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In the oscillation method of crystal analysis a crystal is mounted on an axis and

turned back and forth through an angle of about 30o from preferably a known posi-

tion. A beam of monochromatic X-rays normal to the axis of rotation strikes the
crystal and is difiracted. The spectra are recorded on a photographic plate. The
coordinates for each spot or spectrum are measured. These data are used for the
construction of a projection of a new lattice called the reciprocal one with respect
to the crystal space lattice. In the projection the indices of each plane producing

a spectrum can be read off directly. The advantages of this method especially in
the case of crystals with low symmetry are mentioned below. It is also possible
to distinguish with it members of groups like that of the feldspars, which is ex-
tremely difficult, if possible at all, with the Laue and powder methods.

Ascomparatively few studentswill beable to understand the method thoroughly
by merely reading this paper, therefore, the application of the method will be
described shortly by a detailed example, that of the determination of the space
group of analcite. For a proper understanding of this method the student should
have a working knowledge of the simplest formulas of spherical trigonometry and
of analytical geometry.

INrnorucrloN

Since the discovery of the diffraction of X-rays by crystals in
1912, probably no method of crystal-analysis has promised greater
success for the future than the rotation method by Seemannr and
Polanyi,2 and the oscillation method by Schiebold.3 While in the
rotation method the crystal is rotated 360" about an axis, in the
oscillation method the crystal is turned back and forth about an
axis through a limited number of degrees (usually 30).

Since this method has been described but briefll in America,
and only one paper of any length has appeared in Englishs an

1 Seemam, H.; Phys. Zeitschr., vol. 20, p. 169 (1919).
2 Polanyi, M.; Di,e N aturuti.ssenschaJten, vol. 9, p. 337 (1921).
3 Schiebold, E.; Fortschritte iler Mi,neralogi.e, Kri,st. und. Petrog., vol. 11, pp.

rr3-280 (1927).
{ Wyckofi, R. W. G.; The structure of crystals, New York (1924).
5 Bernal, I.D,; Proc. Royal Soc. Lonilon, vol. ll3A, p. 116.
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explanation and discussion of the method with one or two-detailed
examples may be of value.

For the following reasons the oscillation method can be used to
great advantage where single crystals, though they may be small,
are available: (1) The lengths of the edges of the unit cell of a
crystal, as well as the number of molecules in it, can be determined
with great precision, regardless of the system of crystallization.
Neither the powder nor the Laue method can give us this infor-
mation in crystals of low symmetry. (2) If the crystal is oscil-

Figure 1

The relation of the crystal mounted on the axis of rotation with respect to the

spectra produced on the photographic plate. The spectrogram is that of adularia

oicillated about the crystallographic b axis. Each spectrum is represented by a

poi.r of. short lines. The line nearer the axis is the B, the one farther away the c Iine

oI the K radiation of molybdenum. usually only the a line is used. some of the

layer lines of.I kind (hyperbolas) are indicated by dotted lines. Layer lines of 11

kind, parallel to the axis, are sufrciently prominent to be seen without further

indications. The widths of the lines of the spectra in the diagram are supposed to

show intensity of reflection. (After Schiebold.)

lated in a sufficient number of directions the space group can be

determined reliably. The Laue method and, where the symmetry

is lower than hexagonal, the powder method, are not to be depend-

ed upon for this information. (3) There are often sufficient X-ray

\ \

\

5/ifs
n lead

Osci//ahng



ltounwl.r MTNERALIGT:AL socrETy oF AMERT:A 125

spectra recorded on the plates to make important deductions as to
parameters of the structure. At present the Laue method is the
one most widely used for this purpose.

Bragg's6 ionization method is and will of course continue to be
of great importance in special investigations, but ordinarily it
would require much more time than could be given to a problem.

It is not intended to give descriptions of apparatus and the
technique necessary for the application of the method, but an

Figure 2. (After Schiebold).

explanation of the principles and especially of the graphical meth-
ods used in the interpretation of spectrograms. This the writer
studied at the Mineralogische Institut at Leipzig under Prof.
E. Schiebold and Prof. F. Rinne, to whom he is greatly indebted.

