rl2

or

_ 4tr
, -2 ra la : /3  Cos___,=  x  _  l . J )gs-z rv ta  *  0 .0793 :  0 .

a ! 2

Since yla/4rt tne first term is always very much smaller than
the two others and can therefore be neglected, and we find that the
dipole force vanishes if:

a  0 .0798  a
y  -  - - l o g n a t . - :  

_  :  0 . 4 4 7 ,  o  :  : J 2 *  0 . 0 9 3 o .
2  

-  
1 . 3 2 5  4 '

Consequently, the electric polarization of the ions increases or de-
creases the gliding strength according to whether the lift in the
point of maximum gliding force is smaller or larger than 0.093o.

Frc. 6.

Fig. 6 shows the curve r along which the dipole force vanishes
(calculated without neglecting the first term). The forces acting be-
tween the ions during gliding are not large enough to produce an
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appreciable compression of the ions' Hence we must assume that

the path of the ion must be a circle with C as center. The periodicity

of the crystal structure leads to the conclusion that the maximum

gliding force occurs for a shift *:a/8t/2' The figure shows that at

this point the lift is larger than 0.0934. A more careful consideration

of the repulsive forces shows that the maximum gliding force may

occur for a shift r<o/8/2 but still at a point near the curve I.

We conclude therefore that; The polarizabi'Iity oJ the i'ons has a aery

small infl,uence on the gl'id'ing strength along the (011) plane. Whether

it is an increase or a decrease depends on the law governing the re-

pulsive forces.

Suuu.lnv

The gliding strength of crystals cannot accurately be calculated

since it depends largely on the unknown law for the repulsive forces

between the ions. The order of magnitude of the observed gliding

strength is in agreement with the estimated theoretical value. The

experiments show that for crystals with ions of small polarizability

the gliding strength along the (011) plane is smaller than along the
(001) plane.

The theory leads to the conclusion that the electric polarizability

of the ions decreases the gliding strength along the (001) plane but

does not appreciably change the gliding strength along the (011)

plane.
This consideration explains the observation (Fig. 2) of Buerger

that crystals whose ions have a large polarizability glide along the
(001) plane.


