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ABSTRACT

In the oscillation method of crystal analysis a crystal is mounted on an axis and
turned back and forth through an angle of about 30° from preferably a known posi-
tion. A beam of monochromatic X-rays normal to the axis of rotation strikes the
crystal and is diffracted. The spectra are recorded on a photographic plate. The
coordinates for each spot or spectrum are measured. These data are used for the
construction of a projection of a new lattice called the reciprocal one with respect
to the crystal space lattice. In the projection the indices of each plane producing
a spectrum can be read off directly. The advantages of this method especially in
the case of crystals with low symmetry are mentioned below. It is also possible
to distinguish with it members of groups like that of the feldspars, which is ex-
tremely difficult, if possible at all, with the Laue and powder methods.

Ascomparatively few students will beable to understand the method thoroughly
by merely reading this paper, therefore, the application of the method will be
described shortly by a detailed example, that of the determination of the space
group of analcite. For a proper understanding of this method the student should
have a working knowledge of the simplest formulas of spherical trigonometry and
of analytical geometry.

INTRODUCTION

Since the discovery of the diffraction of X-rays by crystals in
1912, probably no method of crystal-analysis has promised greater
success for the future than the rotation method by Seemann! and
Polanyi? and the oscillation method by Schiebold.® While in the
rotation method the crystal is rotated 360° about an axis, in the
oscillation method the crystal is turned back and forth about an
axis through a limited number of degrees (usually 30).

Since this method has been described but briefly* in America,
and only one paper of any length has appeared in English® an

t Seemann, H.; Phys. Zeitschr., vol. 20, p. 169 (1919).

% Polanyi, M.; Die Naturwissenschaften, vol. 9, p. 337 (1921).

3 Schiebold, E.; Forischriite der Mineralogie, Krist. und Petrog., vol. 11, pp.
113-280 (1927).

¢ Wyckoff, R. W. G.; The structure of crystals, New York (1924).

5 Bernal, J. D.; Proc. Royal Soc. London, vol. 113A, p. 116.
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explanation and discussion of the method with one or two detailed
examples may be of value.

For the following reasons the oscillation method can be used to
great advantage where single crystals, though they may be small,
are available: (1) The lengths of the edges of the unit cell of a
crystal, as well as the number of molecules in it, can be determined
with great precision, regardless of the system of crystallization.
Neither the powder nor the Laue method can give us this infor-
mation in crystals of low symmetry. (2) If the crystal is oscil-
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Figure 1

The relation of the crystal mounted on the axis of rotation with respect to the
spectra produced on the photographic plate. The spectrogram is that of adularia
oscillated about the crystallographic b axis. Each spectrum is represented by a
pair of short lines. The line nearer the axis is the 8, the one farther away the « line
of the K radiation of molybdenum. Usually only the a line is used. Some of the
layer lines of I kind (hyperbolas) are indicated by dotted lines. Layer lines of 17
kind, parallel to the axis, are sufficiently prominent to be seen without further
indications. The widths of the lines of the spectra in the diagram are supposed to
show intensity of reflection. (After Schiebold.)

lated in a sufficient number of directions the space group can be
determined reliably. The Laue method and, where the symmetry
is lower than hexagonal, the powder method, are not to be depend-
ed upon for this information. (3) There are often sufficient X-ray
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spectra recorded on the plates to make important deductions as to
parameters of the structure. At present the Laue method is the
one most widely used for this purpose.

Bragg’s® ionization method is and will of course continue to be
of great importance in special investigations, but ordinarily it
would require much more time than could be given to a problem.

It is not intended to give descriptions of apparatus and the
technique necessary for the application of the method, but an

Figure 2, (After Schiebold).

explanation of the principles and especially of the graphical meth-
ods used in the interpretation of spectrograms. This the writer
studied at the Mineralogische Institut at Leipzig under Prof.
E. Schiebold and Prof. F. Rinne, to whom he is greatly indebted.

Fig. 1 shows diagrammatically the arrangement of the axis of
rotation upon which the crystal is definitely oriented with ref-
erence to the incident X-rays. The spectra produced on the photo-
graphic plate, which is normal to the incident ray, are shown also.
As far as possible the same letters will be used for corresponding
points in all the diagrams accompanying this paper.