Fig. 1 shows diagrammatically the arrangement of the axis of
rotation upon which the crystal is definitely oriented with ref-
erence to the incident X-rays. The spectra produced on the photo-
graphic plate, which is normal to the incident ray, are shown also.
As far as possible the same letters will be used for corresponding
points in all the diagrams accompanying this paper.

6 Bragg, W. H., and Bragg, W. L.; X-rays and crystal structure. Lonilon
(192s).
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GBouprntcer- RBr-erroNS rN TIIE Oscrr-r-erroN Mruroo

Fig. 2 illustrates how reflection occurs in the rotating crystal

method, of which the oscillation method is a special case. -SOS0

is the incident monochromatic X-ray which meets a plane K of a

crystal in O, the center of the spherical projection. Off is the axis

about which the crystal is rotated. For the sake of convenience

we make it normal to the incident ray 5056. Points of reflection

are recorded on the photographic plate (Phot, Pl.), which isnor-

mal to the ray SOSo. Reflection by the plane K depends ona6a, the

glancing angle between incident ray and plane K, and upon p,

the angle between the normal upon the plane K and the axis OIl.

The normals Py P2, Ps, Pt, to the plane K, when at various

positions during rotation through 360o form a conic surface whose

vertex angle is 2 p. In general a plane K during a complete rota-

tion about O.l/ fulfills the well known Bragg's equation'?

n\:2d, sin a, four times. ( 1 )

This gives rise to four spots of the same order on the plate, for

example Sr, Sr, Sr, Sr. If the plane K with indices hkl happens

to be in the zone luawl parallel by construction to the axis Oly',
(hu*ku*Iut:0 is the equation of the plane),8 the vertex angle

of the cone is 180". Therefore, each two of four reflections will

coincide and only two will occur (for example 56, and 56). These

two lie in the so-called principal spectrum (Hauptspehtrum).

Other special positions are possible but improbable.e
For the understanding of the angular relations and the inter-

pretation of the spots on the photographic plate Fig. 3 has been

drawn. AN is the axis of rotation, S,4O1 is the incident ray which

lies in the plane of the principal meridian Sli/O. S,4 is normal to

u4iV and the photographic plate (Phot. Pl.). K is the plane of

reflection. ,4P is normal to it. .4R is the reflected ray which meets

the plate at RL. pp is the angle .ly'P between the normal to the
plane K and the axis -4.1y'. pa:NR is the angle between the re-

flected ray and the axis AN . 6nu is the angle OQp in the equatorial

6" a is called @ by the Braggs. The reader is referred to pp. G15 and 73-103 of
their elementary book (op. cit,).

z O!. cit., p. 13.
E See for example: Dana's Textbook of Mineralogy, 3d ed., p. a6 $!22).
e Schiebold, op, cit.,p, ll9.
e" The greek letter 4 in the drawings looks slightly difierent from the printed
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platre, or in other words the meridian angle of the pole p. 6n:
OQ is the meridian angle of the pole R. $:WSf :ZlOrRr is
fhe angle between the great circle SPRO and the principal meri-
dian. The coordinate system r, z orr the plate is right-angled.
I and f are the polar coordinates of Rr. The points O aid, Ot
could have been made to coincide except for the sake of clearness

Figure 3.

of the drawing. r: AOr is the distance of the plane K to the photo-
graphic plate.

It is obvious that OR: 2a when reflection occurs (see equation
(1)) .  S ince ,4P is  normal  to  K,  Sp:90o-a and pR:90o-a.
In A SPI/ by the sine law,

sin (90"-a) sin pp cos c

sin (180'-6) 
: 

ri" a:.i" O'
By the cosine law,

cos (90o-a):6os 90o. cospp*sin 90o. sin ppcos (180.-O) or, sln a:sig pp.cos
(180"-o) e)
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Suppose t and y or r and, $ to be given:

r : r  ' tan2a

7
- : tan2a
/
r:V, sil_ 6
z : t  '  coso

Substituting, r:r ' tan 2a . sin $
z:r . tar' 2a' cos 6

By construction,

*:r. tan ia

z:AQ'. cot pp:L'cotpp
cos @]3

By the cosine law in A l[RO,

orr

and,

ort

(4)

cos 2d: cos 90o . cos pR *sin 90o ' sin pa ' cos dfi

cos 2a:sin pa .cos dR

cos prd:cos 90o .cos 2af sil 90o ' sin 2a ' cos O (5)

cosp6 :5 i 11  2a . cos$ :2s i na ' cosa ' cos i  ( 6 )

