various imitations separate into groups; the members comprising any one group are chemically similar. Doubtful cases can be solved by measuring in addition the relative dispersion.

Mr. H. E. Buckley: The crystallization of potash-alum. The author described the results of experiments on the differences of crystal habit obtained under varying conditions of cooling, and evaporation, and in the presence of various substances in solution.

W. Campbell Smith, General Secretary

NEW MINERAL NAMES

Renardite


Name: In honor of A. F. Renard, formerly professor of mineralogy at the University of Gand.

Chemical Properties: A hydrous phosphate of uranium and lead, PbO·4UO₂₃P₂O₅·9H₂O. Analysis: Insol. 2.11, PbO 12.26, P₂O₅ 8.15, CoO 3.68, MoO 0.74, UO₃ 64.82, H₂O 8.74. Sum 100.50. In a closed tube it yields water and turns brown. Fuses on charcoal to a black scoriaceous mass. Easily soluble in hot HNO₃, in HCl with separation of lead on cooling.

Crystallographic Properties: Orthorhombic. a: c = 1:1.209. Flat, rectangular prisms. Forms (100), (010), (101). Cleavage parallel to (100), perfect.


Occurrence: Found as minute crystals with quartz, torbernite and clay from the Kasolo Mine, Katanga, Belgian Congo. Resembles dewindtite and dumotite.

W. F. Foshag

Chile-Loweite


Chemical Properties: A hydrous sodium, potassium, magnesium sulphate, K₂Na₂Mg₆(SO₄)₆·5H₂O. Analysis (on impure material): K₂O 10.83, Na₂O 20.51, MgO 7.15, SO₄ 43.43, Na₂O 8.73, H₂O – 0.23, H₂O + 9.05.


Occurrence: Found in the "calichera" between the "Chile" "Alemania" works, at Taltal, Chile, as minute crystals.

W.F.F.