¢ Bragg, W. H., and Bragg, W. L.; X-rays and crystal structure. London
(1925).
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GEOMETRICAL RELATIONS IN THE OSCILLATION METHOD

Fig. 2 illustrates how reflection occurs in the rotating crystal
method, of which the oscillation method is a special case. SOS,
is the incident monochromatic X-ray which meets a plane K of a
crystal in O, the center of the spherical projection. ON is the axis
about which the crystal is rotated. For the sake of convenience
we make it normal to the incident ray SOS,. Points of reflection
are recorded on the photographic plate (Phot. Pl.), which isnor-
mal to the ray SOS,. Reflection by the plane K depends on af?, the
glancing angle between incident ray and plane K, and upon p,
the angle between the normal upon the plane K and the axis ON.
The normals P;, Ps, Ps, P4, to the plane K, when at various
positions during rotation through 360° form a conic surface whose
vertex angle is 2 p. In general a plane K during a complete rota-
tion about ON fulfills the well known Bragg’s equation,’

#A=2d sin a, four times. (1)

This gives rise to four spots of the same order on the plate, for
example Si, Sz, S3, Si. If the plane K with indices %/ happens
to be in the zone [uvw] parallel by construction to the axis ON,
(hu-+Ev+lw=0 is the equation of the plane),® the vertex angle
of the coneis 180°. Therefore, each two of four reflections will
coincide and only two will occur (for example S;, and Se). These
two lie in the so-called principal spectrum (Hauptspekirum).
Other special positions are possible but improbable.?

For the understanding of the angular relations and the inter-
pretation of the spots on the photographic plate Fig. 3 has been
drawn. AN is the axis of rotation, SAO! is the incident ray which
lies in the plane of the principal meridian SNO. S4 is normal to
AN and the photographic plate (Phot. Pl). K is the plane of
reflection. AP is normal to it. A Ris the reflected ray which meets
the plate at R'. pp is the angle NP between the normal to the
plane K and the axis AN. pp=DNR is the angle between the re-
flected ray and the axis AN. ¢ is the angle OQp in the equatorial

® o is called © by the Braggs. The reader is referred to pp. 6-15 and 73-103 of
their elementary book (0. cit.).

7 0p. cit., p. 13.

& See for example: Dana’s Textbook of Mineralogy, 3d ed., p. 46 (1922).

9 Schiebold, 0p. cit., p. 119.

92 The greek letter ¢ in the drawings looks slightly different from the printed
one.
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plane, or in other words the meridian angle of the pole P. ¢p=
OQ is the meridian angle of the pole R. ¢=NSP=ZOR® is
the angle between the great circle SPRO and the principal meri-
dian. The coordinate system x, z on the plate is right-angled.
¢ and 7 are the polar coordinates of R'. The points O and O!
could have been made to coincide except for the sake of clearness

Axis of
N Rotatian

i/ e
=

Fhincple Me,

Figure 3.

of the drawing. 7= A40"is the distance of the plane K to the photo-
graphic plate.

It is obvious that OR =2« when reflection occurs (see equation
(1)). Since AP is normal to K, SP=90°—a and PR=90°—a.
In A SPN by the sine law,

sin (90°—a) _sinpp cosa
sin (180°—¢) sing sing

By the cosine law,
cos (90°—ar) =cos 90°- cos pp+sin 90°- sin pp-cos (180°—¢) or, stn a=sin pp- cos
(180°—¢) @
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Suppose x and ¥ or 7 and ¢ to be given:
r=r - tan 2«

=tan 2a

~ |~

x=r, sin ¢

=7 - COS
Substituting, x=7 - tan 2« - sin ¢

z=r - tan 2a- coS ¢
By construction,

x=r- tan ¢r

z=AQ’- cot pr=
coS ¢

-cot pr 4)

By the cosine law in A NRO,
cos 2a.=cos 90° « cos pr-+sin 90° - sin pg - cos ¢r

or, cos 2c:=sin pg -COS ¢R
and, cos pr=cos 90° -cos 2a+-sin 90° - sin 2e + cos ¢ (5)
or, cos pr=sin 2a -cos =2 sin « -cos a c0S é 6)