In A y'[PO by the cosine law,

cos pp:cos 90o 'cos(90'-af 2a)*sin 90' 'sin(90'-af 2a)'cos{

or, cos p-:5in (90"-Fa) 16. d-:.o. a 'cos { (7

Substituting from (7) cos o:cj?
cos C

we have another form for cos pR,

cos p4 : I sin a 'cos pp

TnB RncrPnocAl SPAcE Lerrrcp

It would be diftcult to explain the use of the oscillation method

especially the graphical interpretations without introducing the

conception of the reciprocal lattice, used first by Ewald.10

If we consider a crystal as a simple space lattice we may choose

three directions or vectors a,b, c, in it as primitive translations,
(Fig.  ). These may serve also as axesll when they will be marked

to Zeitschr. f. Kristal'l'ographie, vol. 56, p' 129 (1921).
u ft is customary to use German letters for vectors or directed magnitudes and

corresponding Latin ones for absolute lengths. In Fig. 4, then, 0, b, c, imply not only

the lengths of the edges of the parallelopiped but also their directions' a, b, c, on

the other hand, are used either just for the lengths of the edges or to designate the

three crystallographic axes. A primitive translation is the vector from an atom to

the nearest identical atom in the direction of the vector. See f. example Wyckoff'

R. W. G., op. cit.,pp.56-58.

(8)
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a, b, c to distinguish them from the translations 0, b, c. A plane
in such a lattice may be designated by Miller indices h., k, l, where
the intercepts of such a plane are afh, b/h, cft, on a, b, r, respec-
tively.

The origin of the unit cell or parallelopiped is at 0. The planes
which have as indices integers prime to each other are farthest

* - , z

z'
4OO y'ane

2O0 p/ane

Figure 4.

away from the origin in the cell. They are responsible for the
l order reflections. Planes which are sub-multiple distances of the
first mentioned planes away from the origin have indices that are
multiples of the indices consisting of integers prime to each other.
These intermediate planes produce the higher orders of reflection.12
In Fig. 4, considering the pinacoid, for example, plane (100) would
be farthest away from the origin in the unit cell OAFBCHDG,
and would produce 1 order reflections. The plane (200) would be
half way between and would cause.Il order reflections and so forth.

"Now from the planes of the lattice, as so defined (quoting
Bernalls) another lattice can be built up each Doint of which lies

u Bragg, op. cit., p. 13.
ts Op. cil,., p. tl8.
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on the normal from the origin to a plane and at a distance Z1a

from the origin, h and the spacing d' oI the plane being related by

hd:k2 (9)

where F is a constant. In other words, each point in the new

lattice is the reciprocal polar of a plane in the old lattice in a sphere

of radius ft." The new lattice is called the reciprocal lattice (rezi-

prokes Gitter) of the old. For every plane in one may be found a

corresponding point in the other as shown in Fig. 4 for the planes

(100), (200), and (400). The reciprocal lattice has the same origin

as the old lattice but is referred to the three vectors 01, b1, cl'

With respect to o, b, c,15

k2br
6t - f"sin 

a, and is normal to the plane bc ,

h2ca
6t: rjin 0, and is normal to the plane cc ,

. kzob
c1:7 sin 7, and is normal to the plane trb,

a, b, c are the lengths of the vectors 0, b, c respectively, d, A, "Y,
are the angles beLween the primitive translations' Z is the volume

of the unit cell or parallelopiped. With these new vectors 01, b1, cr

whose lengths are ar, br, cr, respectively, we build the reciprocal

lattice in which h, k, I are the indices of a point which corresponds

to a plane (hkt) in the original lattice. The reciprocal lattice

has the following important properties: (1) the vector 6 (Fig. 6)

to a point P nr"t oI the reciprocal lattice is the normal to the cor-

responding plane (hkl) of the space lattice' (2) The Iength Z of

the vector I to the first point encountered in a given direction in

the reciprocal lattice is equal to lfd6n4. d is the distance between

equivalent planes in the space lattice. (3) The coordinates of a

point Parz in the reciprocal lattice are proportional to the indices

of the corresponding plane (hkt) n the space lattice, or in other

words if rr, !r, z1 are the coordinates, xr:arh, yt:brk, zr:crl,-
(a) The volumes of the unit cells of the two Iattices are reciprocal

to each other 7: l/Vr. Vt is the volume of the unit of the recipro-

cal lattice.

la I substituted & for Bernal's p because p is used for angles in my paper. This

& has no relation to the index l, but is the length of the vector I; used further on

d is always the spacing between equivalent planes.
t5 Ewald, op. ci.t.
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Bernal says,16 "It is difficult to obtain a physical picture of the
phenomena in the reciprocal lattice corresponding to the diffrac-
tion of X-rays in crystals. By assuming Bragg,s law, however,
we can obtain a geometrical one.,' If the angle between the inci-
dent ray and the reflecting plane in the space lattice satisfies the
equation (1) reflection occurs. In the reciprocal lattice a is the
angle between the incident ray and the plane which is normal to the
radius vector 11 connecting the origin O with the point pr,*l which

Figure 5. (After Bernal.)

corresponds to the plane (hkl) in the space lattice. (See Fig. 5.)
By equation (9)

n:! or,  a:!  (10)
, d h

Substituting (10) in equation (1), we get (assuming for the pres-
ent n: l)

. l,,h
S l n  d : -

2k2

Fig. 5 (after Bernal) is an attempt to present reflection in the re-
ciprocal lattice diagrammatically. SO,So is the incident ray. A
sphere with a radius 2kr/\ is drawn around O as center. The
point P in the sphere is the point of the reciprocal lattice corre-
sponding to the reflecting plane of the space lattice. Op is the
radius vector ! which is normal at p to a plane SR which cuts the

16 of. cit, p. l2O.

(1 1)
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sphere in the circle marked ,,circle of reflection." sPR is a straight

line in that plane. Then

h '^,h

sin O^SP: 
'" 

: " '" 
which is equation (11) Bragg's equation'- 

2k2 2k2

\

Z is the length of the vector ! in this equation.
The incident ray SO, therefore, will be reflected along OR by

can lie outside of the sphere with 2h2/)t as radius, for if Z were

longer than 2k2f\, sin a would be greater than 1. The sphere

with 2k2/tt as radius, therefore, is called the "Iimiting sphere,"

(Begrenzungskugel).
Since the angle SPO must always be 90", all points P will lie on

the surface of a sphere with a radius &2/tr whose center M lies half

rotation or oscillation, respectively'

Tup Ever.uATroN ol RBrr-BcrroNS rN THE Pnorocnaus

The plotting of reflections and the determination of their in-

dices resemble the gnomonic projection. (See Fig. 11') If in

equation (9) we choose &: 1 we have

h n r t ' d n r t : 1 ,  o ,  h o n r : !
an*t

d'nr,t:the distance between equivalent planes (hkl)' In order to

find, hnnt, the length of vector bnm, we construct the auxiliary

figure 7. With two arbitrary lengths ar, br, we draw a reciprocal

lattice in two dimensions. With the radius hrl\:l/I (tr here is

also arbitrary) we draw the circle marked "sphere of reflection in
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Fig. 5, so that O wil l l ie on its surface. Any other point P211,
of the lattice that happens to be on the surface is a possible point
of reflection. OPhil:h1p, therefore. Since OMP is an isosceles
triangle, the normal fuom M uponOP bisects the angle 2a: OM P.ru"

OL :  PL :OM . s i n  a

therefore, +h: l/>\. sin a, and since h1,p: l/doo,

T 2
hht - - - -  s in  a r , l z

dnnt  I

which is equation (1) in a slightly different form.

Z Z '

(r2)

.&'

Figure 6
Axial relations of space lattice to reciprocal lattice. O, b, C are primitive traus-

lations and axes of space lattice. Or, b1, Cl are primitive translations of reciprocal
lattice. O1 normal to plane bc, bt normal to plane C0, Cl normal to plane ob.