In A NPO by the cosine law,
cos p,, =cos 90° -c0s(90°— ar+2a) +-sin 90° -sin(90°— a+2a)-cosd
or, cos p,, =sin (90°+-a) -cos =cos e -CoS ¢ (7

. cos
Substituting from (7) cos a= £
cos

we have another form for cos pr,

®

cos pgr =2 sin « +CoS pp

TuE RECIPROCAL SPACE LATTICE

1t would be difficult to explain the use of the oscillation method
especially the graphical interpretations without introducing the
conception of the reciprocal lattice, used first by Ewald.!®

If we consider a crystal as a simple space lattice we may choose
three directions or vectors a, b, ¢, in it as primitive translations,
(Fig. 4). These may serve also as axes'! when they will be marked

10 Zejtschr. f. Kristallographie, vol. 56, p. 129 (1921).

11 Tt is customary to use German letters for vectors or directed magnitudes and
corresponding Latin ones for absolute lengths. In Fig. 4, then,q, b, ¢, imply not only
the lengths of the edges of the parallelopiped but also their directions. g, b, ¢, on
the other hand, are used either just for the lengths of the edges or to designate the
three crystallographic axes. A primitive translation is the vector from an atom to
the nearest identical atom in the direction of the vector. See I. example Wyckoff,
R.W. G., 0p. cit., pp. 56-58.
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a, b, ¢ to distinguish them from the translations a, b, ¢. A plane
in such a lattice may be designated by Miller indices 4, &, /, where
the intercepts of such a plane are a/%, b/k, ¢/I, on a, b, ¢, respec-
tively.

The origin of the unit cell or parallelopiped is at 0. The planes
which have as indices integers prime to each other are farthest
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Figure 4.

away from the origin in the cell. They are responsible for the
I order reflections. Planes which are sub-multiple distances of the
first mentioned planes away from the origin have indices that are
multiples of the indices consisting of integers prime to each other.
These intermediate planes produce the higher orders of reflection.!?
In Fig. 4, considering the pinacoid, for example, plane (100) would
be farthest away from the origin in the unit cell 04 FBCHDG,
and would produce I order reflections. The plane (200) would be
half way between and would cause I7T order reflections and so forth.

“Now from the planes of the lattice, as so defined (quoting
Bernal®) another lattice can be built up each point of which lies

2 Bragg, op. cit., p. 13.
13 0p. cit., p. 118,
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on the normal from the origin to a plane and at a distance A"
from the origin, # and the spacing d of the plane being related by

hd =k? 9)

where k is a constant. In other words, each point in the new
lattice is the reciprocal polar of a plane in the old lattice in a sphere
of radius k.” The new lattice is called the reciprocal lattice (rezi-
prokes Gitter) of the old. For every plane in one may be found a
corresponding point in the other as shown in Fig. 4 for the planes
(100), (200), and (400). The reciprocal lattice has the same origin
as the old lattice but is referred to the three vectors a', b, ¢
With respect to a, b, ¢,”®
k2be | A
a1=7 sin @, and is normal to the plane be,
%ca , .
b‘=7 sin 8, and is normal to the plane ca,

kab .
c1=7 sin v, and is normal to the plane ab,

a, b, ¢ are the lengths of the vectors a, b, ¢ respectively, «, B, v,
are the angles between the primitive translations. V is the volume
of the unit cell or parallelopiped. With these new vectorsat, b*, ¢!
whose lengths are 4!, b1, ¢!, respectively, we build the reciprocal
lattice in which %, &, I are the indices of a point which corresponds
to a plane (kkl) in the original lattice. The reciprocal lattice
has the following important properties: (1) the vector 5 (Fig. 6)
to a point Py, of the reciprocal lattice is the normal to the cor-
responding plane (%kl) of the space lattice. (2) The length % of
the vector p to the first point encountered in a given direction in
the reciprocal lattice is equal to 1/dasy. disthe distance between
equivalent planes in the space lattice. (3) The coordinates of a
point P in the reciprocal lattice are proportional to the indices
of the corresponding plane (%kl) in the space lattice, or in other
words if a!, y!, 2! are the coordinates, x'=a'h, y'=0'%, 2'=c'l.
(4) The volumes of the unit cells of the two lattices are reciprocal
to each other ¥V =1/V. V'is the volume of the unit of the recipro-
cal lattice.