But the length of 6 is one of our polar coordinates in the re-
ciprocal lattice corresponding to r on the spectrogram of the space
lattice (Fig. 3), as will be seen more clearly in Fig. 11. For plotting
the length of 6 we need a factor which will make our projections of
a convenient size. We choose Ri\f  2 (Ro:500 mm. usually is
convenient). Multiplying both sides of equation (12) by this factor
Rstr/2 we get

R"X

u*r:  
Ro'sin anrt '  (13)

te The incident ray is parallel to MO and not as shown in Fig. 7.



134 THE AMERICAN MINERALOGIST

The radius of the sphere of reflection l/tr when multiplied by the
same factor becomes Rof 2, or 250 mm. if we choose Ro:500 mm.
To locate a point Pnn in the projection of the reciprocal lattice

corresponding to a plane (hhl) we use the polar coordinates
Ro.sin atnxtandpprrl which we compute with the aid of equation
( 7 ) .

An examination of the spots in a photogram taken by the

oscillation method (for example Fig. 1) shows that they are ar-

ranged in distinct lines or curves at right angles to the trace of the

k 2 /
i=7

Figure 7'ro"

axis of rotation provided the axis is parallel to a prominent crystal-
lographic direction. These lines or curves are called "layer lines
of l kind" (Schichtl inien I. Art). In order to explain these lines
we go back to the conception of the one dimensional lattice by
Ewald.l7 We imagine the space lattice to be made up of three one-
dimensional ones. Each of them is parallel to one of the primitive
translations a. b. c. A one-dimensional lattice consists of a
line on which atomic centers are spaced at equal intervals. We
orient the lattice so that the one-dimensional one parallel to c is
also parallel to the axis of rotation. In Fig. 8 the one-dimensional
lattice with the direction lweaswz] of the c axis and of the axis of ro-
tation is shown. (Any other direction or line on which atoms occur
at regular intervals could have been chosen.) Neighboring
atomic centers Ao, At are a primitive translation 71,r4*s1 apart.

17 Ewald, P. P., Kristalle und Rdntgenstrahlen, Berli,n, 1923, p. 42.

Rag
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The parallel beam of monochromatic rays SrSr meets the lattice
and is diffracted. Since each atom sends out spherical wave im-
pulsesl8 the diffracted beams lie on a cone whose vertex angle is
equal to 21 . "the axis of the cone is the line lutu#t] as shown in
Figs. 8 and 9. Diffraction (or reflection) occurs only in those
directions where the phase difference between impulses {rom
adjacent atoms is an integral multiple of the wave length tr.
In other words, in Fig. 8

Figure 8.

ArBr -  A2B2 :0 ,  1 ,  2 ,  3 ,  '  '  ,  l ' \

AIBL :  Tu " r " . r ' cos  7

A2B2 :  Tusopu ' cos  1s

ArBr-  AzB2:  l ' t r :  Tu"o"*" . (cos y -  cos 7e)  (14)

This equation and two other exactly similar ones to be mentioned
later are called the Laue equations. l' is the order of reflection
in the one dimensional lattice just as z is the order in the three
dimensional lattice in equation (1).

In Fig. 9 we assume a special case, that of the incident ray S
being normal to the axis of rotation which is parallel to a prominent
crystallographic direction. The cones of reflection of the different
orders cut the photographic plate in hyperbolas. The O order will
be a special case, namely a straight line. In the figure we must

1e These spherical waves can be explained by Huygens'principle. Only waves
which are exactly in phase lie on the surface of the cone.

q
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imagine the cones to extend also downward from the O order' All

spots, therefore, have these hyperbolas or layer lines for one of
their loci. They become straight lines normal to the axis of rota-
tion in the projection of the reciprocal lattice. Figs. 3 and 8 show
that the angle pa and 7 are identical. Since we are dealing with

-8. Order

f. Order

5
O. Order

. r )
\

\
Figure 9. (After Ewald.)

an incident ray normal to the direction lusopal the cosine of 7s
becomes 0. We may substitute in (14) pa and get

l , ' \ :Turo* r ' cos  pn (14')

By equat ion (6)  and (8)  cos Pn:s in 2a 'cos 6:2 s in a 'cos pP.