14 T substituted % for Bernal’s p because p is used for angles in my paper. This
& has no relation to the index %, but is the length of the vector [) used further on.,
d is always the spacing between equivalent planes.

1 Ewald, op. cit.
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Bernal says,!® “It is difficult to obtain a physical picture of the
phenomena in the reciprocal lattice corresponding to the diffrac-
tion of X-rays in crystals. By assuming Bragg’s law, however,
we can obtain a geometrical one.” If the angle between the inci-
dent ray and the reflecting plane in the space lattice satisfies the
equation (1) reflection occurs. In the reciprocal lattice « is the
angle between the incident ray and the plane which is normal to the
radius vector p connecting the origin O with the point Pz, which

Figure 5. (After Bernal)

corresponds to the plane (4kl) in the space lattice. (See Fig. 5.)
By equation (9)
k2 k2
h=— or, d=— (10)
. d h

Substituting (10) in equation (1), we get (assuming for the pres-
_entn=1)
N
sin a=— 11
= (11)

Fig. 5 (after Bernal) is an attempt to present reflection in the re-
ciprocal lattice diagrammatically. SOS, is the incident ray. A
sphere with a radius 2%2/\ is drawn around O as center. The
point P in the sphere is the point of the reciprocal lattice corre-
sponding to the reflecting plane of the space lattice. OP is the
radius vector h which is normal at P to a plane SR which cuts the

8 9p. cit. p. 120.
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sphere in the circle marked “circle of reflection.” SPR is a straight
line in that plane. Then

B N\h
sin OSP=——=—— which is equation (11) Bragg’s equation.
2w 2% q (11) Bragg’seq

A

k is the length of the vector p in this equation.

The incident ray SO, therefore, will be reflected along OR by
a plane in the space lattice which corresponds to the point P in
the reciprocal lattice. Therefore the angle ROSq=2a. Further
all rays that can be reflected at all by the plane corresponding to
P lie along the surface of the cone OSR, and the incident and
reflected rays are diametrically opposite generators of this cone. A
study of Fig. 5 and equation (11) shows that no point of reflection
can lie outside of the sphere with 2k%/X as radius, for if # were
longer than 2k%/A, sin o would be greater than 1. The sphere
with 2k2/\ as radius, therefore, is called the “limiting sphere,”
(Begrenzungskugel).

Since the angle SPO must always be 90°, all points P will lie on
the surface of a sphere with a radius #2/\ whose center M lies half
way between Sand 0. Thissphere is called the “‘sphere of reflection”
(Ausbreitungskugel by Ewald and Schiebold). It is exceedingly
useful in finding the indices of the spots in the photograph, for
only those planes can reflect whose points P in the process of
rotation about O pass through the surface of the sphere of reflection.
Therefore the number of reflections is limited by the angle of
rotation or oscillation, respectively. s

THE EVALUATION OF REFLECTIONS IN THE PHOTOGRAMS

The plotting of reflections and the determination of their in-
dices resemble the gnomonic projection. (See Fig. 11.) If in
equation (9) we choose k=1 we have

b dr=1, or hpri=——

kil
dnir=the distance between equivalent planes (kkl). In order to
find Ay, the length of vector har, we construct the auxiliary
figure 7. With two arbitrary lengths a', 8!, we draw a reciprocal
lattice in two dimensions. With the radius ks/A=1/N (\ here is
also arbitrary) we draw the circle marked ‘sphere of reflection in
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Fig. 5, so that O will lie on its surface. Any other point Py,
of the lattice that happens to be on the surface is a possible point
of reflection. OPppi=hnui, therefore. Since OM P is an isosceles
triangle, the normal from M uponOP bisects the angle 2a=0M P.'*
OL=PL=0M -sin o
therefore, 2£=1/\ sin a, and since knzi=1/dnm
12

Brgpi=——=—sin apx (12)
Rkl

which is equation (1) in a slightly different form.
<& o

~Ia

Figure 6

Axial relations of space lattice to reciprocal lattice. @, b, ¢ are primitive trans-
lations and axes of space lattice. a1, b, ¢! are primitive translations of reciprocal
lattice. 6! normal to plane bc, bt normal to plane ¢, ¢! normal to plane ab.