Substituting in (14') we get 
f^

sin 2a' cos d: 2 sin ot cos pr:-

:a constant for each layer l ine (15)

Equation 15 nray be used for calculating the primitive translation
Turor., by taking the mean value of Turorr, calculated from all

the spots in the photograph. A shorter and more accurate way is
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to use the reflections of the principal spectrum along the 0 layer
line, if we know the orientation of the crystal with respect to the
principal meridian and to the incident ray. The principal spectrum
consists of reflections from the faces that lie in the zone of the axis
of rotation. Therefore it is at right angles to the direction of the
axis (See Fig. 1) and to lu*tauaf which by construction is parallel
to the axis. The advantage of taking a prominent crystallographic
zone or direction for the axis of rotation is obvious now, for it
insures prominent reflections in the principal spectrum. These
can be evaluated by equation (1) if we know the approximate ?
from equation (15), as wil l be shown in a paper on the structure of
analcite. l '  in (14) and (15) is an integer. It tells us how many
times we must take the distance Turor., in the direction lusoswsf
to arrive at a certain point. It is the index along fusztsw3l. l' must
remain a constant for each layer line as is obvious from equation
(14) and (15). (Note the resemblance to the gnomonic projection
in this respect.)

Layer lines in the general direction of the axis of rotation (Fig.
1) also appear, if prominent crystallographic planes are normal to
the axis. A prominent zone will then be at right angles to the axis.
The reflections of such a zone lie on a curve which is almost a
straight line near the principal spectrum. All the points in the
reciprocal lattice corresponding to the planes in such a zone lie
in a plane. Therefore, these layer lines are straight lines in the
reciprocal lattice. Schiebold calls them layer lines of 11 kind.
Only the index referring to the coordinate in the direction of the
axis of rotation changes along these lines as shown later.

In order to make our evaluation quite general regardless of
which prominent crystallographic direction is the axis of rotation
we look at the portion of (15) l'l\f Tu"o".r. On each layer line of 1
kind the index l'is a constant. If the direction parallel to the axis
of rotation is not one of the primitive translations c, b, c, but some
other crystallographic direction, we employ the well known trans-
formation formulas to find the indices with respect to the primitive
translation o, b, c.

h,:hur*hvtltrwr
h,:hua*kaz*lwz

1,,:huslkoal lw
In ttrese equations [z1orz1] :f,

[".w"u):i
lus%wsf=6
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a, 6, I are the three primitive directions or axes of a new orientation
of the lattice with reference to the crystal axes o, b, c.E is the axis
of rotation. h',k',1'are the indices with reference to the directions
t, b, a. h, k, I are the indices with reference to the crystal axes
a, b, c, (or in other words with reference to the primitive transla-
tions c, b, c of the unit cell). For every layer line of 1 kind we get
the equation:

l , ' : s : hu *ka* lu :0 ,  +1 ,  t 2 ,  " '  *  i n tege r

luztwf are the indices of the axis of rotation, and (hkl) the indices
of the reflecting plane both with reference to the crystal axes

Figure 10

Sphere of reflection penetrating a portion of the reciprocal lattice. For the sake

of clearness only some of the points have received indices. The small circle connect-

ing point (000) and point (260) is the limiting circle for the vertical plane in which

the twd points lie. Its radius is Ro/2'sin iD:oo.

a, b, c. s I propose to call the index of summation (Aufz2ihlungsin-

dex). This equation must be satisfied, if the indices have been
placed correctly.

The layer lines of 11 kind can be explained similarly. The loci

for the reflection of the one-dimensional lattice parallel to the axis
of rotation are cones as shown in Figs. 7 and 8. The other two
primitive directions i,[urarwr] and b, luzazwzl of the space lattice
can also be imagined as two one-dimensional lattices with loci

which are cone surfaces about these directions. Their equations
are then similar to (1a) ; - .
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Turr r. r. (cos o - cos o,o) : htl,

Turo"*,' (cos B - cos 0o) : &lt

The loci of the intersections of these two cones lie on curves of the
4th degree in the photographic plate. The curves are almost

c.'
l/erlrca/ E/evafrbn

'Fr'e/d 
of lndbes

5 = 4

(16)
( 17)

\
!