But the length of p is one of our polar coordinates in the re-
ciprocal lattice corresponding to 7 on the spectrogram of the space
lattice (Fig. 3), as will be seen more clearly in Fig. 11. For plotting
the length of pwe need a factor which will make our projections of
a convenient size. We choose ReA\/2 (Ro=500 mm. usually is
convenient). Multiplying both sides of equation (12) by this factor
RoA/2 we get

R\

2d 1

= Ro-sin Apicls (13)

% The incident ray is parallel to MO and not as shown in Fig,. 7.
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The radius of the sphere of reflection 1/\ when multiplied by the
same factor becomes Ro/2, or 250 mm. if we choose Ro= 500 mm.
To locate a point P in the projection of the reciprocal lattice
corresponding to a plane (%#kl) we use the polar coordinates
Ro-sin apx; and pp,,; which we compute with the aid of equation
(7).

An examination of the spots in a photogram taken by the
oscillation method (for example Fig. 1) shows that they are ar-
ranged in distinct lines or curves at right angles to the trace of the

K _

ya i

Figure 7162

axis of rotation provided the axis is parallel to a prominent crystal-
lographic direction. These lines or curves are called “layer lines
of I kind”” (Schichtlinien I. Art). In order to explain these lines
we go back to the conception of the one dimensional lattice by
Ewald.'” We imagine the space lattice to be made up of three one-
dimensional ones. Each of them is parallel to one of the primitive
translations a, b, ¢. A one-dimensional lattice consists of a
line on which atomic centers are spaced at equal intervals. We
orient the lattice so that the one-dimensional one parallel to ¢ is
also parallel to the axis of rotation. In Fig. 8 the one-dimensional
lattice with the direction [usvsws] of the ¢ axis and of the axis of ro-
tation is shown. (Any other direction or line on which atoms occur
at regular intervals could have been chosen.) Neighboring
atomic centers Ao, A; are a primitive translation T'[y;»mw, apart.

7 Ewald, P. P., Kristalle und Rontgenstrahlen, Berlin, 1923, p. 42.
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The parallel beam of monochromatic rays 5.5 meets the lattice
and is diffracted. Since each atom sends out spherical wave im-
pulses!® the diffracted beams lie on a cone whose vertex angle is
equal to 2. The axis of the cone is the line [u#3v;w;3] as shown in
Figs. 8 and 9. Diffraction (or reflection) occurs only in those
directions where the phase difference between impulses from
adjacent atoms is an integral multiple of the wave length A.
In other words, in Fig. 8

Figure 8.

ABi— 43By=0,1,2,3, - - -, '\
A Bi=Ty pmw, COS Y
A2Bo=T\y g, €OS Y0

ABi A3By=I"= Tu - (€08 ¥ — €08 70) &)

This equation and two other exactly similar ones to be mentioned
later are called the Laue equations. [’ is the order of reflection
in the one dimensional lattice just as » is the order in the three
dimensional lattice in equation (1).

In Fig. 9 we assume a special case, that of the incident ray .S
being normal to the axis of rotation which is parallel to a prominent
crystallographic direction. The cones of reflection of the different
orders cut the photographic plate in hyperbolas. The O order will
be a special case, namely a straight line. In the figure we must

18 These spherical waves can be explained by Huygens’ principle. Only waves
which are exactly in phase lie on the surface of the cone.
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imagine the cones to extend also downward from the O order. All
spots, therefore, have these hyperbolas or layer lines for one of
their loci. They become straight lines normal to the axis of rota-
tion in the projection of the reciprocal lattice. Figs. 3 and 8 show
that the angle pg and « are identical. Since we are dealing with

IT . Order

L. Ordler
—35
O. Order

Figure 9. (After Ewald.)

an incident ray normal to the direction [usvsw;] the cosine of 7o
becomes 0. We may substitute in (14) pg and get
UN="T\y 0, COS PR (14%)

By equation (6) and (8) cos pp=sin 2a-cos ¢=2 sin a-cos pp.
Substituting in (14’) we get

sin 2a- cos ¢=2sin a-cos pp=

U g0 gw

=a constant for each layer line  (15)

Equation 15 may be used for calculating the primitive translation
Ty, by taking the mean value of Ty, calculated from all
the spots in the photograph. A shorter and more accurate way is
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to use the reflections of the principal spectrum along the 0 layer
line, if we know the orientation of the crystal with respect to the
principal meridian and to the incident ray. The principal spectrum
consists of reflections from the faces that lie in the zone of the axis
of rotation. Therefore it is at right angles to the direction of the
axis (See Fig. 1) and to [usvsws] which by construction is parallel
to the axis. The advantage of taking a prominent crystallographic
zone or direction for the axis of rotation is obvious now, for it
insures prominent reflections in the principal spectrum. These
can be evaluated by equation (1) if we know the approximate T
from equation (15), as will be shown in a paper on the structure of
analcite. /' in (14) and (15) is an integer. It tells us how many
times we must take the distance Tu,om, in the direction [uzzsws]
to arrive at a certain point. It is the index along [usvsws]. I’ must
remain a constant for each layer line as is obvious from equation
(14) and (15). (Note the resemblance to the gnomonic projection
in this respect.)

Layer lines in the general direction of the axis of rotation (Fig.
1) also appear, if prominent crystallographic planes are normal to
the axis. A prominent zone will then be at right angles to the axis.
The reflections of such a zone lie on a curve which is almost a
straight line near the principal spectrum. All the points in the
reciprocal lattice corresponding to the planes in such a zone lie
in a plane. Therefore, these layer lines are straight lines in the
reciprocal lattice. Schiebold calls them layer lines of I7 kind.
Only the index referring to the coordinate in the direction of the
axis of rotation changes along these lines as shown later.

In order to make our evaluation quite general regardless of
which prominent crystallographic direction is the axis of rotation
we look at the portion of (15) I'N/Ty,uyw,- On each layer line of T
kind the index !’ is a constant. If the direction parallel to the axis
of rotation is not one of the primitive translations a, b, ¢, but some
other crystallographic direction, we employ the well known trans-
formation formulas to find the indices with respect to the primitive

translation a, b, c.
h’=}m1+k7)1-l-lw1

k' =hug+koy -l

UV =hus+kos+lw
Intheseequations [uynw; | =4
[emren] =1
|u3vaws] =C
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a, b, c are the three primitive directions or axes of a new orientation
of the lattice with reference to the crystal axes a, b, ¢. ¢ is the axis
of rotation. %', k’, 1’ are the indices with reference to the directions
a, b, c. &, k, I are the indices with reference to the crystal axes
a, b, ¢, (or in other words with reference to the primitive transla-
tions a, b, ¢ of the unit cell). For every layer line of I kind we get
the equation:
V=s=hu+ko+lw=0, £1, +£2, - - + integer

[urw] are the indices of the axis of rotation, and (kkl) the indices
of the reflecting plane both with reference to the crystal axes
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Figure 10

Sphere of reflection penetrating a portion of the reciprocal lattice. For the sake
of clearness only some of the points have received indices. The small circle connect-
ing point (000) and point (260) is the limiting circle for the vertical plane in which
the two points lie. Its radius is Ro/2 - sin ®a0.

a,b,c. s Ipropose to call the index of summation (Aufzihlungsin-
dex). This equation must be satisfied, if the indices have been
placed correctly.

The layer lines of IT kind can be explained similarly. The loci
for the reflection of the one-dimensional lattice parallel to the axis
of rotation are cones as shown in Figs. 7 and 8. The other two
primitive directions a,{#v1w;] and b,[uswsws] of the space lattice
can also be imagined as two one-dimensional lattices with loci
which are cone surfaces about these directions. Their equations
are then similar to (14): =
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Tu o, (€OS a—cos ag) =h'\ (16)
Ty, (cOS B—cos Bo) =k'A a7

The loci of the intersections of these two cones lie on curves of the
4th degree in the photographic plate. The curves are almost
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Figure 11.