{

Z
P/an

tVafarm/ P/ane

vertical elevation and plan 
", 

ltfrtfttt;rred reciprocal lattice. onlysome
of the points of the plan have been projected upon the elevation. As an example of
how a point is plotted the polar coordinates of point (032) are shown in the verti-
cal projection.

straight lines near the center and near the principal spectrum.
These layer lines of the 11 kind are straight lines in the reciprocal
lattice as mentioned before. Every point on one must according
to the transformation formulas satisfy the equations:
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h' : ha* har*lzor :.ottttutt,

k' : huz* kaz*ft2'2 : .ottt,utt,

That means that h' and. k' are constant for points that lie on the
same layer line of 11 kind. Where these layer Iines intersect layer
lines of 1 kind all these equations (14), (15) and (17) are satisfied
and real reflections are possible at those points. The chances for
the surfaces of three cones to intersect in one line are very slight.
however, as long as the crystal is not rotating.

Figure 12.

In Fig. 5 we imagine the limiting sphere filled with the reciprocal
Iattice. The point of origin of the lattice is at O, the center of the
sphere. It would be accidental if another point of the reciprocal
lattice lay upon the surface of the "sphere of reflection," a condi-
tion necessary for reflection. However, if we turn the reciprocal
lattice about O a definite number of degrees back and forth
every point of the reciprocal lattice which passes through the sur-
face of the sphere of reflection will be in position to reflect at that
instant. Fig. 10 illustrates how the planes of the reciprocal lattice
normal to the axis of rotation cut the sphere of reflection into ;iaral-
lel sections or slices each of which has a thickness of lfTuo.
which is the reciprocal of the primitive translation in the direction

[uowl parallel to the axis of rotation. This is also shown in the
upper part of Fig. 11 which represents a vertical elevation cf the
reciprocal lattice parallel to the photographic plate. The lower



JOURNAL MINERALOGICAL SOCIETY OF AMERICA t4l

part of Fig. 11 is the plan of the reciprocal lattice in the equatorial
plane. The points in it may be projected upon the elevation as
indicated. Schiebold calls this elevation the field of indices (In-
dicesfeld). OnIy a small part of the points in the plan need to be
projected, however, depending upon the angle of rotation or oscil-
lation respectively. For example, if the angle is 30o no point below
the 30o line shown (Fig. 11) is projected, unless it l ies within 3"
to 40 of the line, for in that case there is a possibility that this
point may cause reflection. But this is not the only limitation for
points which might be projected. The concentric circles in
Fig. 11 represent the surface of the sphere of reflection, each being
a distance of IfT*,. above the next larger one. It is obvious that
if the reciprocal lattice penetrates the sphere of reflection only
through an angle of 30" by rotation about O, only the points in
the plan which would go through one or more of the circles during
such a rotation need to be projected. An easy way of determining
these points is by the aid of a separate drawing of these concentric
circles of reflection upon tracing paper. By pinning a point of the
equator of the sphere to O in the reciprocal lattice we.have a pivot
or axis about which we can turn the sphere any desired number of
degrees and watch which points of the reciprocal lattice penetrate
the circles. In Fig. 11 this operation has been indicated by the
dotted circles which represent the position of the sphere of re-
flection after turning through 30o from the starting position drawn
in full lines. There is also a way of limiting the field of indices
toward the top of the vertical elevation, Fig. 11. The small circles
in Fig. 10 which pass through O, obviously are the lines of inter-
section of the sphere of reflection with vertical planes of the
reciprocal lattice. No point of the lattice outside of the sphere
can reflect. If we can draw these small circles on the elevation of
Fig. 11, therefore, we eliminate many impossible indices from con-
sideration. The radii of these ,,limiting circles,' (Begrenzungs-
kreise) are rs: Rnf 2.sin iDr,rr. Rs/2 is the radius of the sphere of
reflection and the angle iD67,1 is the angle which a pole P17.s pro-
jected upon the equatorial plane as point Qe makes with co-
ordinate r, which is normal to the plane of the axis of rotation and
the incident ray. The auxiliary construction ,Fig. 12 shows how we
arrive at this equation for the radii of the limiting circles.