Vertical elevation and plan of a right angled reciprocal lattice. Only some
of the points of the plan have been projected upon the elevation. As an example of
how a point is plotted the polar coordinates of point (032) are shown in the verti-
cal projection.

straight lines near the center and near the principal spectrum.
These layer lines of the I7 kind are straight lines in the reciprocal

lattice as mentioned before. Every point on one must according
to the transformation formulas satisfy the equations:
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b’ = huy+ kv + 1w, = constant
k' = hus+ kv,+1lws = constant

That means that %2’ and %’ are constant for points that lie on the
same layer line of 7T kind. Where these layer lines intersect layer
lines of I kind all these equations (14), (15) and (17) are satisfied
and real reflections are possible at those points. The chances for
the surfaces of three cones to intersect in one line are very slight,
however, as long as the crystal is not rotating.

Figure 12.

In Fig. 5 we imagine the limiting sphere filled with the reciprocal
lattice. The point of origin of the lattice is at O, the center of the
sphere. It would be accidental if another point of the reciprocal
lattice lay upon the surface of the “‘sphere of reflection,” a condi-
tion necessary for reflection. However, if we turn the reciprocal
lattice about O a definite number of degrees back and forth
every point of the reciprocal lattice which passes through the sur-
face of the sphere of reflection will be in position to reflect at that
instant. Fig. 10 illustrates how the planes of the reciprocal lattice
normal to the axis of rotation cut the sphere of reflection into paral-
lel sections or slices each of which has a thickness of 1/Tuw
which is the reciprocal of the primitive translation in the direction
[uvw] parallel to the axis of rotation. This is also shown in the
upper part of Fig. 11 which represents a vertical elevation of the
reciprocal lattice parallel to the photographic plate. The lower
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part of Fig. 11 is the plan of the reciprocal lattice in the equatorial
plane. The points in it may be projected upon the elevation as
indicated. Schiebold calls this elevation the field of indices (In-
dicesfeld). Only a small part of the points in the plan need to be
projected, however, depending upon the angle of rotation or oscil-
lation respectively. For example, if the angle is 30° no point below
the 30° line shown (Fig. 11) is projected, unless it lies within 3°
to 4° of the line, for in that case there is a possibility that this
point may cause reflection. But this is not the only limitation for
points which might be projected. The concentric circles in
Fig. 11 represent the surface of the sphere of reflection, each being
a distance of 1/T ., above the next larger one. It is obvious that
if the reciprocal lattice penetrates the sphere of reflection only
through an angle of 30° by rotation about O, only the points in
the plan which would go through one or more of the circles during
such a rotation need to be projected. An easy way of determining
these points is by the aid of a separate drawing of these concentric
circles of reflection upon tracing paper. By pinning a point of the
equator of the sphere to O in the reciprocal lattice we have a pivot
or axis about which we can turn the sphere any desired number of
degrees and watch which points of the reciprocal lattice penetrate
the circles. In Fig. 11 this operation has been indicated by the
dotted circles which represent the position of the sphere of re-
flection after turning through 30° from the starting position drawn
in full lines. There is also a way of limiting the field of indices
toward the top of the vertical elevation, Fig. 11. The small circles
in Fig. 10 which pass through O, obviously are the lines of inter-
section of the sphere of reflection with vertical planes of the
reciprocal lattice. No point of the lattice outside of the sphere
can reflect. If we can draw these small circles on the elevation of
Fig. 11, therefore, we eliminate many impossible indices from con-
sideration. The radii of these “limiting circles” (Begrenzungs-
kreise) are ro=Ry/2-sin ®41;. R,/2 is the radius of the sphere of
reflection and the angle ®,;; is the angle which a pole Py pro-
jected upon the equatorial plane as point Qp makes with co-
ordinate x, which is normal to the plane of the axis of rotation and
the incident ray. The auxiliary construction, Fig. 12 shows how we
arrive at this equation for the radii of the limiting circles.



